
Coverage-Based Testing Strategies
and Reliability Modeling for Fault-

Tolerant Software Systems

Presented by: CAI Xia

Supervisor: Prof. Michael R. Lyu

August 24, 2006

Ph.D Thesis Defense

2

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

3

Background

¡ Four technical methods to achieve reliable
software systems

Structural Programming
Formal methods Software
reuse

Software testing

Formal inspection

Checkpointing and recovery
Exception handling
Data diversity Design
diversity

Software reliability modeling

4

Fault-tolerant software
¡ Single-version technique

�Checkpointing and recovery
�Exception handling

¡ Multi-version technique (design diversity)
�Recovery block (RB)
�N-version programming (NVP)
�N self-checking programming (NSCP)

NVP model

5

Design diversity
¡ Requirement

�Same specification;
�The multiple versions developed differently by

independent teams;
�No communications allowed between teams;

¡ Expectation
�Programs built differently should fail differently

¡ Challenges
�Cost consuming;
�Correlated faults?

6

Experiments and evaluations
¡ Empirical and theoretical investigations have been

conducted based on experiments, modeling, and
evaluations
� Knight and Leveson (1986), Kelly et al (1988), Eckhardt et al (1991),

Lyu and He (1993)
� Eckhardt and Lee (1985), Littlewood and Miller (1989), Popov et al.

(2003)
� Belli and Jedrzejowicz (1990), Littlewood. et al (2001), Teng and

Pham (2002)

¡ No conclusive estimation can be made because of
the size, population, complexity and comparability
of these experiments

7

Software testing strategies
¡ Key issue

� test case selection and evaluation
¡ Classifications

� Functional testing (black-box testing)
¡ Specification-based testing

� Structural testing (white-box testing)
¡ Branch testing
¡ Data-flow coverage testing

� Mutation testing
� Random testing

¡ Comparison of different testing strategies:
� Simulations
� Formal analysis

Subdomain-based testing

Code coverage:
measurement of

testing
completeness?

8

Code coverage

¡ Definition
�measured as the fraction of program codes that are

executed at least once during the test.

¡ Classification
�Block coverage: the portion of basic blocks executed.
�Decision coverage: the portion of decisions executed
�C-Use coverage: computational uses of a variable.
�P-Use coverage: predicate uses of a variable

9

Code coverage: an indicator of
testing effectiveness?
¡ Positive evidence

�high code coverage brings high software reliability and
low fault rate

�both code coverage and fault detected in programs
grow over time, as testing progresses.

¡ Negative evidence
�Can this be attributed to causal dependency between

code coverage and defect coverage?

¡ Controversial, not conclusive

10

Software reliability growth modeling
(SRGM)

¡ To model past failure data to predict future
behavior

11

SRGM: some examples

¡ Nonhomogeneous Poisson Process (NHPP)
model

¡ S-shaped reliability growth model

¡ Musa-Okumoto Logarithmic Poisson model

μ(t) is the mean value of cumulative number of failure by time t

12

Reliability models for design diversity

¡ Echhardt and Lee (1985)
� Variation of difficulty on demand space
� Positive correlations between version failures

¡ Littlewood and Miller (1989)
� Forced design diversity
� Possibility of negative correlations

¡ Dugan and Lyu (1995)
� Markov reward model

¡ Tomek and Trivedi (1995)
� Stochastic reward net

¡ Popov, Strigini et al (2003)
� Subdomains on demand space
� Upper bounds and “likely” lower bounds for reliability

13

Our contributions
¡ For Fault Tolerance:

�Assess the effectiveness of design diversity

¡ For Fault Removal:
�Establish the relationship between fault coverage and

code coverage under various testing strategies

¡ For Fault Forecast:
�Propose a new reliability model which incorporates code

coverage and testing time together

14

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

15

Motivation

¡ Fault-tolerant software
�A necessity
�Yet controversial

¡ Lack of
�Conclusive assessment
�creditable reliability model
�effective testing strategy
�Real-world project data on testing and fault tolerance

techniques together

16

Research procedure and methodology

¡ A comprehensive and systematic approach
�Modeling
�Experimentation
�Evaluation
�Economics

¡ Modeling
�Formulate the relationship between testing and

reliability achievement
�Propose our own reliability models with the key

attributes

17

Research procedure and methodology

¡ Experimentation
�Obtain new real-world fault-tolerant empirical data with

coverage testing and mutation testing

¡ Evaluation
�Collect statistical data for the effectiveness of design

diversity
�Evaluate existing reliability models for design diversity;
� Investigate the effect of code coverage;

¡ Economics
�Perform a tradeoff study on testing and fault tolerance

18

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

19

Project features
¡ Complicated and real-world application
¡ Large population of program versions
¡ Controlled development process
¡ Mutation testing with real faults injection
¡ Well-defined acceptance test set

20

Experimental setup

¡ Time: spring of 2002
¡ Population: 34 teams of four members
¡ Application: a critical avionics application
¡ Duration: a 12-week long project
¡ Developers: senior-level undergraduate students

with computer science major
¡ Place: CUHK

21

Experimental project description

¡ Geometry ¡ Data flow diagram

Redundant Strapped-Down Inertial Measurement Unit (RSDIMU)

22

Software development procedure
1. Initial design document (3 weeks)
2. Final design document (3 weeks)
3. Initial code (1.5 weeks)
4. Code passing unit test (2 weeks)
5. Code passing integration test (1 weeks)
6. Code passing acceptance test (1.5 weeks)

23

Mutant creation

¡ Revision control applied and code changes
analyzed

¡ Mutants created by injecting real faults
identified during each development stage

¡ Each mutant containing one design or
programming fault

¡ 426 mutants created for 21 program
versions

24

Program metrics
Id Lines Modules Functions Blocks Decisions C-Use P-Use Mutants

01 1628 9 70 1327 606 1012 1384 25

02 2361 11 37 1592 809 2022 1714 21

03 2331 8 51 1081 548 899 1070 17

04 1749 7 39 1183 647 646 1339 24

05 2623 7 40 2460 960 2434 1853 26

07 2918 11 35 2686 917 2815 1792 19

08 2154 9 57 1429 585 1470 1293 17

09 2161 9 56 1663 666 2022 1979 20

12 2559 8 46 1308 551 1204 1201 31

15 1849 8 47 1736 732 1645 1448 29

17 1768 9 58 1310 655 1014 1328 17

18 2177 6 69 1635 686 1138 1251 10

20 1807 9 60 1531 782 1512 1735 18

22 3253 7 68 2403 1076 2907 2335 23

24 2131 8 90 1890 706 1586 1805 9

26 4512 20 45 2144 1238 2404 4461 22

27 1455 9 21 1327 622 1114 1364 15

29 1627 8 43 1710 506 1539 833 24

31 1914 12 24 1601 827 1075 1617 23

32 1919 8 41 1807 974 1649 2132 20

33 2022 7 27 1880 1009 2574 2887 16

Average 2234.2 9.0 48.8 1700.1 766.8 1651.5 1753.4 Total: 426

25

Setup of evaluation test

¡ ATAC tool employed to analyze the compare
testing coverage

¡ 1200 test cases exercised as acceptance test
¡ All failures analyzed, code coverage measured,

and cross-mutant failure results compared
¡ 60 Sun machines running Solaris involved with 30

hours one cycle and a total of 1.6 million files
around 20GB generated

¡ 1M test cases in operational test

26

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

27

Static analysis result (1)

Fault types Number Percentage
Assign/Init: 136 31%
Function/Class/Object: 144 33%

Algorithm/Method: 81 19%
Checking: 60 14%
Interface/OO Messages 5 1%

Qualifier Number Percentage
Incorrect: 267 63%
Missing: 141 33%

Extraneous: 18 4%

Fault Type Distribution Qualifier Distribution

28

Static analysis result (2)

Stage Number Percentage

Init Code 237 55.6%
Unit Test 120 28.2%
Integration Test 31 7.3%
Acceptance Test 38 8.9%

Lines Number Percentage
1 line: 116 27.23%
2-5 lines: 130 30.52%
6-10 lines: 61 14.32%
11-20 lines: 43 10.09%
21-50 lines: 53 12.44%
>51 lines: 23 5.40%
Average 11.39

Development Stage Distribution
Fault Effect Code Lines

29

Mutants relationship
¡ Related mutants:

- same success/failure 1200-bit binary string
¡ Similar mutants:

- same binary string with the same erroneous output variables
¡ Exact mutants:

- same binary string with same values of erroneous output variables

Total pairs:
90525

30

Cross project comparison

31

Cross project comparison
¡ NASA 4-university project: 7 out of 20 versions passed the

operational testing
¡ Coincident failures were found among 2 to 8 versions
¡ 5 of the 7 related faults were not observed in our project

32

Major contributions or findings
on fault tolerance

¡ Real-world mutation data for design diversity

¡ A major empirical study in this field with
substantial coverage and fault data

¡ Supportive evidence for design diversity
�Remarkable reliability improvement (102 to 104)

�Low probability of fault correlation

33

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

34

Research questions

¡ Is code coverage a positive indicator for
fault detection capability?

¡ Does such effect vary under different testing
strategies and profiles?

¡ Does any such effect vary with different
code coverage metrics?

35

Fault detection related to changes of test coverage
Version ID Blocks Decisions C-Use P-Use Any

1 6/8 6/8 6/8 7/8 7/8 (87.5%)

2 9/14 9/14 9/14 10/14 10/14 (71.4%)

3 4/7 4/7 3/7 4/7 4/7 (57.1%)

4 7/11 8/11 8/11 8/11 8/11 (72.5%)

5 7/10 7/10 5/10 7/10 7/10 (70%)

7 5/10 5/10 5/10 5/10 5/10 (50%)

8 1/5 2/5 2/5 2/5 2/5 (40%)

9 7/9 7/9 7/9 7/9 7/9 (77.8%)

12 10/20 17/20 11/20 17/20 18/20 (90%)

15 6/11 6/11 6/11 6/11 6/11 (54.5%)

17 5/7 5/7 5/7 5/7 5/7 (71.4%)

18 5/6 5/6 5/6 5/6 5/6 (83.3%)

20 9/11 10/11 8/11 10/11 10/11 (90.9%)

22 12/13 12/13 12/13 12/13 12/13 (92.3%)

24 5/7 5/7 5/7 5/7 5/7 (71.4%)

26 2/12 4/12 4/12 4/12 4/12 (33.3%)

27 4/7 5/7 4/7 5/7 5/7 (71.4%)

29 10/18 10/18 11/18 10/18 12/18 (66.7%)

31 7/11 7/11 7/11 7/11 8/11 (72.7%)

32 3/7 4/7 5/7 5/7 5/7 (71.4%)

33 7/13 7/13 9/13 10/13 10/13 (76.9%)

Overall 131/217 (60.4%) 145/217 (66.8%) 137/217 (63.1%) 152/217 (70%) 155/217 (71.4%)

426
-174
- 35
= 217

Coverage increase => more faults detected!

36

Cumulated defect/block coverage

37

Cumulated defect coverage versus
block coverage

R2=0.945

38

Test cases description

I

II

III
IV

V

VI

39

Block coverage vs. fault coverage

¡ Test case contribution on block
coverage

¡ Test case contribution on
fault coverage

I II III IV V VI
I II III IV V VI

40

Correlation between block coverage
and fault coverage

¡ Linear modeling fitness
in various test case
regions

¡ Linear regression relationship
between block coverage and
defect coverage in the whole
test set

41

The correlation at various test regions

¡ Linear regression relationship
between block coverage and
defect coverage in Region VI

¡ Linear regression relationship
between block coverage and
defect coverage in Region IV

42

Under various testing strategies

� Functional test: 1-800
� Random test: 801-1200
� Normal test: the system is operational according to the spec
� Exceptional test: the system is under severe stress conditions.

43

With different coverage metrics

uThe correlations under decision, C-
use and P-use are similar with that of
block coverage

44

Answers to the research questions

¡ Is code coverage a positive indicator for fault detection
capability?
�Yes.

¡ Does such effect vary under different testing strategies and
profiles?
�Yes. The effect is highest with exceptional test cases,

while lowest with normal test cases.

¡ Does any such effect vary with different code coverage
metrics?
�Not obvious with our experimental data.

45

Major contributions or findings
on software testing

¡ High correlation between fault coverage and code
coverage in exceptional test cases
�Give guidelines for design of exceptional test cases

¡ This is the first time that such correlation has been
investigated under various testing strategies

46

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

47

Work on reliability modeling

¡ Evaluate current probability reliability models for
design diversity with our experimental data

¡ Propose a new reliability model which incorporates
test coverage measurement into traditional
software growth model

48

Results of PS Model with our project data
n Popov, Strigini et al (2003)

49

Results of PS Model with our project data

50

Results of DL model with our project data
¡ Dugan and Lyu (1995)
¡ Predicted reliability by different configurations
¡ The result is consistent with previous study

51

Introducing coverage into software
reliability modeling

¡ Most traditional software reliability models
are based on time domain

¡ However, time may not be the only factor
that affects the failure behavior of software

¡ Test completeness may be another indicator
for software reliability

52

A new reliability model
¡ Assumptions:
1. The number of failures revealed in testing is

related to not only the execution time, but also the
code coverage achieved;

2. The failure rate with respect to time and test
coverage together is a parameterized summation
of those with respect to time or coverage alone;

3. The probabilities of failure with respect to time and
coverage are not independent, they affect each
other by an exponential rate.

53

Model form

�λ(t,c): joint failure intensity function
�λ1(t): failure intensity function with respect to time
�λ2(c): failure intensity function with respect to coverage
�α1,γ1, α2, γ2: parameters with the constraint of

α 1 + α 2 = 1

joint failure
intensity function

failure intensity
function with time

failure intensity function
with coverageDependency

factors

54

¡ Method A:
�Select a model for λ1(t) and λ2(c) ;
�Estimate the parameters inλ1(t) and λ2(c) independently;
�Optimize other four parameters afterwards.

¡ Method B:
�Select a model for λ1(t) and λ2(c) ;
�Optimize all parameters together.

¡ Least-squares estimation (LSE) employed

Estimation methods

Existing reliability models:
NHPP, S-shaped,
logarithmic, Weibull …

???

55

λ(c) : Modeling defect coverage and
code coverage

¡ A Hyper-exponential model

� Fc: cumulated number of failures when coverage c is achieved
� K: number of classes of testing strategies;
� Ni: the expected number of faults detected eventually in each class

¡ A Beta model

� N1: the expected number of faults detected eventually
� N2: the ultimate test coverage

56

λ(c) : Experimental evaluation

57

λ(c) : Parameters estimation results

¡ Hyper-exponential
model

¡ Beta model

SSE=38365

58

¡ λ1(t), λ2(c): exponential (NHPP)
¡ NHPP model: original SRGM

Parameter estimation (1)

59

Prediction accuracy (1)

60

Parameter estimation (2)

¡ λ1(t) : NHPP
¡ λ2(c): Beta model

61

Estimation accuracy (2)

62

Major contributions or findings
on software reliability modeling

¡ The first reliability model which combines the
effect of testing time and code coverage together

¡ The new reliability model outperforms traditional
NHPP model in terms of estimation accuracy

63

Outline

¡ Background and related work
¡ Research methodology
¡ Experimental setup
¡ Evaluations on design diversity
¡ Coverage-based testing strategies
¡ Reliability modeling
¡ Conclusion and future work

64

Conclusion

¡ Propose a new software reliability modeling
�Incorporate code coverage into traditional

software reliability growth models
�Achieve better accuracy than the traditional

NHPP model

The first reliability model combining the effect
of testing time and code coverage together

65

Conclusion
¡ Assess multi-version fault-tolerant software

with supportive evidence by a large-scale
experiment
� High reliability improvement
� Low fault correlation
� Stable performance

A major empirical study in this field with
substantial fault and coverage data

66

Conclusion

¡ Evaluate the effectiveness of coverage-
based testing strategies:
�Code coverage is a reasonably positive

indicator for fault detection capability
�The effect is remarkable under exceptional

testing profile

The first evaluation looking into different
categories of testing strategies

67

Future work

¡ Further evaluate the current reliability model using
comparisons with existing reliability models other
than NHPP

¡ Consider other formulations about the relationship
between fault coverage and test coverage

¡ Further study on the economical tradeoff between
software testing and fault tolerance

68

Publication list
¡ Journal papers and book chapters

� Xia Cai, Michael R. Lyu and Kam-Fai Wong, A Generic Environment for COTS
Testing and Quality Prediction, Testing Commercial-off-the-shelf Components and
Systems, Sami Beydeda and Volker Gruhn (eds.), Springer-Verlag, Berlin, 2005,
pp.315-347.

� Michael R. Lyu and Xia Cai, Fault-tolerant Software, To appear in Encyclopedia on
Computer Science and Engineering, Benjamin Wah (ed.), Wiley. .

� Xia Cai, Michael R. Lyu, An Experimental Evaluation of the Effect of Code Coverage
on Fault Detection, Submitted to IEEE Transactions on Software Engineering, June
2006.

� Xia Cai, Michael R. Lyu, Mladen A. Vouk, Reliability Features for Design
Diversity :Cross Project Evaluations and Comparisons, in preparation.

� Xia Cai, Michael R. Lyu, Predicting Software Reliability with Test Coverage, in
preparation.

69

Publication list
¡ Conference papers

� Michael R. Lyu, Zubin Huang, Sam K. S. Sze and Xia Cai, “An Empirical Study on
Testing and Fault Tolerance for Software Reliability Engineering,” Proceedings of
the 14th IEEE International Symposium on Software Reliability Engineering
(ISSRE'2003), Denver, Colorado, Nov. 2003, pp.119-130. This paper received the
ISSRE'2003 Best Paper Award.

� Xia Cai and Michael R. Lyu, “An Empirical Study on Reliability and Fault Correlation
Models for Diverse Software Systems,” ISSRE’2004, Saint-Malo, France, Nov. 2004,
pp.125-136.

� Xia Cai and Michael R. Lyu, “The Effect of Code Coverage on Fault Detection under
Different Testing Profiles,” ICSE 2005 Workshop on Advances in Model-Based
Software Testing (A-MOST), St. Louis, Missouri, May 2005.

� Xia Cai, Michael R. Lyu and Mladen A. Vouk, “An Experimental Evaluation on
Reliability Features of N-Version Programming,” ISSRE’2005, Chicago, Illinois, Nov.
8-11, 2005, pp. 161-170.

� Xia Cai and Michael R. Lyu, “Predicting Software Reliability with Testing Coverage
Information,” In preparation to International Conference on Software Engineering
(ICSE’2007).

Q & A

Thanks!

71

Previous work on modeling reliability
with coverage information
¡ Vouk (1992)

�Rayleigh model

¡ Malaiya et al.(2002)
�Logarithmic-exponential model

¡ Chen et al. (2001)
�Using code coverage as a factor to reduce the

execution time in reliability models

72

Comparisons with previous estimations

73

¡ The number of mutants failing in different testing

74

Non-redundant set of test cases

75

Test set reduction with normal
testing

76

Test set reduction with exceptional
testing

