

Towards Intelligent Program Development based on Code Semantics Learning

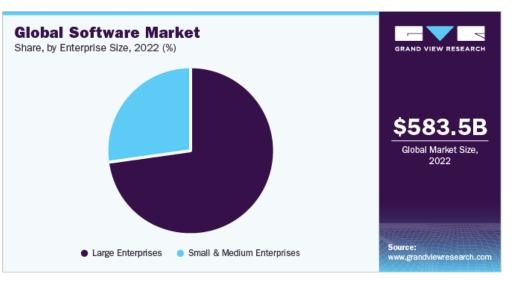
Ph.D. Oral Defense of Wenchao Gu

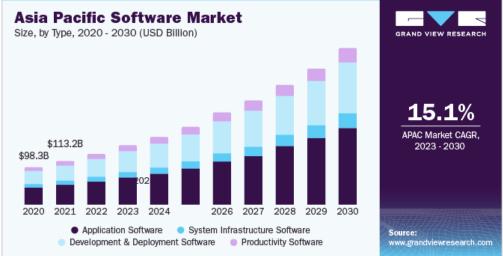
Supervised by Prof. Michael Lyu

Thursday 14 December 2023

香港中文大學 The Chinese University of Hong Kong

Software is Everywhere





Demand of Software Developer is Increasing

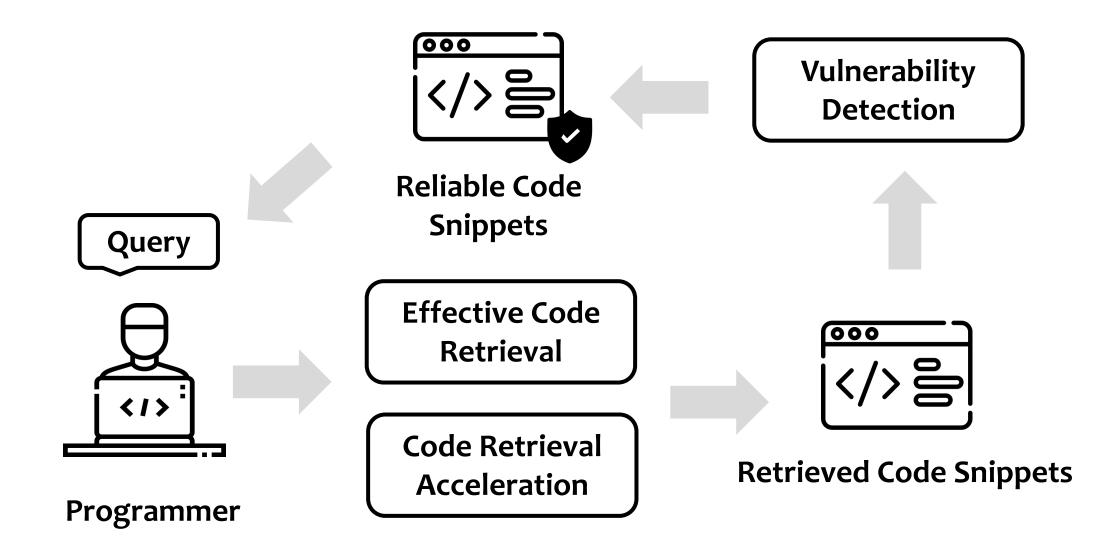
Quick Facts: Software Developers, Quality Assurance Analysts, and Testers			
2022 Median Pay 😨	\$124,200 per year \$59.71 per hour		
Typical Entry-Level Education 😮	Bachelor's degree		
Work Experience in a Related Occupation 😨	None		
On-the-job Training 😨	None		
Number of Jobs, 2022 😮	1,795,300		
Job Outlook, 2022-32 🕜	25% (Much faster than average)		
Employment Change, 2022-32 😨	451,200		

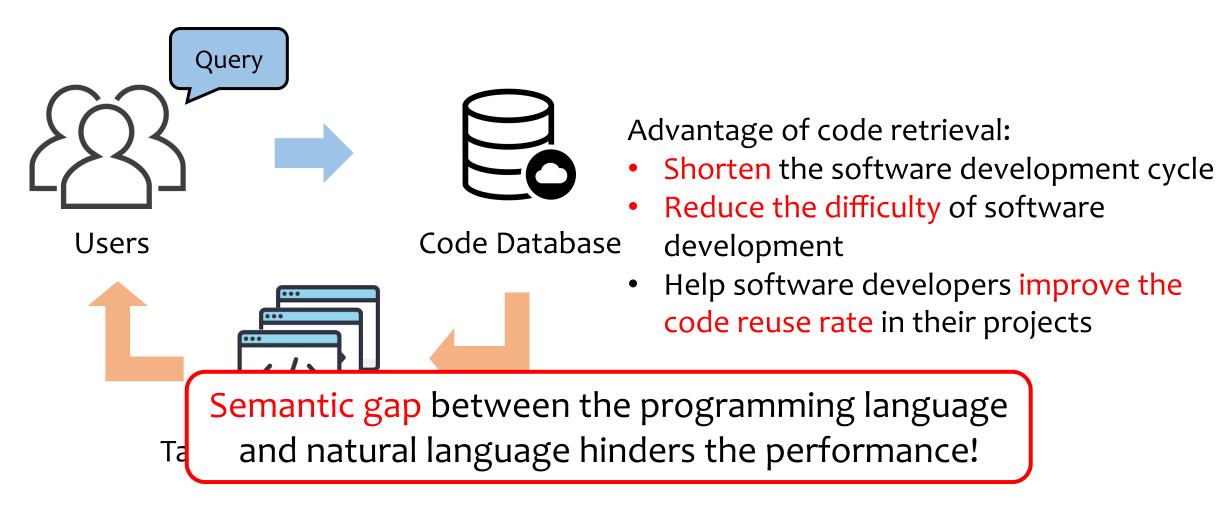
The market's demand for software developers is also expected to increase rapidly!

Occupation code	Cccupation title (click on the occupation title to view its profile)	¢ Level	Employment	Employment RSE	Employment er 1,000 jobs	Median ♀ hourly wage	Mean 🗢 hourly wage	Annual 🔶 mean wage	Mean 🗢 wage RSE
00-000	All Occupations	total	147,886,000	0.0%	1000.000	\$22.26	\$29.76	\$61,900	0.2%
15-1250	Software and Web Developers, Programmers, and Testers	broad	2,049,920	0.4%	13.861	\$54.90	\$60.07	\$124,940	0.6%
15-1251	Computer Programmers	detail	132,740	2.8%	0.898	\$47.02	\$49.42	\$102,790	1.4%
15-1252	Software Developers	detail	1,534,790	0.4%	10.378	\$61.18	\$63.91	\$132,930	0.6%
15-1253	Software Quality Assurance Analysts and Testers	detail	196,420	2.0%	1.328	\$47.89	\$50.84	\$105,750	0.6%

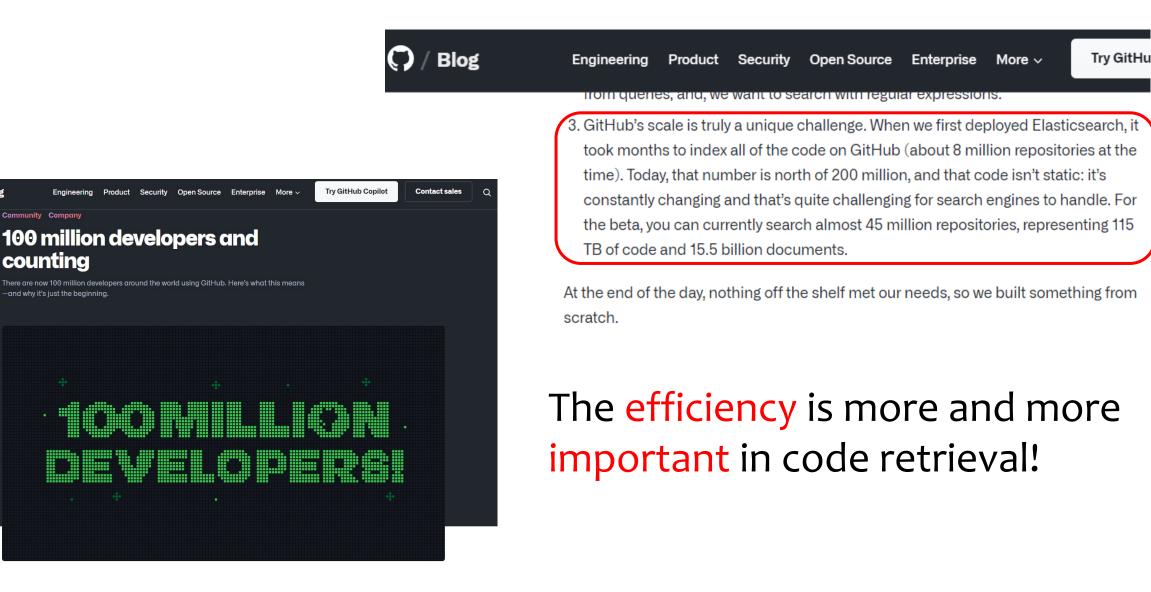
Intelligent Program Development

 Intelligent program development aims to use automation technology to solve some tasks that need to be solved manually by software engineers during the software development period



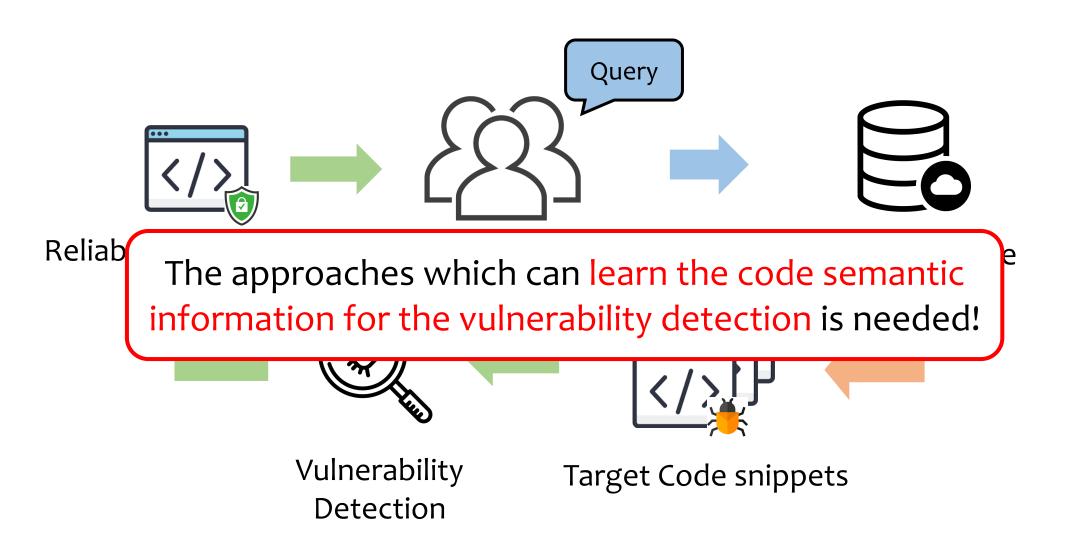


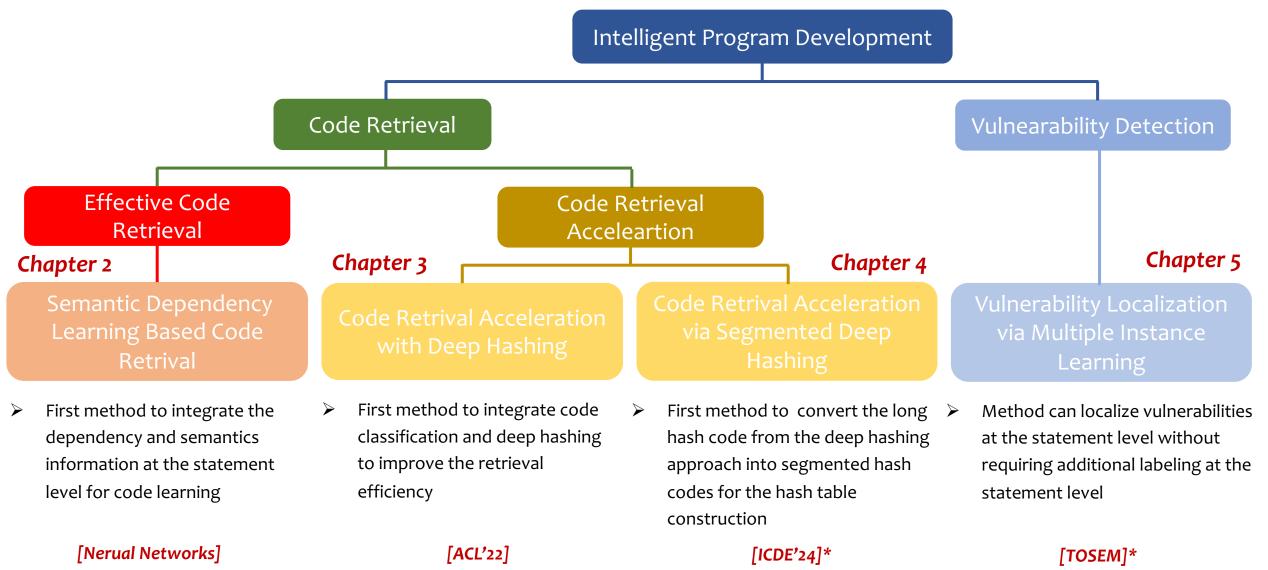
Code Retrieval Acceleration



C / Blog

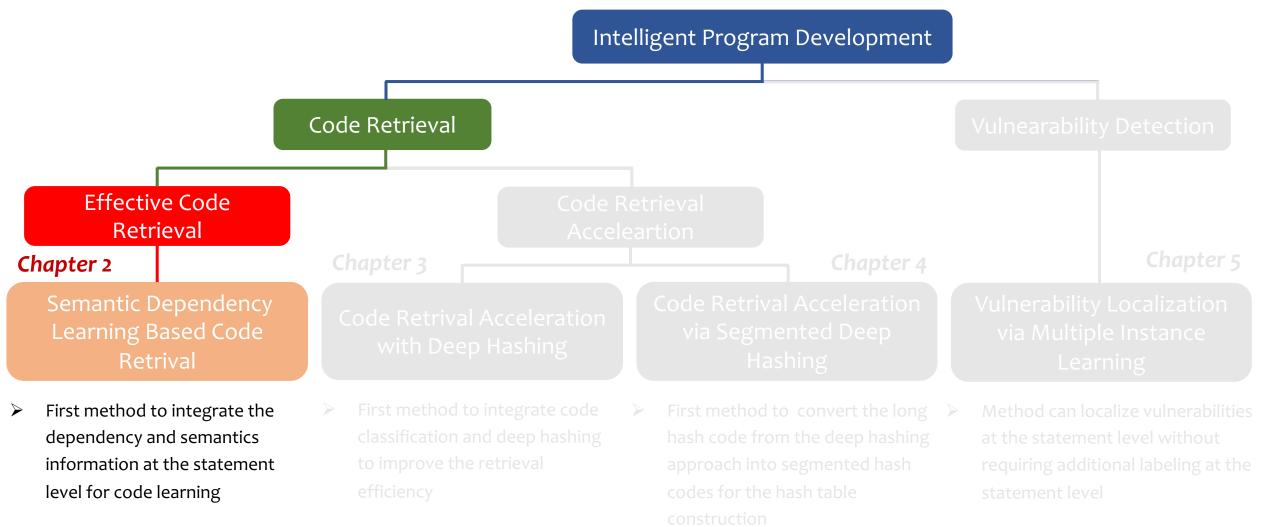
Vulnerability Detection





* Under review

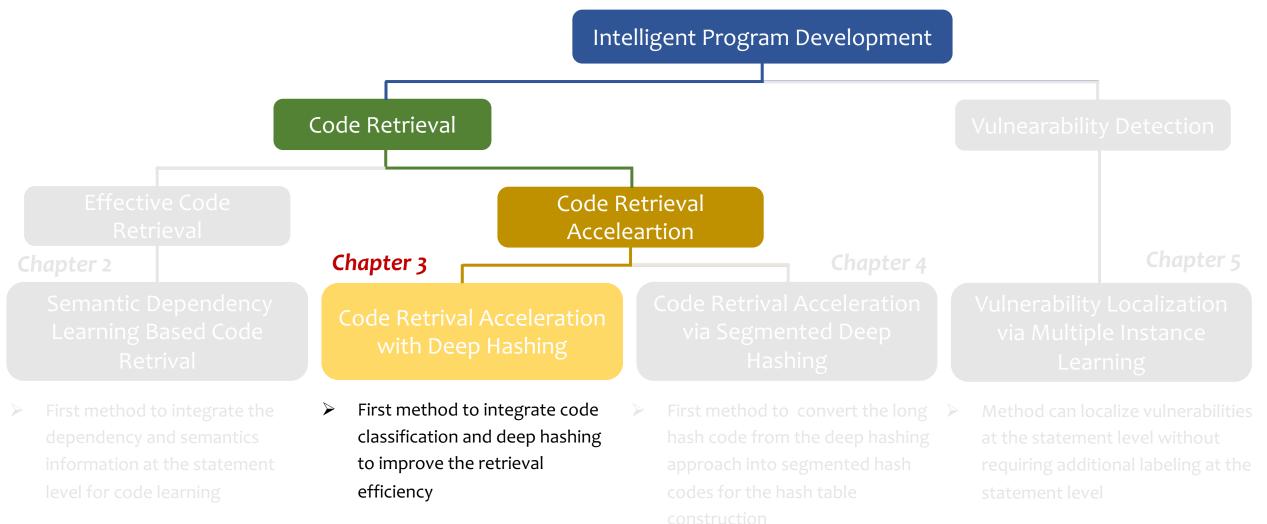
Wenchao Gu



[Nerual Networks]

^k Under review

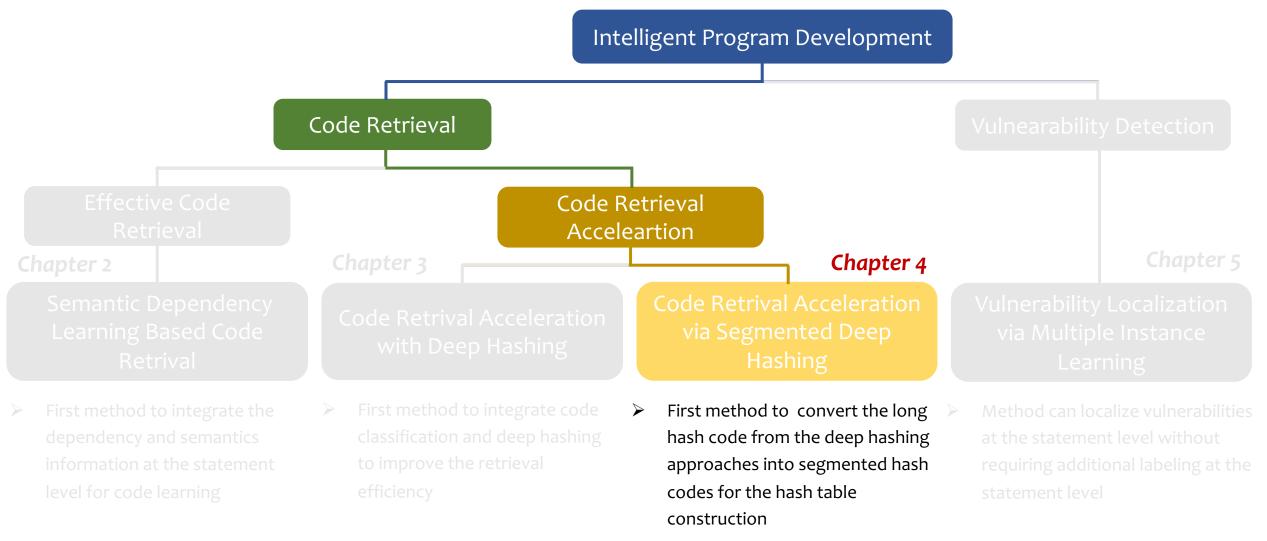
Wenchao Gu



[ACL'22]

* Under review

Wenchao Gu

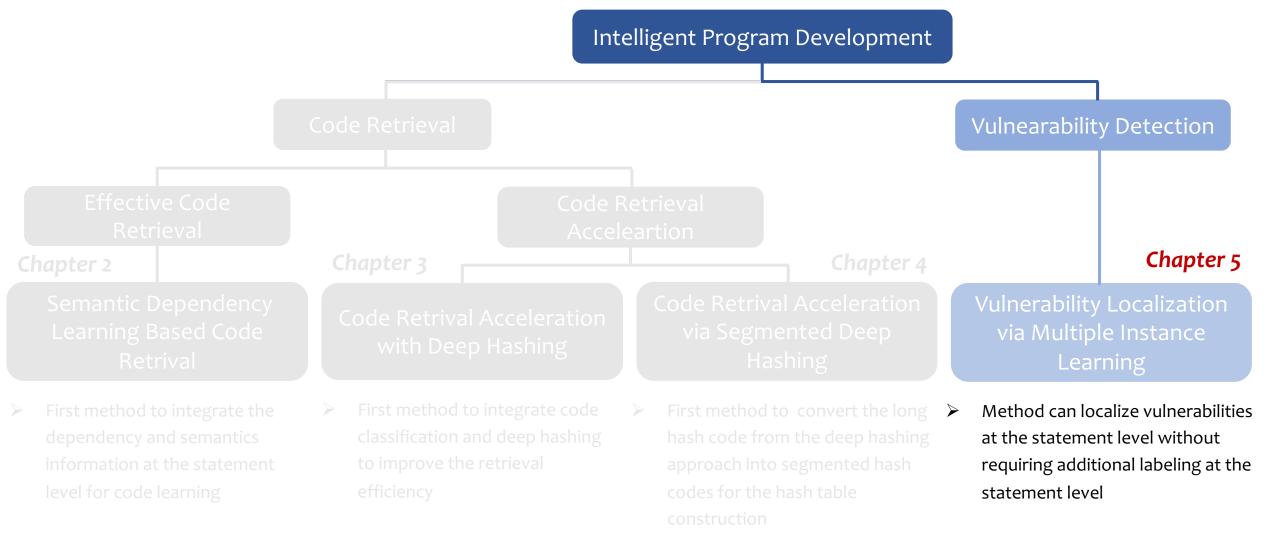


* Under review

Wenchao Gu

owards Intelligent Program Development based on Code Semantics Learning

[ICDE'24]*



[TOSEM]*

* Under review

Wenchao Gu

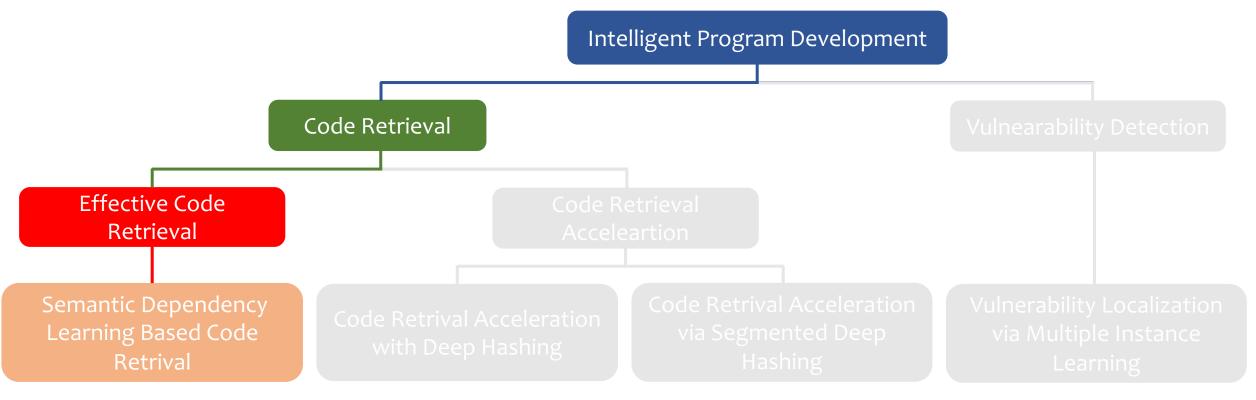
Semantic Dependency Learning Based Code Retrival

Code Retrival Acceleration with Deep Hashing

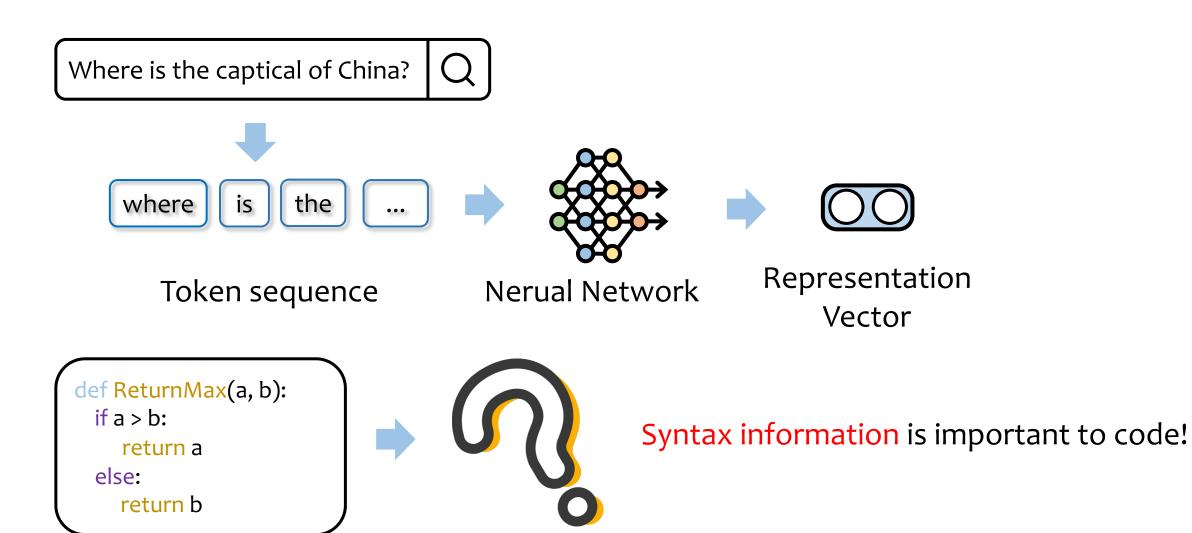
Code Retrival Acceleration via Segmented Deep Hashing

Vulnerability Localization via Multiple Instance Learning

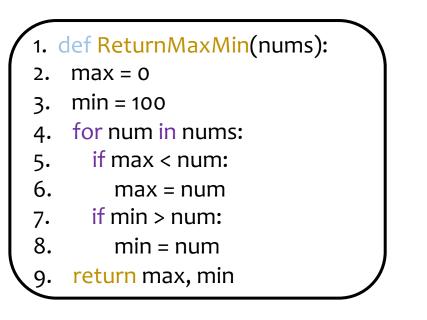
Conclusion and Future Work

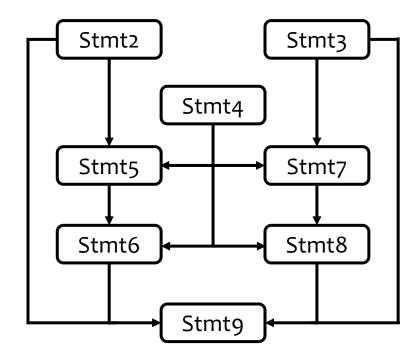


Semantic Dependency Learning Based Code Retrival

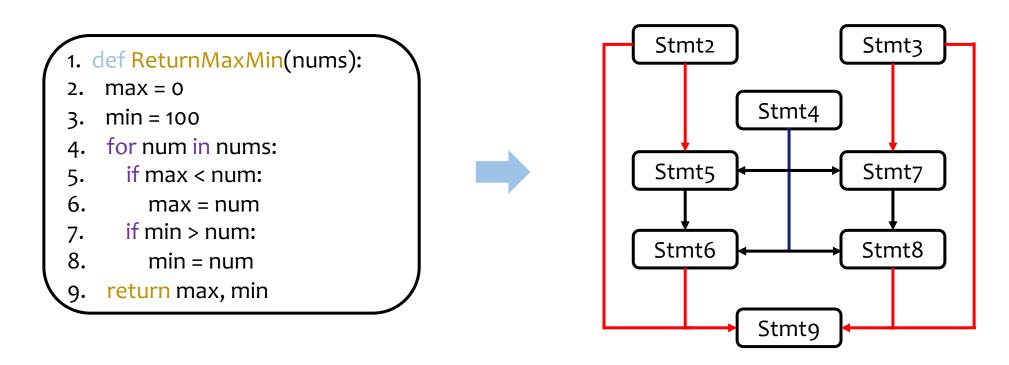


Program dependency graph is a good choice!



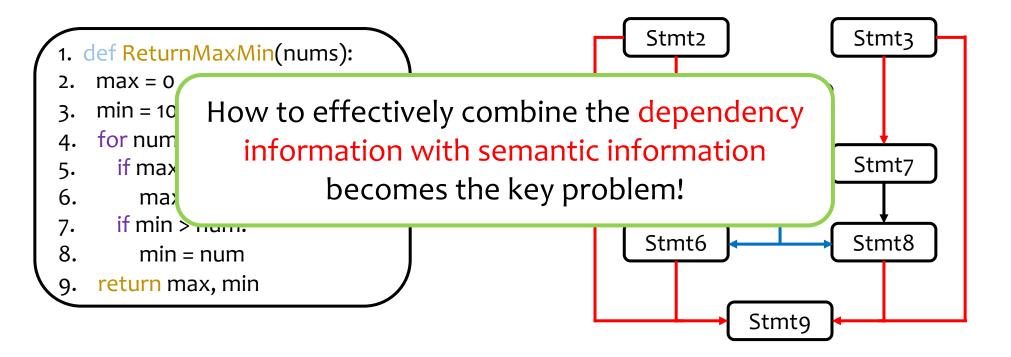


Program dependency graph is a good choice!

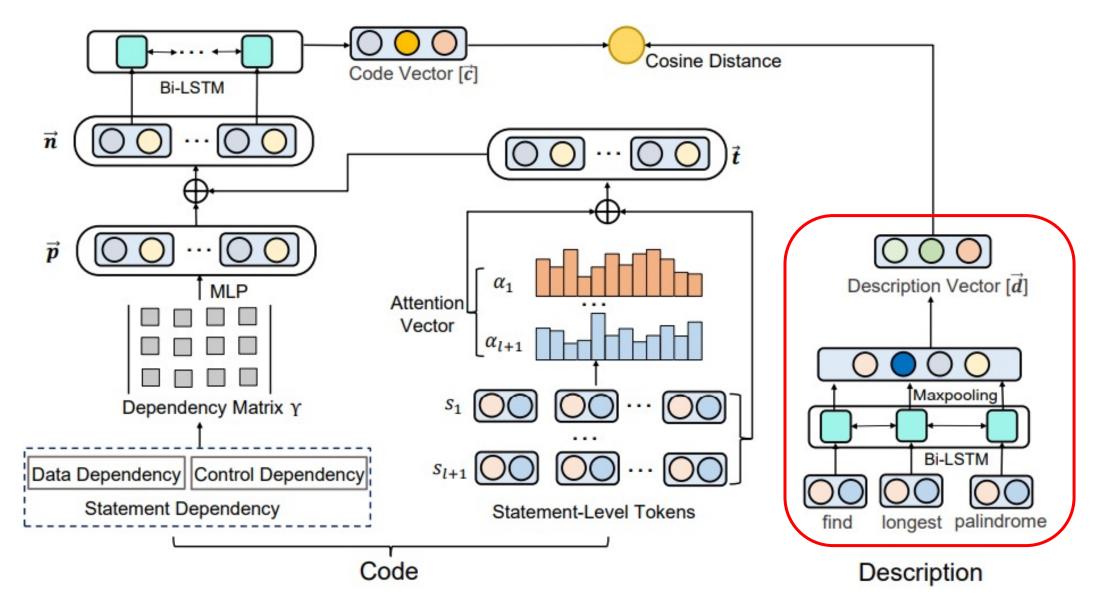


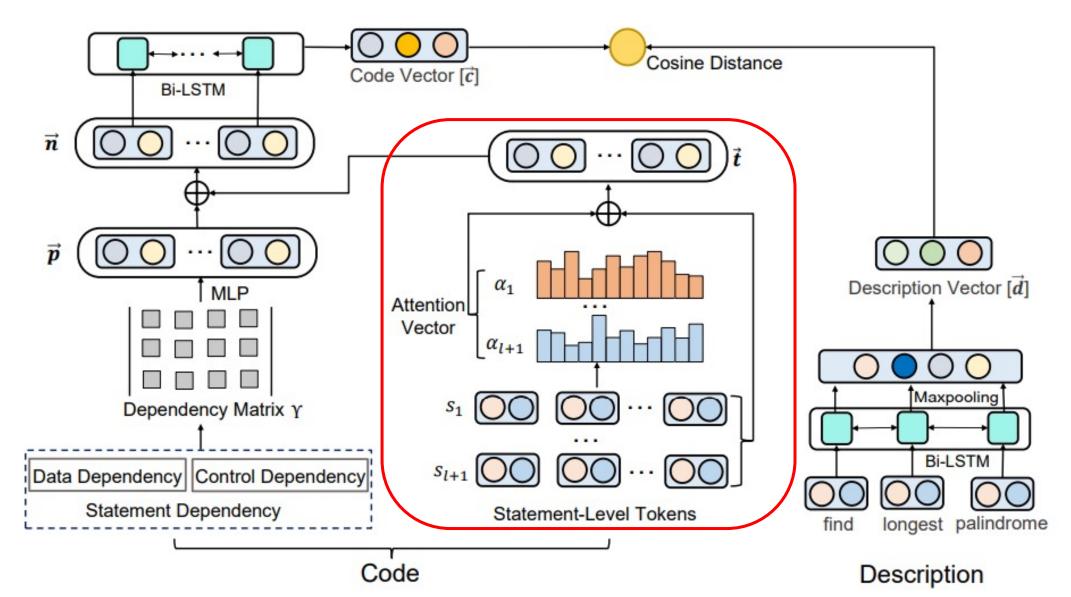
Program dependency graph is composed of data dependency graph

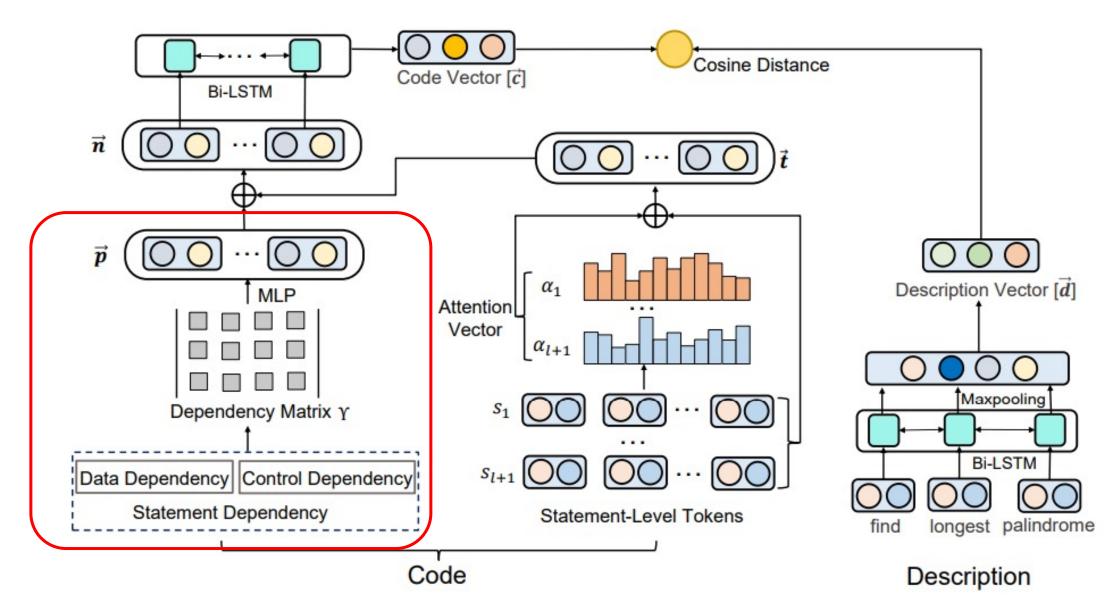
Program dependency graph is a good choice!

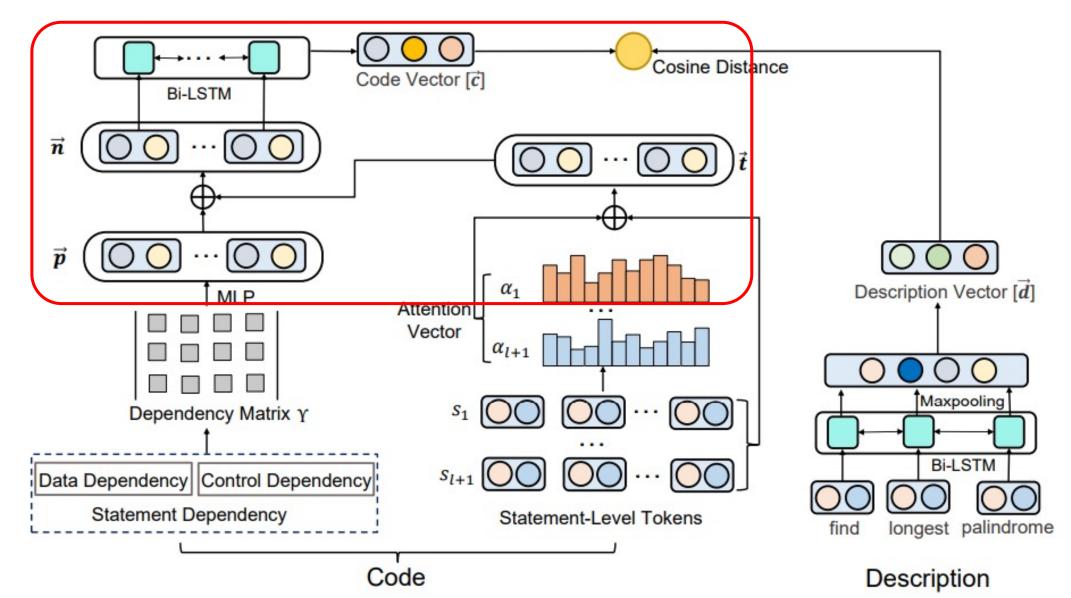


Program dependency graph is composed of data dependency graph and control dependency graph

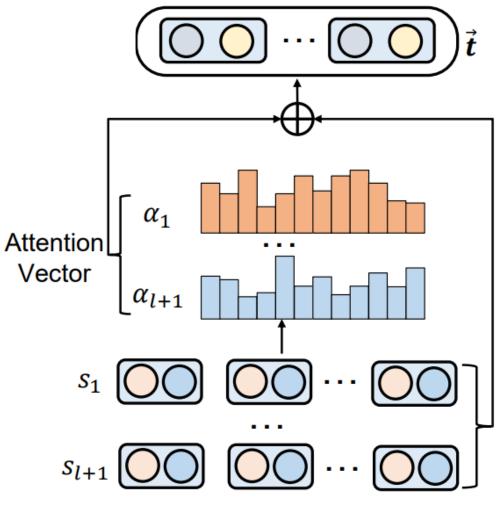








Statement-Level Semantic Embedding



Statement-Level Tokens

Tokenize statement and embed them into vectors:

$$s_i = \{e_{i1}, \dots, e_{ij}, \dots\}$$

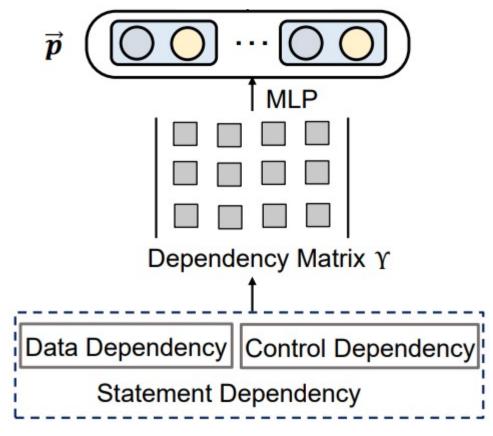
Calculate the attention score for each vector:

 $\alpha_{ij} = \frac{\exp(e_{ij}^T)}{\sum_j \exp(e_{ij}^T)}$

Get the statement-level vector based on attention weight:

$$s_i = \sum_j \alpha_{ij} e_{ij}^T$$

Statement-Level Dependency Embedding



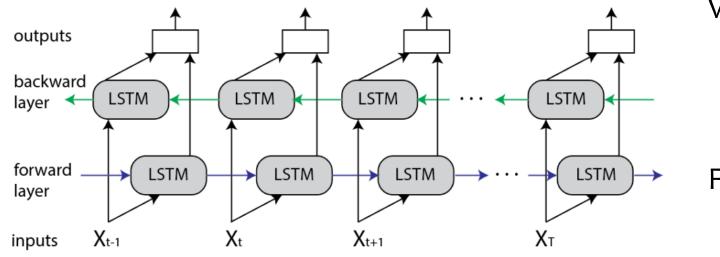
Construct the dependency matrix:

$$\Gamma_i = \{v_{i1}, \dots, v_{ij}, \dots\}, v_{ij} \in \{0, 1\}$$

Embed the dependecy matrix via multilayer perceptron (MLP):

$$p_i = \tanh(W^{\Gamma}\Gamma_i)$$

Function-Level Vector Generation



Vector concatenation:

$$x_t = [s_i, p_i]$$

Feed into bi-LSTM:

 $h_t = bi - LSTM(h_{t-1}, x_t)$ $c = atten(h_1, \dots, h_t, \dots)$

• Dataset:

- CodeSearchNet (Python): released by H. Husain et al.
- Code2Seq (Python): released by U. Alon et al. in ICLR 2019
- Baselines
 - CODEnn, UNIF, NeuralBoW, RNN, CONV, CONVSelf, SelfAttn
- Metrics:
 - Recall@1 (R@1), R@5, R@10, Mean Reciprocal Rank (MRR)

We achieve state-of-the-art performance on both dataset

TABLE I COMPARISON RESULTS WITH BASELINE MODELS ON THE CODESEARCHNET DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONTS.

TABLE II

COMPARISON RESULTS WITH BASELINE MODELS ON THE CODE2SEQ DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN **BOLD** FONTS.

Approach	R@1	R@5	R@10	MRR	Appr
CODEnn	0.367	0.573	0.652	0.465	COD
UNIF	0.379	0.615	0.706	0.490	UNIF
NeuralBoW	0.521	0.747	0.807	0.622	Neura
RNN	0.556	0.772	0.832	0.654	RNN
CONV	0.475	0.703	0.776	0.579	CON
CONVSelf	0.571	0.788	0.845	0.668	CON
SelfAttn	0.580	0.786	0.840	0.673	SelfA
CRaDLemaxpooling	0.777	0.914	0.946	0.838	CRaI
CRaDLe	0.791	0.923	0.951	0.843	CRaI

Approach	R@1	R@5	R@10	MRR
CODEnn	0.330	0.532	0.617	0.427
UNIF	0.380	0.588	0.668	0.478
NeuralBoW	0.546	0.693	0.738	0.615
RNN	0.438	0.623	0.688	0.526
CONV	0.425	0.584	0.645	0.502
CONVSelf	0.470	0.642	0.700	0.552
SelfAttn	0.525	0.683	0.731	0.599
CRaDLemaxpooling	0.664	0.843	0.892	0.745
CRaDLe	0.668	0.849	0.897	0.749

The combination of data dependency and control dependency can improve the performance

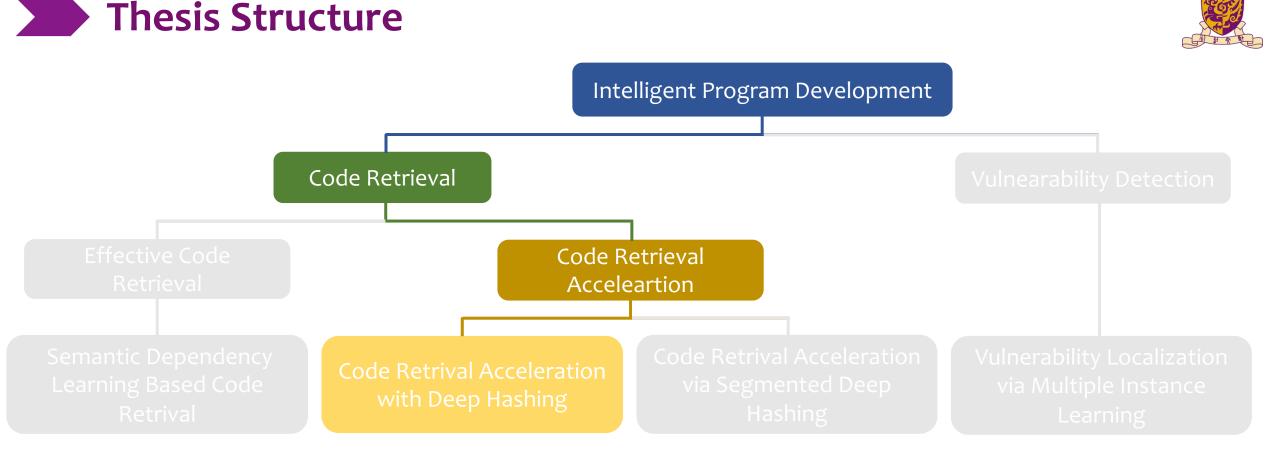
TABLE III Ablation study on the CodeSearchNet dataset.

Approach	R@1	R@5	R@10	MRR
CRaDLe _{Full}	0.791	0.923	0.951	0.843
CRaDLe _{DataDependency}	0.779	0.910	0.946	0.840
CRaDLe _{ControlDependency}	0.785	0.918	0.950	0.845

TABLE IVAblation study on the Code2seq dataset.

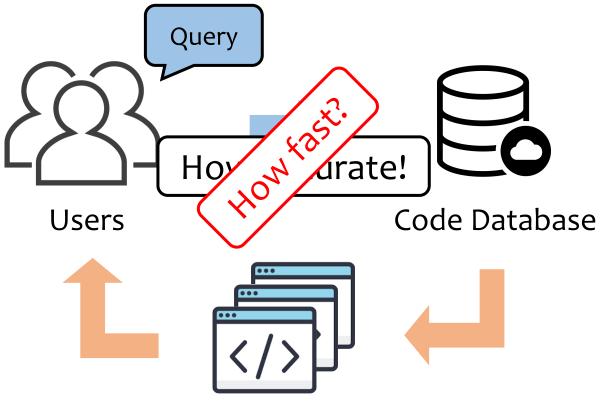
Approach	R@1	R@5	R@10	MRR
CRaDLe _{Full}	0.668	0.849	0.897	0.749
CRaDLe _{DataDependency}	0.645	0.827	0.880	0.724
CRaDLe _{ControlDependency}	0.645	0.828	0.882	0.730

- Propose a novel code retrieval model which firstly integrates the dependency and semantics information at the statement level
- The experiment results demonstrate its superior performance over the baseline models

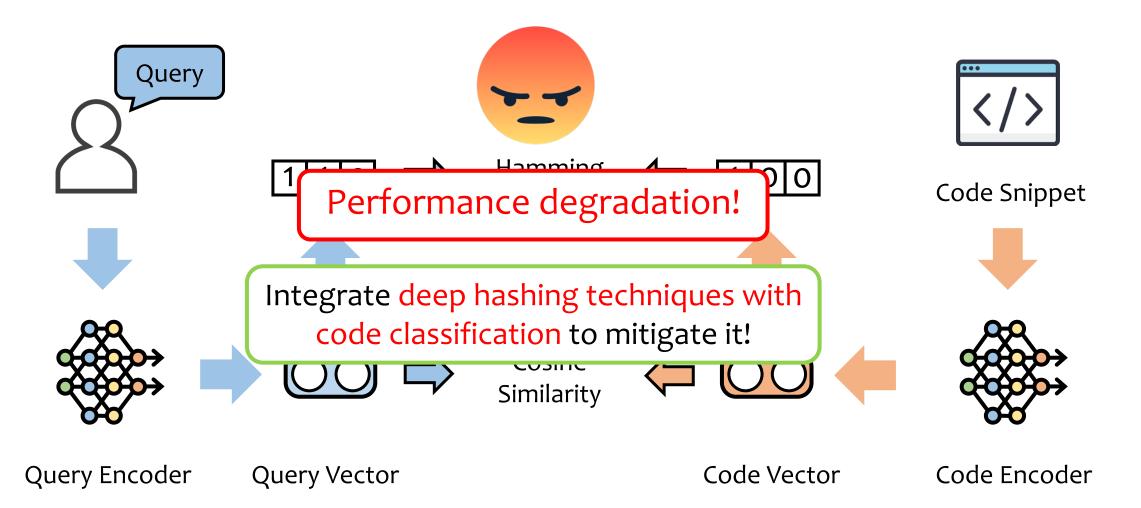


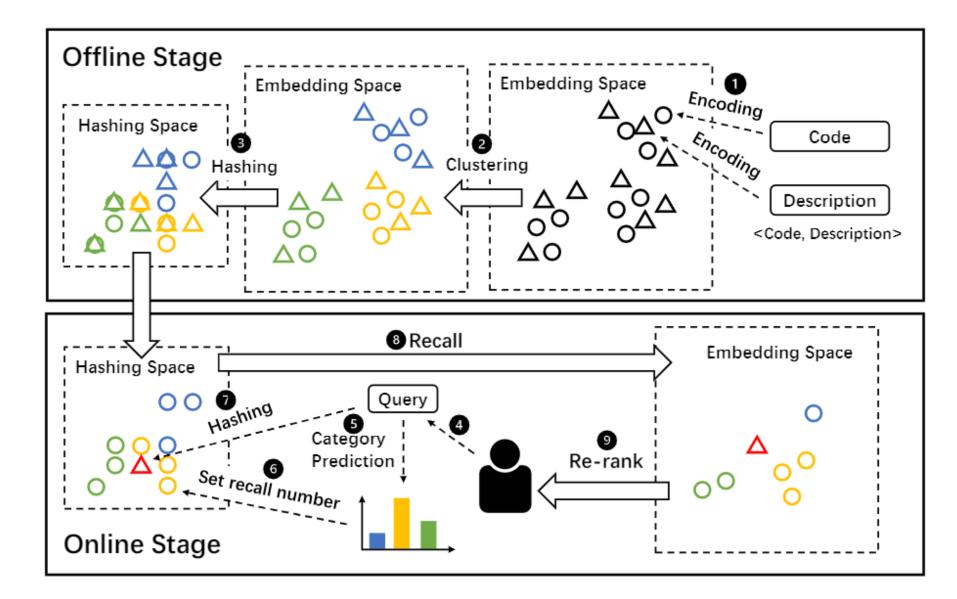
Code Retrival Acceleration with Deep Hashing

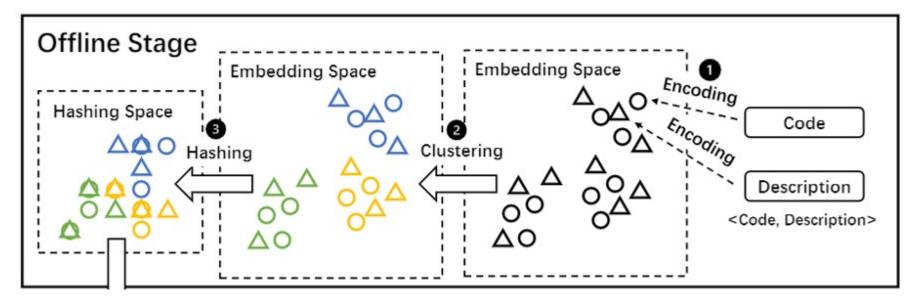
2



Target Code snippets

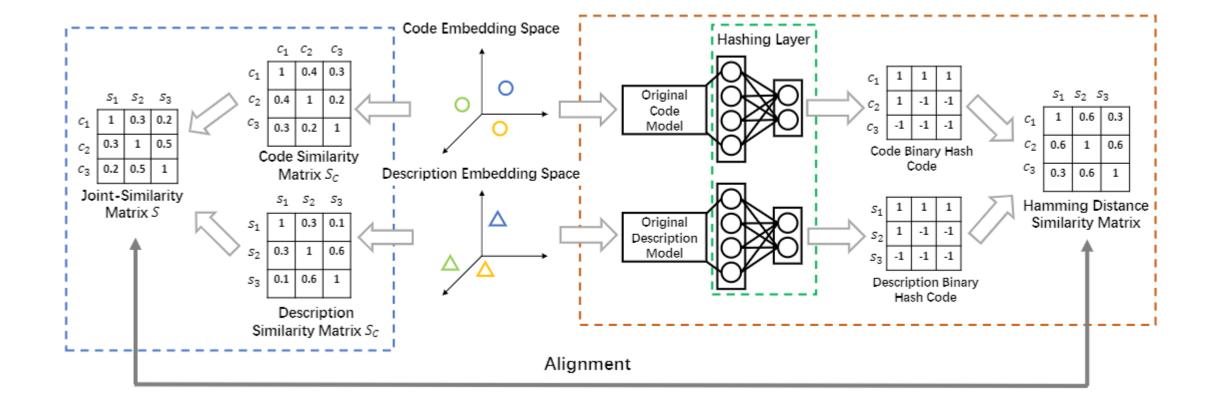




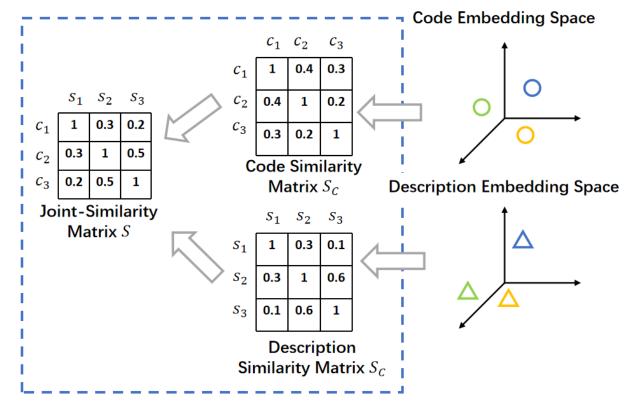


- Encode code and description (query) with existing deep learning approaches
- Cluster the vectors into several categories with k-mean algorithm and train a category predictor
- Hashing the code and description into binary hash codes

Hashing Training



Joint-Similarity Matrix



• Construct the similarity matrix for code modality and description modality:

$$S_c = V_C V_C^T$$
, $S_D = V_D V_D^T$

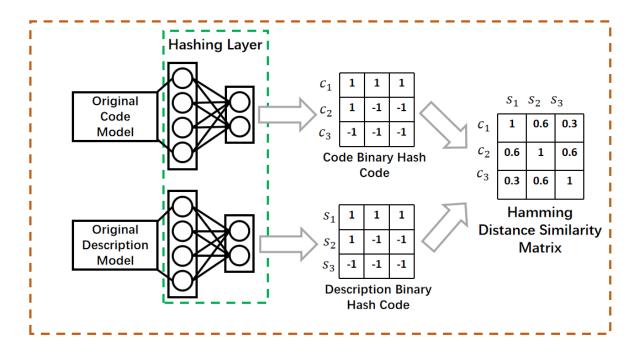
• Construct the joint-similarity matrix:

$$\tilde{S} = \beta S_c + (1 - \beta) S_D$$

$$S = \eta \tilde{S} + (1 - \eta) \frac{\tilde{S} \tilde{S}^T}{m}$$

$$S_{F_{ij}} = \begin{cases} 1, & i = j \\ S_{ij}, \text{ otherwise} \end{cases}$$

• Hamming Distance Similarity Matrix



• Generate the hash code from the hashing model:

 $B = \operatorname{sgn}(H) \in \{-1, 1\}^{m \times d}$

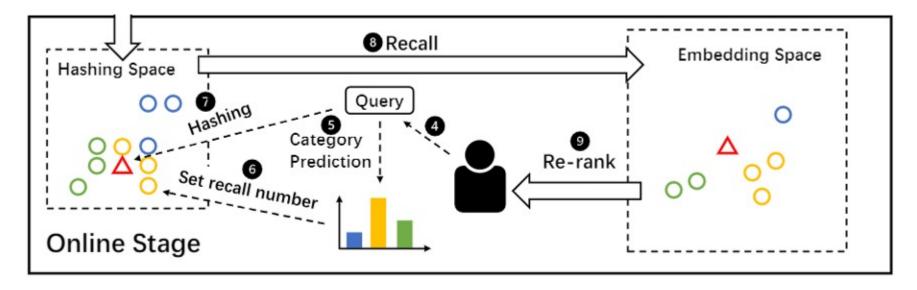
• Construct the Hamming Distance similarity matrix:

$$S_{CC} = \frac{B_C B_C^T}{d}$$
$$S_{CD} = \frac{B_C B_D^T}{d}$$

Training Loss Design

• Alignment between the joint-similarity matrix and Hamming Distance similarity matrix

 $\mathcal{L}(\theta) = \min_{B_C, B_D} \|\min(\mu S_F, 1 - S_{CC})\|_F^2 + \lambda_1 \|\min(\mu S_F, 1 - S_{CD})\| + \lambda_2 \|\min(\mu S_F, 1 - S_{DD})\|$



- Predict the probability of given query category and set the recall number for each category $R_i = min(|p_i \cdot (N k)|, 1), \quad \forall i = 1, ..., k$
- Generate the hash code for query and recall the candidates in each category via Hamming distance
- Re-rank the code candidates according to the cosine simiarity of the vectors

• Dataset:

- CodeSearchNet (Python, Java): released by H. Husain et al.
- Baselines
 - Non pre-trained model: RNN, UNIF
 - Pre-trained model: CodeBERTa, CodeBERT, GraphCodeBERT
- Metrics:
 - R@1, R@5, R@10

• Our method can reduce more than 90% of retrieval time

	TIME EFFICIENCE OF C							
	Python	Java						
	Total	Total Time						
CodeBERT	572.97s	247.78s						
CSSDH	33.87s (↓94.09%)	15.78s (↓93.51%)						
	(1) Vector Similarity Calculation							
CodeBERT	531.95s	234.08s						
CSSDH	14.43s (↓97.29%)	7.25s (↓96.90%)						
	(2) Array Sorting							
CodeBERT	41.02s	13.70s						
CSSDH	19.44s (↓53.61%)	8.53s (↓37.74%)						

TABLE V TIME EFFICIENCY OF COSHC.

Wenchao Gu

Our method can retain most of performance and even outperforms the original code retrieval models when its performance is bad

Model		Python		Java			
ni ouci	R@1	R@5	R@10	R@1	R@5	R@10	
UNIF	0.071	0.173	0.236	0.084	0.193	0.254	
CSSDH _{UNIF}	0.072 (†1.4%)	0.177 (†2.3%)	0.241 (†2.1%)	0.086 (†2.4%)	0.198 (†2.6%)	0.264 (†3.9%)	
RNN	0.111	0.253	0.333	0.073	0.184	0.250	
CSSDH _{RNN}	0.112 (†0.9%)	0.259 (†2.4%)	0.343 (†5.0%)	0.076 (†4.1%)	0.194 (†5.4%)	0.265 (†6.0%)	
CodeBERTa	0.124	0.250	0.314	0.089	0.203	0.264	
CSSDH _{CodeBERTa}	0.123 (↓0.8%)	0.247 (↓1.2%)	0.309 (↓1.6%)	0.090 (†1.1%)	0.210 (†3.4%)	0.272 ((†3.0%)	
CodeBERT	0.451	0.683	0.759	0.319	0.537	0.608	
$CSSDH_{CodeBERT}$	0.451 (0.0%)	0.679 (↓0.6%)	0.750 (↓1.2%)	0.318 (↓0.3%)	0.533 (↓0.7%)	0.602 (↓1.0%)	
GraphCodeBERT	0.485	0.726	0.792	0.353	0.571	0.640	
$CSSDH_{GraphCodeBERT}$	0.483 (↓0.4%)	0.719 (↓1.0%)	0.782 (↓1.3%)	0.350 (↓0.8%)	0.561 (↓1.8%)	0.625 (↓2.3%)	

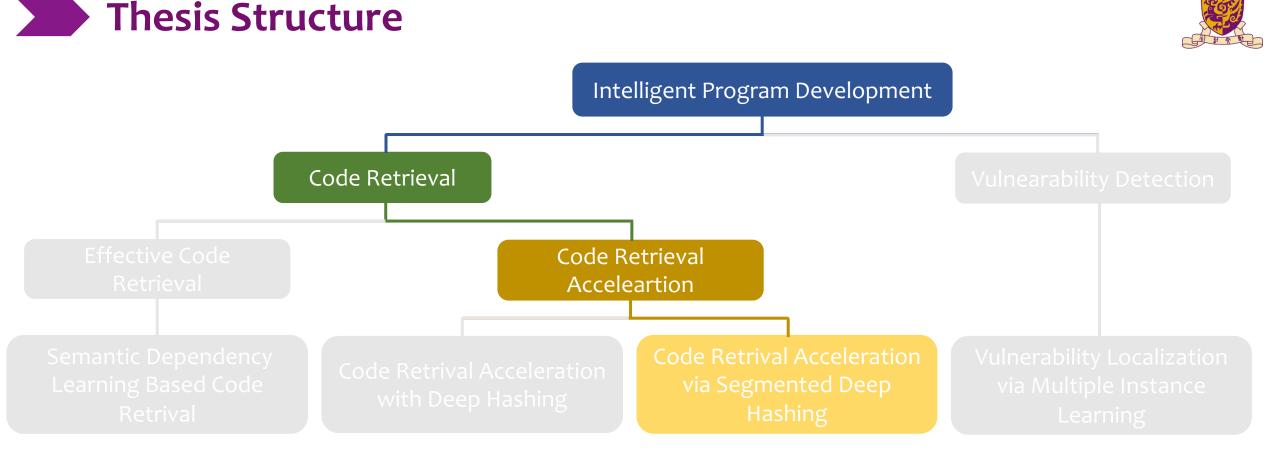
TABLE VI RESULTS OF CODE SEARCH PERFORMANCE COMPARISON.

TABLE VII

RESULTS OF CODE SEARCH PERFORMANCE COMPARISON. THE BEST RESULTS AMONG THE THREE COSHC VARIANTS ARE HIGHLIGHTED IN BOLD FONT.

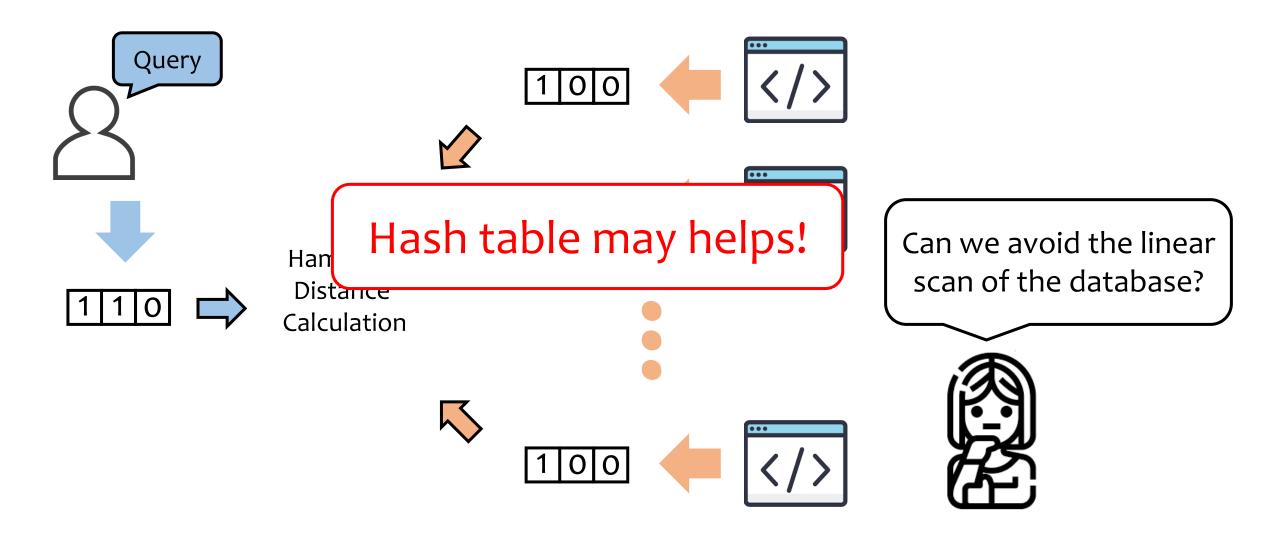
Model		Python		Java				
	R@1	R@5	R@10	R@1	R@5	R@10		
CSSDH _{UNIF}	0.072 (↑1.4 %)	0.177 (†2.3 %)	0.241 (↑2.1%)	0.086 (↑2.4%)	0.198 (↑2.6%)	0.264 (†3.9%)		
-w/o classification	0.071 (0.0%)	0.174 († 0.6%)	0.236 (0.0%)	0.085 (↑1.2%)	0.193 (0.0%)	0.254 (0.0%)		
-one classification	0.069 (↓2.8%)	0.163 (↓5.8%)	0.216 (↓8.5%)	0.083 (↓1.2%)	0.183 (↓5.2%)	0.236 (↓ 7.1%)		
CSSDH _{RNN}	0.112 (↑0.9%)	0.259 (↑2.4 %)	0.343 (↑5.0%)	0.076 (†4.1%)	0.194 (↑5.4%)	0.265 (†6.0%)		
—w/o classification	0.112 (↑0.9%)	0.254 (↑ 0.4%)	0.335 (↑ 0.6%)	0.073 (0.0%)	0.186 (↑ 1.1%)	0.253 († 1.2%)		
—one classification	0.112 (↑0.9%)	0.243 (↓4.0%)	0.311 (↓6.6%)	0.075 († 2.7%)	0.182 (↓1.1%)	0.240 (↓ 4.0%)		
CSSDH _{CodeBERTa}	0.123 (↓ 0.8 %)	0.247 (↓ 1.2%)	0.309 (↓ 1.6%)	0.090 (↑1.1%)	0.210 (↑3.4%)	0.272 ((↑3.0%)		
—w/o classification	0.122 (↓1.6%)	0.242 (↓3.2%)	0.302 (↓3.8%)	0.089 (0.0%)	0.201 (↓1.0%)	0.258 (↓2.3%)		
—one classification	0.116 (↓6.5%)	0.221 (↓11.6%)	0.271 (↓13.7%)	0.085 (↓4.5%)	0.189 (↓6.9%)	0.238 (↓9.8%)		
CSSDH _{CodeBERT}	0.451 (0.0%)	0.679 (↓ 0.6%)	0.750 (↓ 1.2%)	0.318 (↓0.3%)	0.533 (↓0.7%)	0.602 (↓1.0%)		
—w/o classification	0.449 (↓0.4%)	0.673 (↓1.5%)	0.742 (↓2.2%)	0.316 (↓0.9%)	0.527 (↓1.9%)	0.593 (↓2.5%)		
—one classification	0.425 (↓5.8%)	0.613 (↓10.2%)	0.665 (↓12.4%)	0.304 (↓4.7%)	0.483 (↓10.1%)	0.532 (↓12.5%)		
CSSDH _{GraphCodeBERT}	0.483 (↓ 0.4 %)	0.719 (↓ 1.0%)	0.782 (↓ 1.3%)	0.350 (↓ 0.8 %)	0.561 (↓ 1.8%)	0.625 (↓ 2.3 %)		
-w/o classification	0.481 (↓0.8%)	0.713 (↓1.8%)	0.774 (↓2.3%)	0.347 (↓1.7%)	0.553 (↓3.2%)	0.616 (↓3.7%)		
-one classification	0.459 (↓5.4%)	0.653 (↓10.1%)	0.698 (↓11.9%)	0.329 (↓7.8%)	0.505 (↓11.6%)	0.551 (↓13.9%)		

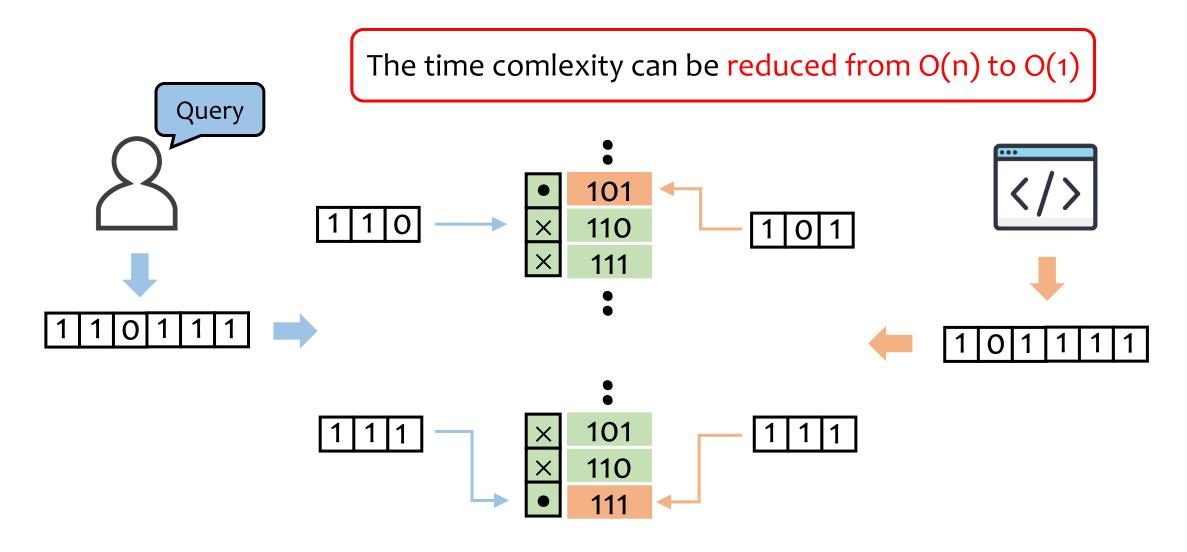
- Propose a novel approach which firstly integrates code calssificiation and deep hashing
- The experiment results demonstrate its ability to greatly improve the retrieval efficiency meanwhile preserve almost the same performance

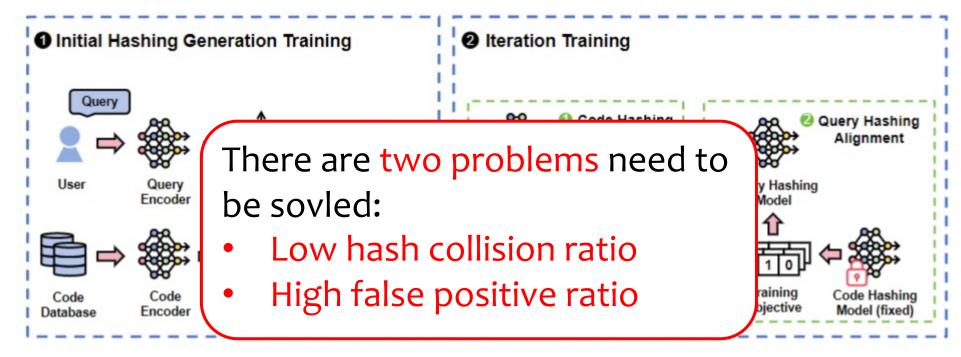


Code Retrival Acceleration via Segmented Deep Hashing

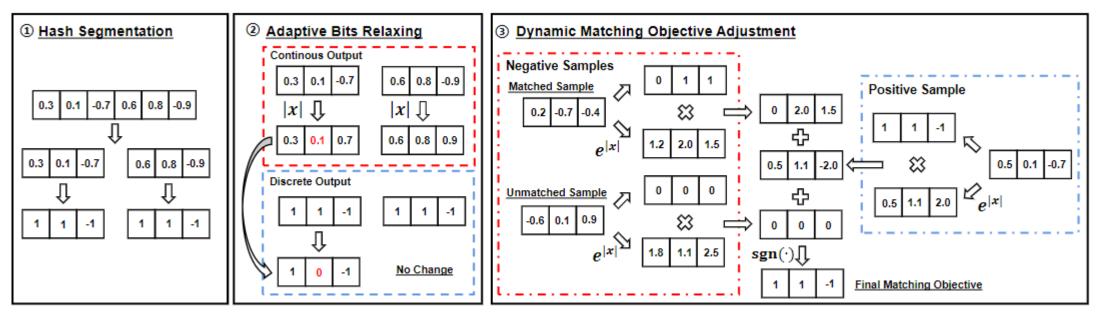
3







- Train the hash code with previous deep hashing approaches
- Alternately lock one hashing model and train the other hashing model



To address low hash collision ratio:

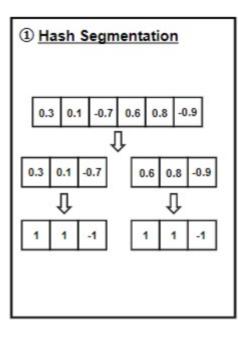
- Hash segementation
- Adaptive bits relaxing

To address high false positive ratio:

Dynamic matching objective adjustment

Hash Segmentation: Split the long hash code into segmented hash codes

- Reduce the difficulty of alignment
- Increase the number of hash table



• Hash Segmentation:

$$H_i = \{h_{i1}, \dots, h_{ik}\}$$

• Value discretization:

$$h_{ij} = \operatorname{sgn}(o_{(i-1)*k+j})$$

Adaptive bits relaxing: give up the prediction on the hash bits which are hard to align

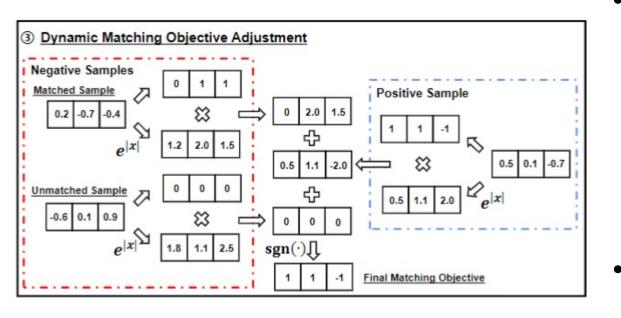
Adaptive Bits Relaxing Continous Output 0.3 0.1 -0.7 0.6 0.8 -0.9 |x| |x| |x| |x| |x| 0.3 0.1 0.7 0.6 0.8 0.9 Discrete Output 1 1 -1 1 1 -1 ↓ 1 0 -1 No Change

- Select the hash bits with top k smallest absolute value: $S_i = \{j | |o_{ij}| \text{ is top k smallest in } O_i\}$
- Replace the initial hash value with 0 as the intermediate value:

$$\tilde{h}_{ij} = \begin{cases} 0, & j \in S_i \text{ and } |o_{ij}| \le t \\ h_{ij}, & \text{otherwise} \end{cases}$$

Dynamic Matching Objective Adjustment

Dynamic matching objective adjustment: Assign a suitable hash code for each pair of code and query to address high false positive ratio



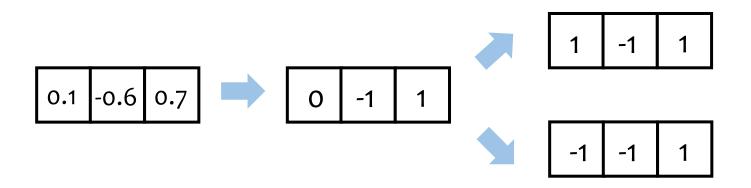
Check whether the given hash code has hash collision with negative samples: $c_{ii} = \tilde{h}_{ii}^{-} \cdot \tilde{h}_{ii}^{+}$ $C_i = \min\{c_{i1}, \dots, c_{ik}\}$ $\tilde{C}_i = \begin{cases} 0, & C_i = -1 \\ 1, \text{ otherwise} \end{cases}$ Determine the matching objective: $l_{ij} = \operatorname{sgn}\left(h_{ij} \cdot e^{\gamma \cdot \left|o_{ij}^{+}\right|} - \sum_{m=1}^{m} \tilde{C}_{in} \cdot \tilde{h}_{ijn}^{-} \cdot e^{\gamma \cdot \left|o_{ijn}^{-}\right|}\right)$

Training Loss and Hash Code Inference

• Training Loss:

$$\mathcal{L}(\theta) = -\left(1 - \tilde{l}_{ij}\right) \cdot \log\left(1 - o_{ij}\right) - \left(1 + \tilde{l}_{ij}\right) \cdot \log\left(1 + o_{ij}\right)$$

• Inference of hash code:



- Dataset:
 - CodeSearchNet (Python, Java): released by H. Husain et al.
- Baselines
 - Code retrieval model: CodeBERT, GraphCodeBERT
 - Conventional hashing approach: Locality-sensitive hashing
 - Deep hashing model: CoSHC, DJSRH, DSAH, JDSH
- Metrics:
 - R@1, MRR

TABLE VIII

Results of time efficiency comparison on the recall step of different deep hashing approaches with different code retrieval models on the Python dataset with the size 50,000, 100,000, 200,000 and 400,000.

		50,000		100	100,000 20		,000	400,000	
		128bit	256bit	128bit	256bit	128bit	256bit	128bit	256bit
	LSH	3.8s	7.5s	8.1s	16.4s	16.7s	37.6s	38.8s	82.8s
	CoSHC	31.9s	43.7s	66.4s	90.1s	137.78	184.8s	280.1s	375.78
RT	$\mathrm{CoSHC}_{\mathrm{CSSDH}}$	1.2s (↓96.2%)	2.2s (↓95.0%)	2.1s (↓96.8%)	3.8s (↓95.8%)	4.0s (↓97.1%)	7.1s (↓96.2%)	7.8s (↓97.2%)	14.2s (↓96.2%)
B	DJSRH	31.2s	43.1s	65.2s	88.7s	135.1s	185.8s	274.5s	367.8s
CodeBER1	$\mathrm{DJSRH}_{\mathrm{CSSDH}}$	1.2s (↓96.2%)	1.4s (↓96.8%)	2.1s (↓96.8%)	2.5s (↓97.1%)	3.9s (↓97.1%)	4.4s (↓97.6%)	7.9s (↓97.1%)	8.4s (↓97.6%)
<u> </u>	DSAH	31.2s	44.0s	65.3s	90.5s	135.0s	186.0s	275.5s	376.8s
	$\mathrm{DSAH}_{\mathrm{CSSDH}}$	1.0s (↓96.8%)	1.4s (↓96.8%)	1.9s (↓97.1%)	2.5s (↓97.2%)	3.5s (↓97.4%)	4.5s (↓97.6%)	6.8s (↓97.5%)	8.4s (↓97.8%)
- 1	JDSH	31.1s	44.0s	65.2s	90.6s	135.0s	185.7s	274.4s	368.6s
	$\rm JDSH_{CSSDH}$	1.2s (↓96.1%)	1.5s (↓96.6%)	2.0s (↓96.9%)	2.6s (↓97.1%)	3.8s (↓97.2%)	4.6s (↓97.5%)	7.5s (↓97.3%)	8.6s (↓97.7%)
	LSH	3.7s	7.3s	7.7s	15.5s	16.9s	34.9s	38.2s	82.2s
5	CoSHC	31.9s	43.7s	66.5s	90.1s	137.6s	184.9s	280.0s	375.9s
BEI	$\mathrm{CoSHC}_{\mathrm{CSSDH}}$	1.1s (↓96.6%)	2.2s (↓95.0%)	2.0s (↓97.0%)	3.8s (↓95.8%)	3.8s (↓97.2%)	7.0s (↓96.2%)	7.4s (↓97.4%)	13.8s (↓96.3%)
ode	DISRH	31.2s	43.0s	65.28	88 5s	134 9s	181.7s	274.58	367.8s
GraphCodeBERT	$\mathrm{DJSRH}_{\mathrm{CSSDH}}$	1.1s (↓96.5%)	1.5s (↓96.5%)	2.0s (↓96.9%)	2.6s (↓97.1%)	3.8s (↓97.2%)	4.6s (↓97.5%)	7.6s (↓97.2%)	8.8s (↓97.6%)
Graj	DSAH	31.1s	43 9s	65.28	90.4s	134 9s	185.7s	274 7s	377 4s
Ŭ	$\mathrm{DSAH}_{\mathrm{CSSDH}}$	1.0s (↓96.7%)	1.5s (↓96.6%)	1.8s (↓97.2%)	2.6s (↓97.1%)	3.4s (↓97.5%)	4.7s (↓97.5%)	6.6s (↓97.6%)	8.8s (↓97.7%)
	JDSH JDSH _{CSSDH}	31.1s 1.1s (↓96.5%)	43.8s 1.5s (↓96.6%)	65.1s	90.3s	134.9s 3.7s (↓97.3%)	185.6s 4.9s (↓97.3%)	275.2s 7.2s (↓97.4%)	376.3s

			Pyt	hon		Java				
	Model	128	Bbit	250	Sbit	128	Bbit	250	Sbit	
		R@1	MRR	R@1	MRR	R@1	MRR	R@1	MRR	
	Original	0.455	0.562	0.455	0.563	0.321	0.419	0.322	0.420	
	LSH	0.390	0.460	0.438	0.531	0.264	0.330	0.302	0.386	
ы	CoSHC	0.455	0.562	0.455	0.563	0.321	0.419	0.322	0.420	
CodeBERT	$\rm CoSHC_{CSSDH}$	0.447 (↓1.8%)	0.547 (\2.7%)	0.452 (\.0.7%)	0.554 (\1.6%)	0.316 (\1.6%)	0.408 (\2.6%)	0.319 (↓0.9%)	0.415 (↓1.2%)	
deB	DJSRH	0.454	0.561	0.455	0.563	0.321	0.418	0.322	0.420	
Č	$\mathrm{DJSRH}_{\mathrm{CSSDH}}$	0.446 (↓1.8%)	0.546 (\2.7%)	0.451 (↓0.9%)	0.553 (\1.8%)	0.316 (\1.6%)	0.409 (\2.2%)	0.319 (↓0.9%)	0.414 (↓1.4%)	
	DSAH	0.450	0.552	0.451	0.554	0.317	0.411	0.319	0.414	
	$\mathrm{DSAH}_{\mathrm{CSSDH}}$	0.447 (↓0.7%)	0.547 (↓0.9%)	0.452 (†0.2%)	0.554 (0.0%)	0.316 (↓0.3%)	0.409 (↓0.5%)	0.319 (0.0%)	0.415 (†0.2%)	
	JDSH	0.448	0.549	0.450	0.552	0.317	0.410	0.318	0.412	
	$\rm JDSH_{CSSDH}$	0.447 (↓0.2%)	0.547 (↓0.4%)	0.452 (†0.4%)	0.554 (†0.4%)	0.316 (↓0.3%)	0.409 (↓0.2%)	0.319 (†0.3%)	0.415 (†0.7%)	
	Original	0.489	0.598	0.489	0.598	0.355	0.457	0.355	0.457	
<u> </u>	LSH	0.412	0.480	0.471	0.565	0.279	0.340	0.334	0.420	
ER.	CoSHC	0.489	0.597	0.489	0.598	0.355	0.455	0.355	0.457	
leB	$\rm CoSHC_{CSSDH}$	0.479 (\2.0%)	0.580 (\2.8%)	0.484 (\1.0%)	0.587 (\1.8%)	0.348 (\2.0%)	0.443 (\2.6%)	0.353 (↓0.6%)	0.451 (↓1.3%)	
õ	DJSRH	0.489	0.597	0.489	0.598	0.354	0.454	0.355	0.457	
GraphCodeBERT	$\mathrm{DJSRH}_{\mathrm{CSSDH}}$	0.479 (\2.0%)	0.579 (↓3.0%)	0.482 (\1.4%)	0.586 (\2.0%)	0.348 (\1.7%)	0.444 (\2.2%)	0.353 (↓0.6%)	0.450 (↓1.5%)	
ū	DSAH	0.482	0.586	0.484	0.589	0.351	0.447	0.352	0.449	
	$\mathrm{DSAH}_{\mathrm{CSSDH}}$	0.480 (↓0.4%)	0.580 (\1.0%)	0.484 (0.0%)	0.587 (↓0.3%)	0.349 (↓0.6%)	0.444 (↓0.7%)	0.353 (†0.3%)	0.450 (†0.2%)	
	JDSH	0.482	0.585	0.483	0.587	0.350	0.446	0.351	0.448	
	$JDSH_{CSSDH}$	0.478 (↓0.8%)	0.579 (↓1.0%)	0.483 (0.0%)	0.586 (\$0.2%)	0.349 (↓0.3%)	0.443 (↓0.7%)	0.353 (↑0.6%)	0.450 (↑0.4%)	

TABLE IX Results of overall performance comparison of different deep hashing approaches with different code retrieval models.

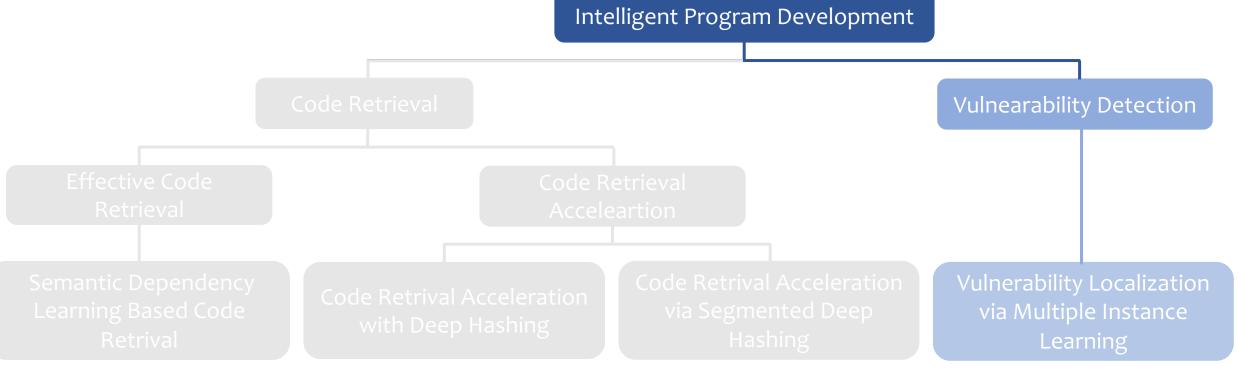
Ablation Study

		Pyt	hon			Ja	iva	
Model	128bit		256bit		128bit		256bit	
	R@1	MRR	R@1	MRR	R@1	MRR	R@1	MRR
CoSHC _{NA_NR}	0.270	0.312	0.334	0.390	0.214	0.263	0.251	0.313
$CoSHC_{A_NR}$	0.383	0.459	0.410	0.493	0.267	0.338	0.290	0.370
CoSHC _{NA_SR}	0.417	0.499	0.440	0.533	0.301	0.384	0.311	$-\bar{0.400}$
$CoSHC_{A_SR}$	0.435	0.527	0.445	0.542	0.304	0.391	0.313	0.406
CoSHC _{NA_BR}	- 0.445	0.543	0.451	0.554	0.315	0.405	0.319	-0.414
$CoSHC_{A_BR}$	0.447	0.547	0.452	0.554	0.316	0.408	0.319	0.415
$\rm DJSRH_{NA_NR}$	0.078	0.086	0.125	0.140	0.061	0.072	0.110	0.132
$DJSRH_{A_{NR}}$	0.384	0.460	0.414	0.500	0.268	0.338	0.289	0.368
$\overline{\mathrm{DJSRH}}_{\mathrm{NA}\mathrm{SR}}^{$	0.250	0.289	0.319	- 0.375	0.183	0.226	0.249	0.312
$DJSRH_{A_{SR}}$	0.432	0.524	0.445	0.541	0.305	0.392	0.313	0.404
$\overline{\mathrm{DJSRH}}_{\mathrm{NA}\mathrm{BR}}$	- 0.396 -		0.414	- 0.497 -	0.273	0.345	0.297 -	0.379
$\rm DJSRH_{A_{BR}}$	0.446	0.546	0.451	0.553	0.316	0.409	0.319	0.414
$DSAH_{NA_NR}$	0.313	0.365	0.374	0.444	0.232	0.288	0.271	0.341
$DSAH_{A_{NR}}$	0.388	0.466	0.417	0.502	0.268	0.339	0.292	0.371
DSAH _{NA_SR}	0.421	0.509	0.438	- 0.533 -	0.299	0.383	0.310 -	0.398
$DSAH_{A_{SR}}$	0.436	0.529	0.443	0.540	0.305	0.392	0.314	0.405
DSAH _{NA_BR}		0.537	0.449	0.550	- 0.312 -	0.402	0.317 -	0.410
$\mathrm{DSAH}_{\mathrm{A}_{\mathrm{BR}}}$	0.447	0.547	0.452	0.554	0.316	0.409	0.319	0.415
$\rm JDSH_{NA_NR}$	0.326	0.384	0.384	0.459	0.246	0.307	0.280	0.354
$JDSH_{A_{NR}}$	0.388	0.465	0.416	0.502	0.269	0.340	0.290	0.370
JDSH _{NA_SR}	0.425	0.513	0.438	- 0.533 -	0.304	0.388	0.311	$-\bar{0.400}$
$JDSH_{A_{SR}}$	0.436	0.529	0.445	0.543	0.308	0.396	0.314	0.405
JDSH _{NA BR}	0.441	0.537	0.448	0.549	0.314		0.318 -	0.411
$JDSH_{A_BR}$	0.447	0.547	0.452	0.554	0.316	0.409	0.319	0.415

 TABLE X

 The comparisons among the six CSSDH variants with the baseline of CodeBERT.

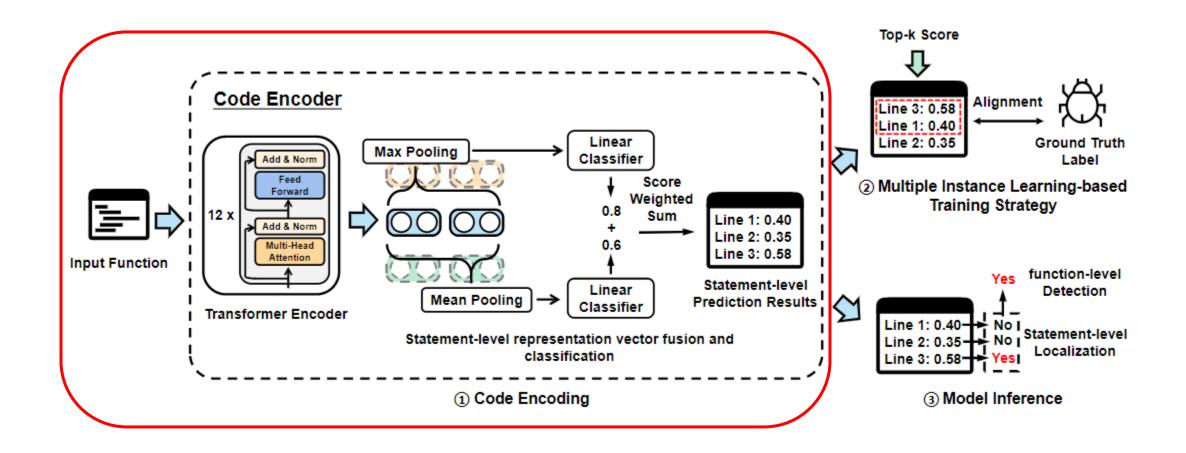
- Propose a novel approach which firstly convert the long hash code into segmented hash codes
- Propose the dynamic matching objective adjustment strategy to reduce the false positive hash collision ratio
- Propose the adaptive bit relaxing strategy to increase the hash collision ratio
- The experiments demonstrate its great ability to reduce recall calculation cost while perserve most performance

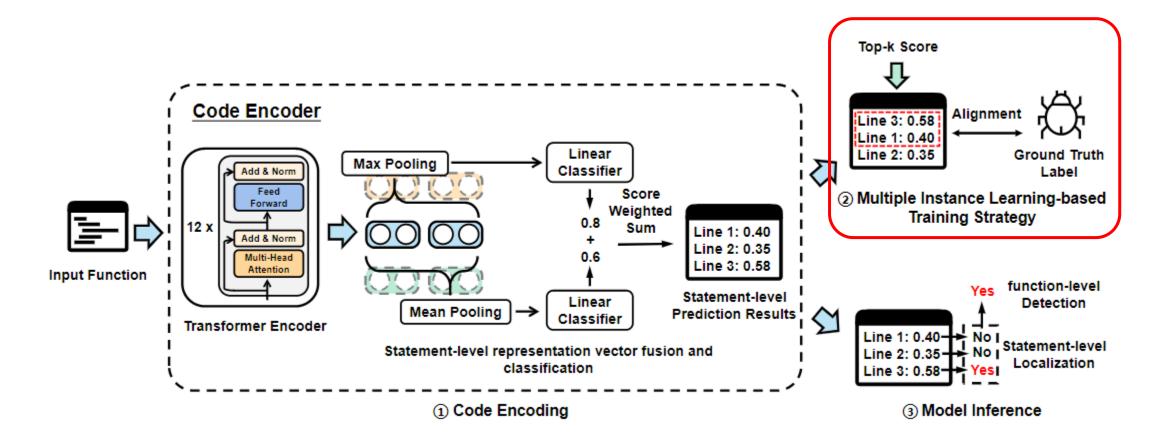


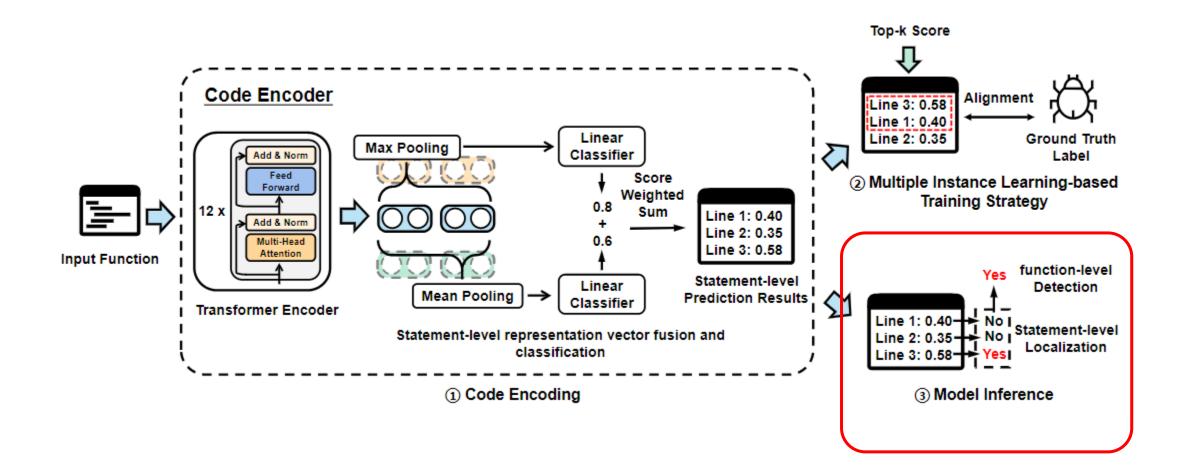
Vulnerability Localization via Multiple Instance Learning

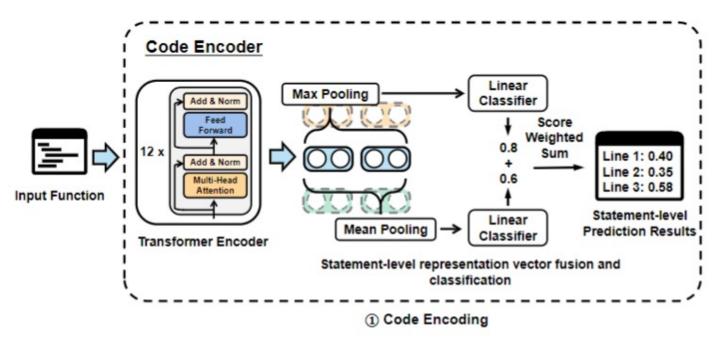
4











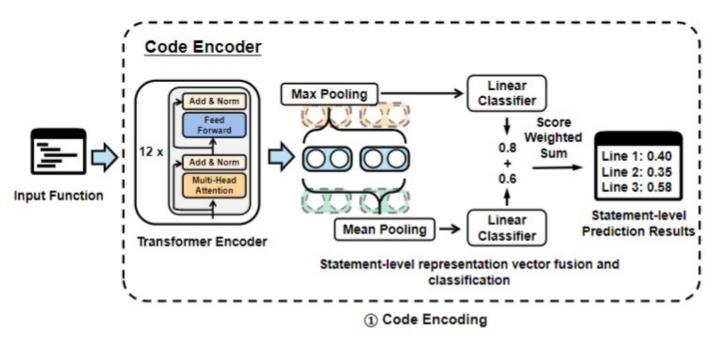
- Feed the target function into Transformer-based encoder
- Adopt max pooling and mean pooling to generate the statement-level vector

• Mean Pooling is suitable for the detection of some vulnerabilities like overflow

```
Variable for sales revenue for the quarter
11
   float quarterRevenue = 0.0 f;
12
13
   short JanSold = getMonthlySales(JAN); /* Get sales in January */
14
   short FebSold = getMonthlySales(FEB); /*
15
                                                  Exists a potential risk of integer overflow if the
   short MarSold = getMonthlySales(MAR); /*
16
                                                   sum exceeds the maximum value allowed for
17
                                                            the short int primitive type.
      Calculate quarterly total
18
   short quarterSold = JanSold + FebSold + MarSold;
19
```


 Max Pooling is suitable for the detection of the vulnerabilities arise from variable or API misuse

```
copy input string to a temporary string
5
   char message[length +1];
   int index;
   for (index = 0; index < length; index++) {
         message[index] = strMessage[index];
9
10
                                        Invoking the isspace() API on an address outside
   message [index] = ' \setminus 0';
11
                                        the limits of the local buffer if the input consists
12
   // trim trailing whitespace
                                                      solely of whitespaces
13
   int len = index -1;
14
   while (isspace(message[len]))
15
        message [len] = ' \setminus 0';
16
        len --;
17
18
```

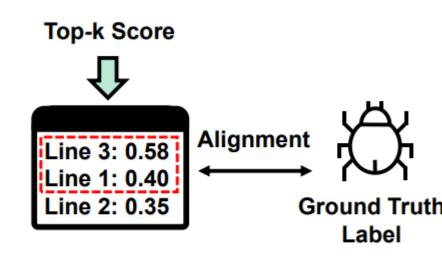
- Feed the target function into Transformer-based encoder
- Adopt max pooling and mean pooling to generate the statement-level vector
- Adopt two linear classifier to output the statement-level prediction score and weighted sum of two scores

Wenchao Gu

Alignment \bullet **Ground Truth** Label **(2)** Multiple Instance Learning-based

- Sort the statement in a desending order of prediction score
- Assign the function-level label as the pseudo statement level label for the top-k statements:

$$C(\theta) = \frac{1}{N \cdot k} \sum_{i} \sum_{j}^{k} - [Y_i \log(p_{ij}) + (1 - Y_i) \log(1 - p_{ij})]$$



Training Strategy

Training Strategy

• Function-level vulnerability detection:

③ Model Inference

 $Y = \max\{y_1, \dots, y_n\}$

- Statement-level vulnerability localization:
 - Return the statement predicted as yes
 - Ruturn the top-k statement

• Dataset:

- FFMPeg+Qemu: released by Yaqin Zhou et al. in NeurIPS 2019
- Reveal: released by Saikat Chakraborty et al. in TSE
- Fan et al.: released by Jiahao Fan et al. in MSR 2020
- Baselines
 - VulDeePecker, SySeVR, Devign, Reveal, IVDetect, LineVul
- Metrics:
 - Accuracy (Acc), Precision (P), Recall (R), F1, Top-1, Top-3, Top-5, Mean First Ranking (MFR), Mean Average Ranking (MAR), Initial False Alarm (IFA)

Our proposed method can achieve the comparable performance on the functionlevel vulnerability detection

Model	Fan <i>et al</i> .				Reveal				FFMPeg+Qemu			
	Acc	Р	R	F1	Acc	Р	R	F1	Acc	Р	R	F1
VulDeePecker	0.913	0.155	0.146	0.150	0.763	0.211	0.131	0.162	0.496	0.461	0.326	0.381
SySeVR	0.904	0.129	0.194	0.155	0.743	0.401	0.249	0.307	0.479	0.461	0.588	0.517
Devign	0.957	0.257	0.143	0.184	0.875	0.316	0.367	0.339	0.569	0.525	0.647	0.580
Reveal	0.928	0.270	0.661	0.383	0.818	0.316	0.611	0.416	0.611	0.555	0.707	0.622
IVDetect	0.696	0.073	0.600	0.130	0.808	0.276	0.556	0.369	0.573	0.524	0.576	0.548
LineVul	0.972	0.632	0.436	0.516	0.847	0.248	0.519	0.335	0.541	0.496	0.909	0.642
WIDLE	0.977	0.724	0.522	0.607	0.922	0.471	0.394	0.429	0.589	0.530	0.812	0.641

 TABLE XI

 Comparison results on function-level vulnerability. The best results are highlighted in **BOLD** font.

Our proposed method can achieve the state-of-the-art performance on the statement-level vulnearbility localization

TABLE XII COMPARISON RESULTS ON FUNCTION-LEVEL VULNERABILITY AND STATEMENT-LEVEL VULNERABILITY LOCALIZATION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT.

Model	Acc	Р	R	F1	MAR	MFR	IFA	Top-1	Top-3	Top-5
LineVul	N/A	N/A	N/A	N/A	9.49	7.17	6.17	0.005	0.252	0.375
WIDLE	0.983	0.183	0.338	0.237	9.08	6.46	5.46	0.283	0.484	0.609

The combination of two pooling channels can enhances the ability of both function-level detection and statement-level localization

TABLE XIII Results of the function-level vulnerability detection performance comparison with different channels. The best results are highlighted in **BOLD** font.

Model	Fan et al.				Reveal				FFMPeg+Qemu			
	Acc	Р	R	F1	Acc	Р	R	F1	Acc	Р	R	F1
WIDLE _{max}	0.976	0.721	0.500	0.591	0.933	0.574	0.375	0.453	0.567	0.513	0.816	0.630
$WIDLE_{mean}$	0.973	0.660	0.446	0.532	0.922	0.470	0.385	0.423	0.560	0.509	0.752	0.608
WIDLE	0.977	0.724	0.522	0.607	0.922	0.471	0.394	0.429	0.589	0.530	0.812	0.641

TABLE XIV Results of the statement-level vulnerability localization performance comparison with different channels. The best results are highlighted in **bold** font.

Model	Acc	Р	R	F1	MAR	MFR	IFA	Top-1	Top-3	Top-5
WIDLEmax	0.984	0.188	0.299	0.231	9.17	6.66	5.66	0.268	0.481	0.617
$WIDLE_{mean}$	0.977	0.155	0.416	0.226	9.78	7.27	6.27	0.224	0.443	0.586
WIDLE	0.983	0.183	0.338	0.237	9.08	6.46	5.46	0.283	0.484	0.609

Our method has comparable detection abilities for most types of vulnerabilities but has better performance in Integer overflow and double free

CWE-ID	Description	Rank	TPR	Proportion
CWE-787	Out-of-bounds Write	1	50.0%	7/14
CWE-416	Use After Free	4	61.5%	8/13
CWE-20	Improper Input Validation	6	56.6%	61/108
CWE-125	Out-of-bounds Read	7	54.2%	13/24
CWE-476	NULL Pointer Dereference	12	55.6%	5/9
CWE-190	Integer Overflow or Wraparound	14	77.8%	14/18
CWE-119	Improper Restriction of Operations within the Bounds of	17	56.0%	70/125
	a Memory Buffer			
CWE-362	Concurrent Execution using Shared Resource with Improper	21	52.4%	11/21
	Synchronization ('Race Condition')			
	Improper Access Control	N/A	37.5%	3/8
CWE-189	Numeric Errors	N/A	52.6%	10/19
CWE-732	Incorrect Permission Assignment for Critical Resource	N/A	57.1%	4/7
CWE-254	7PK - Security Features	N/A	44.4%	4/9
CWE-200	Exposure of Sensitive Information to an Unauthorized Actor	N/A	42.9%	12/28
CWE-415	Double Free	N/A	71.4%	5/7
CWE-399	Resource Management Errors	N/A	48.7%	19/39
Total			54.8%	246/449

TABLE XV DETECTION RESULTS FOR DIFFERENT CWE VULNERABILITIES WITH OUR PROPOSED WIDLE.

- Propose a novel approach which can localize vulnerabilities without additional labeling
- Integrate various pooling modules to capture code features for different types vulnerabilities
- The experiment results domenstrate its superior performance on both function-level and statement-level

Semantic Dependency Learning Based Code Retrival

Code Retrival Acceleration with Deep Hashing

Code Retrival Acceleration via Segmented Deep Hashing

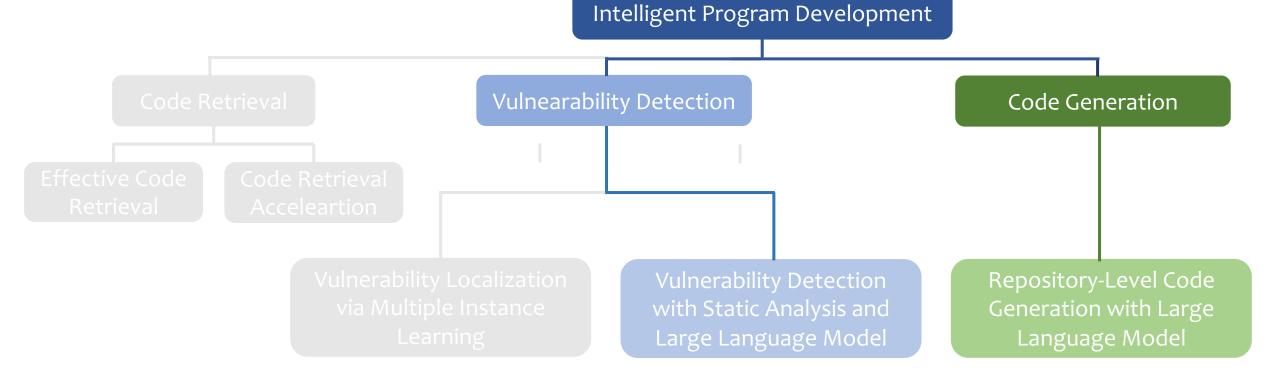
Vulnerability Localization via Multiple Instance Learning

Conclusion and Future Work

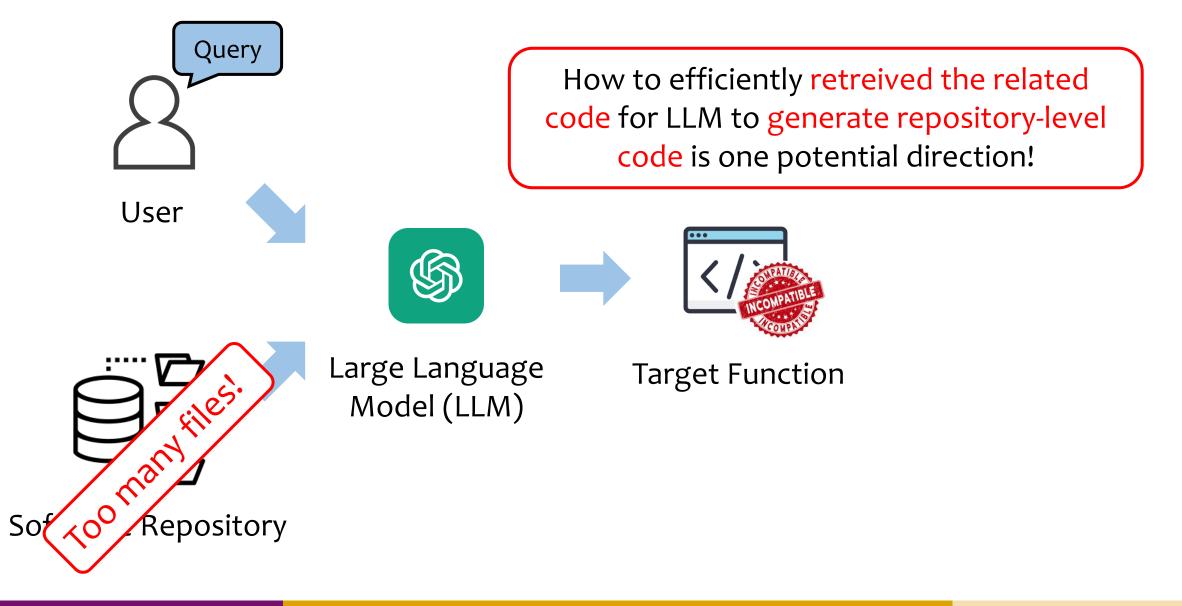
Conclusion and Future Work

Conclusion

Intelligent Program Development	Effective Code Retrieval	Semantic Dependency Learning Based Code Retrival	A A	Integrate the dependency and semantics information for code retrieval Evaluate the effectivenss of proposed method
	Code Retrieval Acceleartion	Code Retrival Acceleration with Deep Hashing	A A	Integrate code classification and deep hashing Evaluate the effectivness and efficiency of proposed method
		Code Retrival Acceleration via Segmented Deep Hashing	A A	Convert the long hash code into segmented hash codes to improve retrieval efficiency Propose strategies to increase the hash collision ratio and reduce the false positive ratio
	Vulnearability Detection	Vulnerability Localization via Multiple Instance Learning	AA	Propose a weakly supervised method for vulnerability detection and localization Integrate various pooling modules for different types of vulnerabilities



Future Work

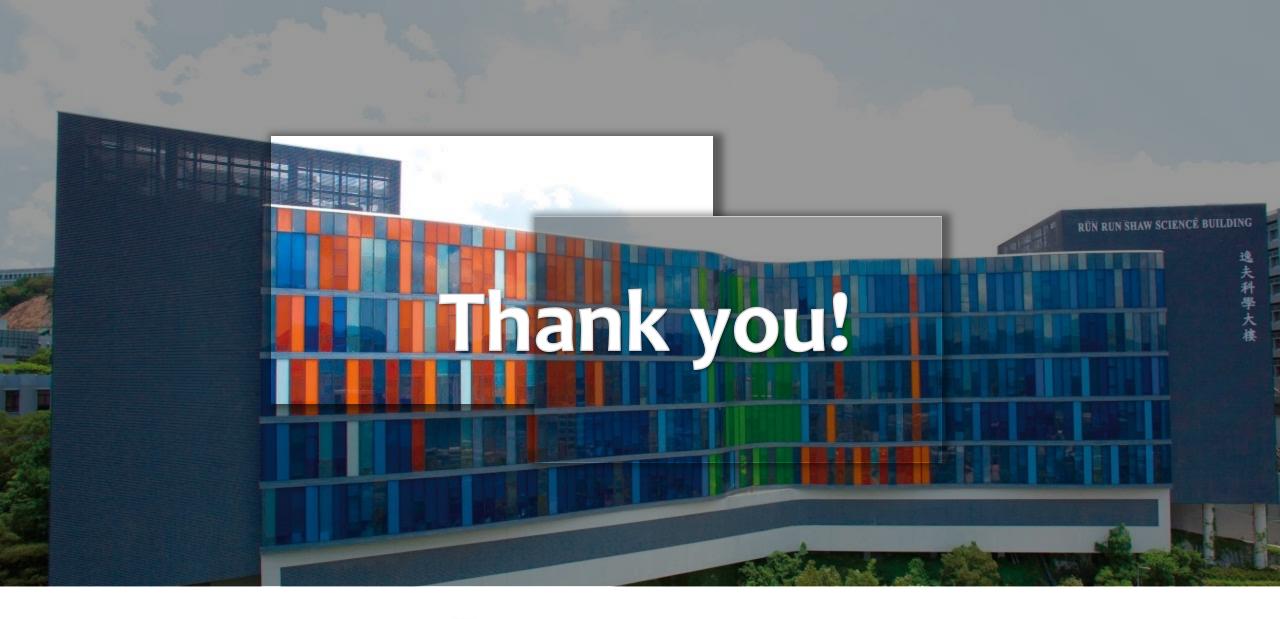


Target Function

Detection Result

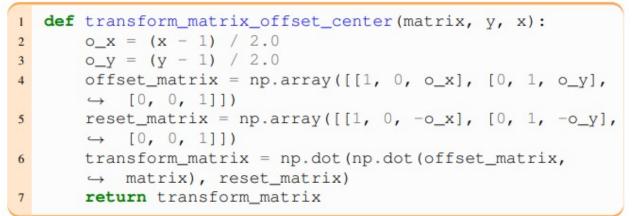
Large Language Model (LLM) Input the static analysis result with LLM may help static analysis tools improve the performance!

- Wenchao Gu, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, Michael R. Lyu, "Accelerating code search with deep hashing and code classification", 60th Annual Meeting of the Association for Computational Linguistics
- Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng Wang, Hongyu Zhang, Zenglin Xu, Michael R. Lyu, "CRaDLe: Deep code retrieval based on semantic dependency learning", Neural Networks
- Weizhe Zhang*, <u>Wenchao Gu*</u>, Cuiyun Gao, Michael R. Lyu, "A Transformer-based Approach for Improving App Review Response Generation", Software: Practice and Experience, 2023
- Ensheng Shi, Yanlin Wang, <u>Wenchao Gu</u>, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, Hongbin Sun, "Enhancing Semantic Code Search with Multimodal Contrastive Learning and Soft Data Augmentation", International Conference on Software Engineering 2022
- Zi Gong, Cuiyun Gao, Yasheng Wang, <u>Wenchao Gu</u>, Yun Peng, Zenglin Xu, "Source Code Summarization with Structural Relative Position Guided Transformer", 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering
- <u>Wenchao Gu</u>, Zongyi Lyu, Yanlin Wang, Hongyu Zhang, Cuiyun Gao, Michael R. Lyu, "SPENCER: Self-Adaptive Model Distillation for Efficient Code Retrieval", IEEE Transactions on Software Engineering (major revision)
- <u>Wenchao Gu</u>, yupan Chen, Yanlin Wang, Hongyu Zhang, Cuiyun Gao, Michael R. Lyu, "Weakly Supverised Vulnerability Detection and Localization via Multiple Instance Learning", ACM Transactions on Software Engineering Methodology (under review)
- Wenchao Gu, Ensheng Shi, Yanlin Wang, Lun Du, Shi Han, Hongyu Zhang, Meidong Zhang, Michael R. Lyu, "Accelerating Code Search via Segmented Deep Hashing", 40th IEEE International Conference on Data Engineering (under review)



香港中文大學 The Chinese University of Hong Kong

Query: Convert directly the matrix from Cartesian coordinates (the origin in the middle of image) to Image coordinates (the origin on the top-left of image)



Query: Get successor to key, raises KeyError if a key is max key or key does not exist

```
def succ_key(self, key, default=_sentinel):
    item = self.succ_item(key, default)
    return default if item is default else item[0]
```