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Background

Many essential applications/” 24  The public cloud market is increasing,
have migrated to the cloud. @_| estimated 679 billion U.S. dollars in 2024.
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https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/



Background

Cloud Providers

e Deliver services in different
layers of virtualization and
abstraction

e  Maintain most resources

o 1@
./

e Consume and utilize the
services

e Little maintenance effort
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Background

However, incidents can interrupt these services...
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It is crucial yet challenging to
ensure reliability of cloud systems!



Background

* Challenge 1: Large scale of cloud systems

Software
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machines

AWS Data Centers Today: 100+ Locations, 1.5 Million Servers, and More (cloudzero.com)

AWS brings economic benefits to California, Ohio, Oregon, Virginia (aboutamazon.com)

August 09, 2023, 10 min read

AWS Data Centers Today:
100+ Locations, 1.5 Million
Servers, and More



https://www.cloudzero.com/blog/aws-data-center-locations/
https://www.aboutamazon.com/news/aws/aws-data-center-economic-impact-study

Background

* Challenge 2: Complicated dependencies between services
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Background

* Challenge 2: Complicated dependencies between services
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Background

* Cha

lenge 2: Complicated dependencies between services
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Dependencies between microservices

Zhang, Y., Gan, Y., & Delimitrou, C. (2019). ugSim: Scalable and Validated Simulation of Clou,
Microservices. arXiv preprint arXiv:1911.02122.



Background

* Challenge 3: Evolving nature of cloud software

Software

Applications APIs

Platform

Runtime

Middleware

OS

Infrastructure

Virtual machines

Storage

Physical

Networking machines

Computing

kubernetes |/ kubernetes

> Code (©) Issues 1.8k £ Pull requests 762 () Actions [ Projects 6 @© Security

Pulse May 25, 2024 - June 1, 2024

Contributors

Community Standards Overview

Commits

118 Active pull requests 79 Active issues

Code frequency

Dependency graph
f- 62 i 56 © 51
Network Merged pull Open pull Closed issues

requests requests
Forks

Excluding merges, 25 authors have 10
pushed 65 commits to master and 65
commits to all branches. On master, 726 5
files have changed and there have been
43,044 additions and

—

[~ Insights

Period: 1 week ~

28
New issues

)33 deletions. i Wﬁ.;,—‘.”ﬂi] Ai

One week: 726 file changes,
43.044 additions, 25,033 deletions
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Background

* Challenge 4: Limited observations of cloud systems
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Background

* Challenges in ensuring reliability of cloud systems

(1) Large Scale

PLAN
CODE DEPLOY

BUILD OPERATE

y
- 57
N\ MONITOR

TEST RELEASE

(3) Fast Evolving
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(4) Limited Observations
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Background: reliability management of modern cloud systems
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Background: reliability management of modern cloud systems

Users

~Bb

Support
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——

Alert Lifecycle
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Ticket responds slowly.

Triage Mitigation
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The success rate of service
X has dropped below 95%.
Alert
= 1 Real-time
Detection
— =
- = il oo
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&) Labor-intensive

On-call o .
g Engineers ) Skill-intensive
<>
(OCE) &) Error-prone

When an incident (an unexpected problem)
happens:

(1) Called by alerts (Triage)
(2) Understand alerts 7

(3 Check monitoring data — (Mitigation)

(4) Diagnosis & Recovery _
(5) Fix bugs (Resolution)
(6) Summarize (Postmortem)
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Our goal: Intelligent reliability management
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Triage Mitigation

Resolution

Postmortem

Software Layer

Platform Layer

Infrastructure Layer

Cloud Hierarchy

The success rate of service
X has dropped below 95%.

Alert

I

Real-time
Detection

M

~ =5
il oo

Log Metric  Trace

Monitoring data

@Automated
@ + 'm' Intelligent @ Efficient
‘4 solutions @Scalable
OCE

@ Evolving
When an incident (an unexpected problem)

happens:
(1) Called by alerts (Triage)

(2) Understand alerts 7

(3 Check monitoring data — (Mitigation)

(4) Diagnosis & Recovery _
(5) Fix bugs (Resolution)
(6) Summarize (Postmortem)

15



Our goal: Intelligent reliability management

Users
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Request

=B =

Alert Lifecycle
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Our goal: Intelligent reliability management

Users __ >upport Thesis Contribution
o &. Request [—E;-i My application
—_— ds slowly.
-D Ticket  responds slowly @ Sealog
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Our goal: Intelligent reliability management

Users

~Bb

Support
Request

——

| __R My application

Ticket responds slowly.

Thesis Contribution

Alert Lifecycle

(1) Sealog

Triage

Mitigation

Resolution Postmortem

Scalable and adaptive log-based
anomaly detection

Software Layer

Platform Layer

Infrastructure Layer

The success rate of service
X has dropped below 95%.

(2) Prism
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Improving observability across
different layers of cloud hierarchy
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Our goal: Intelligent reliability management

Users

s

Support

Request |'__E'| L
® R My application
]

————
Ticket responds slowly.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

s

Software Layer
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The success rate of service
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Detection
— =1
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Thesis Contribution

(1) Sealog

Scalable and adaptive log-based
anomaly detection

(2) Prism

Improving observability across
different layers of cloud hierarchy

(3) iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication
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Our goal: Intelligent reliability management

Users

Request |'__E'I o
® R My application
)

Support

—
Ticket responds slowly.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Software Layer

The success rate of service
X has dropped below 95%.

Platform Layer

Alert
— 1 Real-time @
Detection

Infrastructure Layer

Cloud Hierarchy

7 ~/ EE
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Log Metric  Trace

Monitoring data

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based
anomaly detection

(2) Prism

Improving observability across
different layers of cloud hierarchy

(3) iPACK

Correlating tickets and alerts for more

comprehensive ticket deduplication
20



Background

* Log data is one of the most important data sources.

EDiz
Trouble Performance
shooting analysis

©)

Software runtime behaivors i
User behavior Security

analysis audit o




Background

* Automatic log-based anomaly detection is essential.

Anomaly: unexpected patterns or events that
deviate from the norm or expected operation.

(< _> Createlnstance:

Get request..
Authenticating..

—— No enough resources..
Returning. .

Example of a log anomaly

Focus: template anomalies

Sep 18 ©8:47:22 DEBUG Partition rdd_2_1 not found in
Sep 18 ©8:47:35 DEBUG Partition rdd_2 2 not found in
Sep 18 ©8:47:49 DEBUG Partition rdd_2 1 not found in
Sep 18 ©8:48:17 DEBUG Partition rdd_2_3 not found in

Raw logs
Log Parsing
Timestamp Event Level Log Templates Parameters
Sep 18 08:47:22 e1 DEBUG | Partition <*>not foundin<*> | rdd 2 1]127.0.0.1
Sep 18 08:47:35 e1 DEBUG | Partition <*>not foundin<*> | rdd 2 2]127.0.0.1
Sep 18 08:47:49 e1 DEBUG | Partition <*>not foundin<*> | rdd_2_1]127.0.0.1
Sep 18 08:48:17 e DEBUG | Partition <*>not foundin<*> | rdd 2 3| 127.0.9

Structured logs

22



Motivation: a pilot study

* Characteristics of log data in real-world industrial environment

Transmission @
Datasets overhead
20 microservices 1

Duration: 1 month - ¥

1.48 million+ lines

)

3,241 templates 4 cores, 8GB | [T
] 0 GPU ’
N\ . Monitoring
HUAWE HUAWEI CLOUD Functionality
Limited local

resource

Characteristic 1:

Massive and distributed

!

Requirement 1:
Lightweight for local
analysis

23



Motivation: a pilot study

* Characteristics of log data in real-world industrial environment
Share templates? 0.4
Comparison 1: Across-microservice 0.3
1. Pairwise combine 20 5
30.2
microservices =
0.1
2. Compute their template set _
arity: 51N S2 "Moo 02| 04| 06 08 10
similarity: S1US? / emplate Uverlapping\

* 40% microservice pairs share * 80% microservices pairs share

no overlapping templates <50% templates overlapping
24



Motivation: a pilot study

* Characteristics of log data in real-world industrial environment

Share templates?

Comparison 2: Across-timeframe

1. Within each microservice
2. Represent log semantics with

OpenAl-embedding

3. Compare log pairs before and after

Feb 15 based on Cosine similarity

)
>

Frequency

o

0.0
0.0 02 04

o

Most new logs share little semantic

similarities with seen logs

0.6

/ Semantic Similarity

0.8 10

Some logs may repeat over time.

25



Motivation: a pilot study

* Characteristics of log data in real-world industrial environment

Comparison 1: Across-microservice

Characteristic 2:

*  40% microservices pair share Diverse across different microservices
no overlapping templates ‘
*  80% microservices pairs share * Requirement 2:
<50% templates overlapping Accurate enough for various logs
Comparison 2: Across-timeframe e Characteristic 3:

* Some logs may repeat over time Evolving overtime

* Most new logs share little semantic ‘
* Requirement 3:

Adaptive to unseen logs

similarities with seen logs



Motivation: a pilot study

* Existing solutions cannot fulfill all requirements

* Requirement 1:

: : . Loglizer Statistics-based
Lightweight for local analysis L7 &
7/
/7
, /7

* Requirement 2: / Deeplog Without handling

Accurate enough for various logs LogAnomaly  unseen cases
* Requirement 3: \ RobustLog Label-intensive

Adaptive to unseenlogs NerualLog Compute-intensive

[ICSE’22] Le V H, Zhang H. Log-based anomaly detection with deep learning: How far are we?[C]//Proceedings of 27

the 44th international conference on software engineering. 2022: 1356-1367.



Key idea

* Integrating large language models (LLM) with lightweight ML methods

e Requirement 1: ) ML method Filter massive normal
Lightweight for local analysis + Lightweight log messages
- Needs extensive training data
- Not adaptive

* Requirement 2:
Accurate enough for various logs @ Large language models

+ Semantic comprehension o
: + Zero/few-shot prediction Analyze only suspicious
* Requirement 3: + Follow instructions log messages in detail
Adaptive to unseen logs _Slow

- High cost




Our synergistic approach: Sealog

* Integrating large language models (LLM) with lightweight ML methods

e N
generating core.90 F—
generating core.216 [:::H
generating core.217 -
generating core.89

FATAL data error interrupt.
machine check register: 0x00

N
4

N J
Input logs Detection Agent
Suspicious window v
> generating core.89
FATAL data error interrupt.
machine check register: 0x00
Fault library
e N e N
Log window: Decision: OO0

ICL
anomaly/normal \‘

Confirm !2 < ) <
Groundtruth: <4+— n Explanation: The @

anomaly/normal decisioq is made
i by considering... LLM
|_ Confirmed case ) § )

Human Feedback Backbone Analyzer

Overall Framework of Sealog



Detection agent of Sealog

* Detection agent (N-gram probabilistic tree, NPT)

generating core.90

~
generating core.216 7|@’

Suspicious window

(1) Parse logs to event templates

generating core.217
generating core.89

generating core.89
FATAL data error interrupt.

FATAL data error interrupt. machine check register: 0x@@ Deplov locall
machine check register: 0x00 @ p y y
L b (3) Ensure efficiency and high recall
Input logs

S . Token-level (1)
......................... oo —> 8 5

NPT: signature {[(INFO, open, =)] [(Debug, load, #)] # Total tokens

=

! P(c|X) = P(x,|c)x P(x,|c)x---xP(x, | c)x P(c)
log, :ready to load data to node b1@a8db. l \
log, :ready to load data to node 23bbefa.

template: ready to load data to node <*>. Anomaly/ Normal Log n-gram tokens

Otherwise: naive bayes classifier

i log; : ready to load data |
Streaming logs | to rode bleasad. ) Recent /"' Log  Anomaly
Log window ' ma)fch clusters statistics  detection
i Log Cluster 2 J i
= voteh! _ # unseen tokens
Grouping | SemmmmeEmmmmmes g 5 Logs with unseen tokens: P(c|X) =

______ L 1
Leaf node E’ ) 4 [:][:]‘E /

_________________________




Backbone analyzer of Sealog

* Backbone Analyzer (ICL-enhanced LLM)

Suspicious window Decision: 0O El\/a
generating core.89 anomaly/normal
i .
FATAI'_ data error }nter‘r‘upt. > Explanation: The <+
machine check register: 0x00 L
decision is made
by considering... LLM

Backbone Analyzer

(1) Understand log semantics
(2) Deployed as a remote service

(3) Receive limited queries from detection agent

In-context learning (ICL)

)

Example
Retrieval

generating core.89
FATAL data error interrupt.

machine check register: 0x00

Suspicious window

Data archive

Please determine if the given log

v messages indicate a system run-time

I anomaly or not. In the following,
some similar examples are provided

] for reference, you should compare the

1 given log messages with them and
make your own decision.

Fault library
Your output should be in JSON format
including two fields: "decision" and
"explanation” ...
/
Instruction i

""""""""""""" i @ (D Decision

Demonstration — @ Explanation

examples

i LLM
\ Querying l

.......................... 4
1
Query logs ! % E—
: <)

Prompt Formulation Confirmation

31



Evaluation

* Datasets
Dataset BGL Thunderbird Industry
# Log messages 4,747,963 10,000,000 1,488,073
# Templates 456 1,504 3,241
# Train windows 2,884 416 3,048
(anomaly ratio) (21%) (55%) (13%)
# Test windows 722 105 933
(anomaly ratio) (24%) (30%) (18%)

* Research Questions

* RQ1: How effective is SeaLog under the offline setting?

\
Industry e

e Real-world data from Huawei Cloud

e 103 types of anomalies

* Labeled by on-site engineers

* Metrics

* RQ2: How effective is SeaLog under the online setting?

* RQ3: How does the number of queries affect the

performance of Sealog?

* RQ4: How efficient is Sealog?

e Recall:

* F1 Score:

* Precision:

TP
1P + FP

TP
1P + FN

2XprecisionXrecall

precision + recall 32



Evaluation

e RQ1: Offline Effectiveness

Method BGL Thunderbird Industry
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
IF 0.125 0.615 0.208 0.291 0.968 0.448 0.176 0.994 0.299
LR 0.738 0.437 0.549 0.842 0.516 0.640 0.818 0.655 0.727
DT 1.000 0.570 0.726 1.000 0.839 0.912 0.942 0.788 0.858
DeepLog 0.241 0.895 0.380 0.295 1.000 0.456 0.358 0.909 0.513
LogAnomaly 0.268 0.862 0.409 0.307 1.000 0.470 0.360 0.927 0.519
RobustLog 0.942 0.961 0.951 1.000 0.710 0.830 0.984 0.764 0.860
NeuralLog 0.881 0.886 0.883 0.713 0.719 0.715 0.889 0.895 0.887
Seal.og 0.994 0.991 0.993 1.000 0.903 0.949 1.000 0.931 0.964
* RQ2: Online Effectiveness
1.0 E-\B/B\N 1.0/ w Observation 1: Sealog is the most effective
o i x| o TN solution in the offline setting.
S 0.7 @'/6\\/ S 0.7 \Q
0] w2
- 041 5 SeaLog P 041 = Seal.og
—©— RobustLog —©— RobustLog
0.1 Seupto 0.1 o Observation 2: Sealog keeps a high

1 2 3 4 5
Chronological Log Chunks

(a) BGL

1 2 3 4 5
Chronological Log Chunks

(b) Industry

performance in the online setting.




Evaluation

* RQ3: Impact of query numbers

100 1.0
[ # of Queries (Left)
80 1 —— F1 (Right)
F0.9
60 1
40
F0.8
20
0- -0.7
0.0 0.2 0.4 0.6 0.8 1.0
Threshold for Querying
(a) BGL
* RQ4: Time and Memory Efficiency
300 e
= | 3 Detection Agent =
8 2307 I Backbone Analyzer
S 200
4
o 150
= 118.7
= 100 812 810
é o) 368 o

Logiizcr ch:)Log Log;\no. RobustL. NeuralL. Sca'Log

Methods

(a) Time Efficiency Comparison

B # of Queries (Left)
200 —&— Fl (Right)
100 1
0 — -
0.0 0.2 0.4 0.6 0.8 1.0
Threshold for Querying
(b) Industry
8 [ Detection Agent 3249.0
=
N
% 10° 4
@) 547.8
> 4108 409.4
et
)
g 174.9 167.6
=

Logiizcr Dccy')Log Log;\no. RobustL. NeuralL. ScaLog

Methods

(b) Space Efficiency Comparison

0.9

0.8

Observation 3: Only limited
gueries are forwarded to
LLM.

Observation 4: Sealog
demonstrates high efficiency
in both time and memory
consumption.
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Industry deployment

* Deployment in Huawei Cloud

{ Backbone ] Alert @

Analyzer

Remote < Alert
.. Feedback
suspicious Panel
Detection  anomalies

Agent ‘ ‘ ‘ Feedback

Components of Product X

1.0 X/G___M—M
/e//@\&ae
0.71
K
Feedback
0.4- -8~ FI
—— Precision
—>¢— Recall
0.1

Aug 8 Aug 15Aug 22 Aug 29 Sep 5 Sep 12
Date
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Summary of (1) Sealog

* Log-based anomaly is essential, which requires an

anomaly detector accurate, lightweight and adaptive.

* We propose Sealog, a synergistic approach
integrating both the advantages of ML-based and
LLM-based methods.

* Sealog fulfills these three requirements and has been
deployed in real-world production environment.

36



Our goal: Intelligent reliability management

Users

Request
=B —
)

Support

| __R My application

Ticket responds slowly.

Thesis Contribution

Alert Lifecycle

(1) Sealog

Triage Mitigation

Resolution Postmortem

Scalable and adaptive log-based
anomaly detection

Software Layer

Platform Layer

(2) Prism

Infrastructure Layer

Improving observability across
different layers of cloud hierarchy

Cloud Hierarchy [s

The success rate of service
X has dropped below 95%.
Alert
= 1 Real-time
Detection
mh S PO
— ==
= = il oo
Log Metric  Trace

(3) iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication

37



Black-box view of cloud vendors facing millions of instances

Applications

] Q o)
B & ML Q D “«— N
Tenants
&)

2 A

A
<+— Cloud
vendors

Massive Black-box Instances
(typically millions of )

38



A Motivating Example

Applications 88 @ ML f ; B

Packet loss

Massive Black-box Instances
(typically millions of )

)
JERge

Tenants

Should | launch diagnosis?

Do they affect cust:n/ew_s?]

L A

<4+— (Cloud
vendors

39



A Motivating Example

Applications 88 @ ML f ; @

)
S

Tenants

Packet loss -
Vg ]
D),

affected. Notify the customer

-~ This functionality is very likely
and launch diagnosis proactively.

S —-- ML

Clustered Instances
(Serving the same functionalities)

<4+— Cloud
vendors

40



Our Problem

Massive Black-box Instances
(typically millions of )

Functional Clusters

AN

Ty \/-"”\l
/ ~

/ IEI \\\I I
/ S 1 I
/ ‘/Ill N

Vs \

N / r— -
e e
\ i\ \\ \

\ 'l \""‘ \\

= - N

Clustered Instances
(Serving the same functionalities)

Problem: How do we find functional clusters in massive instances
with ONLY data visible to cloud vendors (with customers’ consent)?

41



Data visible to cloud vendors

* Two types of typical monitoring data

jat cpu utilization

— " packet received
O —
N
Sy [ Mem usage
E—
— — " disk read
A disk write
e

Trace: (srclp, dstlp, srcPort, dstPort)

Communication Traces Monitoring Metrics



A Pilot Study

* 3,062 internal instances covering 397 types of functionalities

—

0.751

> 75% across-cluster instances
have nearly zero similarity.

Communication
Similarity

Resource Utilization
Similarity

[

Cumulative Probability
o
()

0

Cumulative Probability

0.25;

0.51

/7 have > 0.8 similarity.
/

= within clusters
= across clusters

0 02 04 06 08 1

Similarity of communication patterns

= within clusters
= across clusters

0 02 04 06 08 1
Similarity of resource usage patterns

> 50% in-cluster instances

N

Huawei Cloud

1_

84.3%

0.751

Fraction
(a)
¥,

0.25;

8.5%
: 23% 0 20%  0.9%

1-5

Findings

6-10 11-20 21-50 >50
Number of destinations

* In-cluster instances share similar
communication and resource patterns.

* Most instances only communicate with a
small number of instances (locality).

* Both data are noisy. 43



Method

Problem: How do we find functional clusters in massive instances
with ONLY data visible to cloud vendors (with customers’ consent)?

Challenges:

* Massive instances (typically millions in cloud systems)

* Limited noisy monitoring data for cloud vendors

Our Solution: Prism

Ghurik / Metrics :
unks

< | o o o g
: i § Network 1 i
1 Eg ., [&l:(c.d) |LsH . L Hae § &

— B2 B¢ — g — 4o —

el T TT ] HOOL
. Destination sets Hash Space R — Clusters |

Instances Trace-based Metric-based Instances
(black-box view) Partitioning Clustering (w/ functional clusters)
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Method

Problem: How do we find functional clusters in massive instances
with ONLY data visible to cloud vendors (with customers’ consent)?

Challenges:

* Massive instances (typically millions in cloud systems)

* Limited noisy monitoring data for cloud vendors

Our Solution: Prism

Metrics _.
Disk
S TN N N el -
| B bl:@e | — EE T 5 ea
el NTT R 0000
5 Destination sets Hash Space L S Clusters
_________________________________________________________________________________________________________________ L
Trace-based Metric-based
Partitioning Clustering
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Method

Trace-based Partitioning

Input:
* Allinstances
e Communication traces

Output:
e Coarse-grained chunks

ag a]:(c d)
Gl f@_:(d e)

Destination Sets
Jaccard similarity:

__|Sinsj|
](xlix]) - |SiUSj|

Pairwise?(
compariso

Efficient Locality
Sensitive Hashing

—

Chunks
»

G

Hash Space

Strong
Locality!

Input:

Metric-based Clustering

e Coarse-grained chunks

* Monitoring metrics (cpu, mem, disk, etc.)

Output:

* Functional clusters

— 0(n?)
* Metrics

CPU

oS 9o

e A ) i @

5%% 0000 o
S— ¥ Clusters ' Dynamic Time

_ Chunks ‘ Warping (DTW) Distance

Apply independently for each
small chunk (<=50 instances)
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Evaluation

* Datasets

Datasets # Functionalities  # Instances # Traces # Metrics

Dataset A 292 2,035 100.2 M 725 M
Dataset B 105 1,027 121.6 M 371 M
Total 397 3,062 2126 M 1096 M

* Research Questions
* RQ1: What is the effectiveness of Prism?
 RQ2: What is the contribution of each component?
* RQ3: What is the impact of parameter settings”?
* RQ4: What is the efficiency of Prism?

* Real-world data S'A
from Huawei Cloud ~ ~

* Manually labeled
internal instances

* Metrics
* Homogeneity: how precise?
* Completeness: how complete?

* \\-measure: a balanced metric
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Evaluation

e RQ1: Effectiveness

e RQ2: Ablation

Observation 1: Prism outperforms
all state-of-the-art comparative
methods.

Methods Dataset A Dataset B
Homo. Comp. V Meas. Homo. Comp. V Meas.
OSImage 0.238 0.894 0.376 0.258 0.889 0.400
CloudCluster  0.346 0.748 0.473 0.369 0.753 0.495
ROCKA 0.831 0.882 0.856 0.875 0.900 0.887
OmniCluster  0.932 0.862 0.896 0.944 0.877 0.909
Prism 0.976 0.916 0.945 0.979 0.922 0.950
Methods Dataset A Dataset B
Homo. Comp. V Meas. Homo. Comp. V Meas.
Prism 0.976 0.916 0.945 0.979 0.922 0.950
Prism w/o Metrics  0.462 0.920 0.615 0.463 0.949 0.622
Prism w/o Traces 0.949 0.869 0.907 0.915 0.893 0.904

Observation 2: Both components
contribute to the overall
performance.
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Evaluation

* RQ3: Parameter Sensitivity

1.00

1.00

0.95 1

0.90 1

g
A\A\&ﬂ—ﬂ\w\ﬂ

0.95 -

0.90

M

W

Observation 3: Prism is robust to
threshold settings for both LSH and HAC.

0.85 1 —=— Homo. 0.85 1 —=— Homo.
—A— Comp. —A— Comp.
—©— V Meas. —&— V Meas.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
LSH threshold HAC threshold
* RQ4: Efficiency
# Instances
Methods 1,000 5,000 10,000 50,000 100,000
CloudCluster 0.9 23.87 78.65 1768.7 5585.7 ] ] .
ROCKA 80.7 1981.8 7850.3 _ _ Observation 4: Prism can eff|C|entIy handle
OmniCluster 31.7 264.6  1048.6 26531.8 - massive instances in cloud systems.
Prism w/o Metrics 3.9 19.1 40.2 195.1 392.4
Prism w/o Traces 80.3 2066.1 8232.3 - -
Prism 18.2 89.4 183.9 929.2 1912.7 43




Industrial Experience

* Use case 1: vulnerable deployment identification

The entire functionality 1 fails!

Parts of functionality 2&3 exist!

\

/

; Functionality 1

E G Functionality 2
= : :

P2 =3 Functionality 3

|- __———
Cloud B||C F ; B 1C
Instances Aw E\I/G : Aw
Physical = = =3,
Machines P1 % PZE ! E-
Black-box View Functional Clusters
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Industrial Experience

* Use case 2: latent issue discovery

My
{Connecﬂon to remote server lost | | Downloading file "xxx.txt"
during transmitting dataset "xxx", (interrupted, retrying in 30s.
10— 4
1.0

0 1 - - . 0.8 | —T = Cluster-1 L = Cluster-2
i ] — Region-level 0
| i 0.6
084 i g 041
0.6 i 0217 i

i | 0.0
04| | ; S5
AVM/\_MW 0.8 | = Cluster-3 = Cluster-4

021 ¢ g

0.6 1
0.4

0.0 - i E 0.2 | VWA A ASA AN

0.0 1

‘ Aggregated by functional clusters

A :
ggregated by region ‘ (Prism applied)

Fragmented lost packets of massive instances




Summary of (2) Prism

* Virtualization technologies improve resource utilization
but lead to limited observability in the cloud.

* The proposed Prism reveals functional clusters by
leveraging communication patterns and resource
patterns among instances.

* Prism is effective and efficienct, which provides
additional insights for enhanced cloud reliabiilty.

52



Our goal: Intelligent reliability management

Users

= kn

s

Support
Request

——

| __R My application

Ticket responds slowly.

Alert Lifecycle

Triage Mitigation

Resolution Postmortem

Software Layer

Platform Layer

s

Infrastructure Layer

Cloud Hierarchy

The success rate of service
X has dropped below 95%.
Alert
= 1 Real-time
Detection
— ==
- = il oo
Log Metric  Trace

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based
anomaly detection

(2) Prism

Improving observability across
different layers of cloud hierarchy

(3) iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication
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Customers submit tickets to cloud vendors for help

Incidents symptoms locations
@ affect
[33 Ticket: 2022072505 Status: Open
oy A e Summary: Error deploying the container. Region: West US
R . Creation Time: 2022/7/25 15:34:42 Product Name: Kubernetes
: Category: | Kubernetes\container creation\cannot create
submit = =2 |
tickets LR

time categories




Customers submit tickets to cloud vendors for help

Incidents

”

@ affect

A A

submit
tickets

=

Thousands of services

/

Hundreds of millions of
customers

@

Overwhelming
tickets
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Customers submit tickets to cloud vendors for help

Problem: how to identify duplicate tickets?
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Limitations of text similarity-based solutions

* Intuition: duplicate tickets have similar semantics

|'_'="I_ | Topic modeling-baseds methods
=Q The app service stopped working. é @ (ICSE’18)
®

F}i Failed accessing web app.

Word2Vec-based methods
(ASE’19)

\ |
-
’
! o
| 4
0 b
’
=
e}
y
o}

[_Eﬁi The web app is unavailable.

L) BERT-based methods
(ICSE’21)
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Limitations of text similarity-based solutions

* However, duplicate tickets in cloud may have distinct semantics

1

. —— ALL K8S
;g().& — VM —— Databricks
, Virtual Machine 0.6
Disk Resource S
, Kubernetes 804 05:08 am
o Provider . £
incident Databricks 2 02l
00:00  00:00 0400 08:00  12:00
Time
. Tickets
Service
Category Summary
VM VM/Scale Update t1: Virtual machine scale sets resize issue.
VM/VM Start to: Server did not start on time. di
: Databricks/Job Issue t3: Unable to open cluster of Databricks. IVErse
Databricks , — |
Databricks/Cluster Launch | t4: Unable to provision clusters. symptoms!
KSS K8S/Cluster Update t5: Unable to autoscale.
K8S/Cluster Update tg: Cannot upgrade node pool, stuck.
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Limitations of text similarity-based solutions

* Reason: dependency between different services

incident

Depend on

Disk Resource
Provider

Virtual Machine
Kubernetes
Databricks

1

. — ALL K8S
E 0.8r VM Databricks
Q

= 0.6

G

o

% 0.4t

Z 0.2}

B0:00  00:00  04:00 08:00  12:00

Time
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Our solution: two-stage linking

* Leverage cloud runtime information: Alerts

) Tickets Alerts
Service .
Category Summary Component Title
M 1 : Virtual hi | ize i . R . :
VM VM/Scale Update t1: Virtua n.lac ine scale ser resize issue eSOl.lI'CC a1 - VMStart Failures exceed 300 times.
VM/VM Start to: Server did not start on time. Provider
Databricks Dat?lbrlcks/Job Issue t3: Unable to open. c.luster of Databricks. Control a5 : Databricks cluster creation fails.
Databricks/Cluster Launch | t4: Unable to provision clusters. Plane
K8S K8S/Cluster Update t5: Unable to autoscale. Resource a3 : The PUT operation success rate <80%.
K8S/Cluster Update te: Cannot upgrade node pool, stuck. Scheduler a4 : CPU utilization exceeds 90%.
@ alert — alert Challenge 1 Alerts are massive and noisy

@

alert

tickets

a

%

as

tq

1
L

VANV
2 l3  ty s

Lo

* Indicative alerts:

* Regular alerts:

Challenge 2

* Alerts : free text, 2000+ components, 10000+ IDs, etc

* Tickets: free text, 3000+ categories, etc

High feature cardinality

a; ap as

Ay

Large
Combinations!
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Overall Framework of iPACK

Qe

Monitors '

Cloud
Services

Customers

v

A

Alerts

|

(@ Parsing

I
-

Events

Impact Assessment
@ Incident Proﬁling

Fida

X

g PMI
@ On-call
Static Event Engineers
Relation Learning i
—> _ Track

Dynamic Event ! Aggregated

Tickets

T

; Support Team
Graph Construction Tickets pp
AIN
=220 T
) Ticket-Event
Correlation Batched Processing
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Overall Framework of iPACK

(1) Reduce redundant alerts

Q. A

Monitors > Alerts

|

@ Parsing
>

Services Events

62



Overall Framework of iPACK

(1) Reduce redundant alerts

A VMStart Failures exceed 100 times

Q0Q, AN /\ VMStart Failures exceed 150 times
. —>
Monitors Alerts A VMStart Failures exceed 200 times
’ A VMStart Failures exceed 250 times
(@®Parsing
Cloud - Drain?
Services Events (log parser)

Events VMStart Failures exceed <*> times

1 Drain: An Online Log Parsing Approach with Fixed Depth Tree



Overall Framework of iPACK

(1) Reduce redundant alerts

(2) Link alert - alert

@ Incident Profiling

Static Event
Relation Learning i

Dynamic Event

Graph Construction
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Overall Framework of iPACK

(1) Reduce redundant alerts

(2) Link alert - alert

Historical
alerts

*PMI: Pointwise mutual information

How historical events correlate
with each other?

ANAMAA
A A~

pairwise PMI” @

»

>

Static Event Relation
Learning
(offline)

@ PMI

Complete
event graph

i

new alerts

Prune events that correlate
with most of other events.

Dynamic Event
Graph Construction
(online)

Graph-based Incident Profiling (GIP)
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Overall Framework of iPACK

(1) Reduce redundant alerts

(2) Link alert - alert

(@) Link ticket - alert

S l

) Ticket-Event
Correlation

66



Overall Framework of iPACK

(1) Reduce redundant alerts

(2) Link alert - alert

(@) Link ticket - alert

- AIN @
EN

Ticket-Event
Correlation

®@

AIN: Attentive Interaction Network

-
/\ Alert: 21456282 Status: Active
Title: Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.
Creation Time: 2022/7/25 12:14:26 Region:  West US
Owning Service:  Kubernetes Severity: Medium

L Owning Component:  Kubernetes\Scheduler Monitor ID:

[[-551 Ticket: 2022072505 Status: Open
Summary: Error deploying the container. Region: West US
Creation Time: 2022/7/25 15:34:42 Product Name: Kubernetes

Category: Kubernetes\container creation\cannot create

featurel feature2 featurel+2
(100) (1000) (100 * 1000)

OneHot: — —— ——
10000..0100...000001...

Decomposition: D |:] U © D

embeddingl embedding2 interaction

feature
combinations
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Overall Framework of iPACK

(1) Reduce redundant alerts

Impact Assessment —‘

(2) Link alert - alert

L0
v X
(@) Link ticket - alert a A On-call
@\ Engineers
Monitors > Alerts &
?
— Track

ANAN |
BEER > =20

Ccloud I T LT

_ Aggregated
S rt T
Services Tickets upport Team
o8 [
Customers Tickets
T Batched Processing




Evaluation

* Dataset
Dataset | A B | C |  Total
# Services 49 57 51 81
# Incidents 462 579 642 1,575 - Three regions from Azure
# Tickets/Incident | 23~275 | 36~292 25~95 23~292
# Alerts 398,735 | 409,590 | 445,089 | 1,253,414
* Metrics

* How well a method can cluster duplicate tickets together?

* Rand index-based precision, recall and F1
FN TN

Shape: prediction
2113] Number: ground truth

TP FP

.. TP _ _TP 9. precision - recall
precision = Tp Fp; recall = TP+FN’ and F1 =2 precision + recall



Evaluation

e Overall effectiveness of iPACK

Method Dataset A Dataset B Dataset C
cHnoas Precision Recall F1 score | Precision Recall F1 score | Precision Recall F1 score

Categorization 0.930 0.205 0.336 0.943 0.373 0.535 0.925 0.207 0.338
iFeedback 0.901 0.590 0.713 0.876 0.473 0.614 0.886 0.626 0.733
LWE 0.862 0.453 0.594 0.824 0.515 0.634 0.861 0.672 0.755
BERT 0.884 0.587 0.705 0.854 0.710 0.775 0.843 0.629 0.720
LinkCM 0.931 0.507 0.657 0.892 0.538 0.671 0.901 0.628 0.740
LinkCM w/ GIP 0.900 0.685 0.778 0.886 0.756 0.816 0.899 0.809 0.852
iPACK 0.912 0.960 0.935 0.882 0.861 0.871 0.899 0.888 0.894

Observation 1: SOTA semantic-based baselines achieve high precision but low recall
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Evaluation

e Overall effectiveness of iPACK

Method Dataset A Dataset B Dataset C
cHnoas Precision Recall F1 score | Precision Recall F1 score | Precision Recall F1 score

Categorization 0.930 0.205 0.336 0.943 0.373 0.535 0.925 0.207 0.338
iFeedback 0.901 0.590 0.713 0.876 0.473 0.614 0.886 0.626 0.733
LWE 0.862 0.453 0.594 0.824 0.515 0.634 0.861 0.672 0.755
BERT 0.884 0.587 0.705 0.854 0.710 0.775 0.843 0.629 0.720
LinkCM 0.931 0.507 0.657 0.892 0.538 0.671 0.901 0.628 0.740
LinkCM w/ GIP 0.900 0.685 0.778 0.886 0.756 0.816 0.899 0.809 0.852
iPACK 0.912 0.960 0.935 0.882 0.861 0.871 0.899 0.888 0.894

Observation 1: SOTA semantic-based baselines achieve high precision but low recall

Observation 2: iPACK slightly sacrifices precision and achieves best overall performance
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Summary of (3) iPACK

* Duplicate ticket in cloud systems can poccess semantically different
content caused by inter-dependent services, making existing work
ineffective.

* We propose iPACK to introduce alerts to facilitate grouping duplicate
tickets.
* Incident Profiling: alert — alert linking
e Attentive Intraction Network: alert — ticket linking

* iPACK outperforms existing state-of-the-art solutions by 12.4% ~
31.2% across three industial datasets collected from Azure.
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Thesis Conclusion

) Automated

\ /
D + [
<1

OCE

Intelligent @Efficient
solutions @Scalable

) Evolving

Users

< b

Support
Request

—

[—E,o-l\ My application

Ticket responds slowly.

Alert Lifecycle

| Triage | | Mitigation | | Resolution | | Postmortem |

Software Layer

Platform Layer

Infrastructure Layer

Aler

The success rate of service
" X has dropped below 95%.

I Real-time
Detection

Cloud Hierarchy

AN
LOG / ;l;
[ ke By

Log Metric Trace

Monitoring data

Reliability Management

_—

(1) Large Scale

(2) Complicated
Dependencies

(3) Fast Evolving

(4) Limited

Observations

~—

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based

anomaly detection

(2) Prism

Improving observability across
different layers of cloud hierarchy

(3) iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication
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High-quality data

Unified abstraction - -
> Intelligent solutions

Future work: Towards Autonomous Cloud Systems

Goal: comprehensively and precisely capture
system runtime information

Goal: Unify and leverage cloud knowledge to
automate various Ops tasks.

Where/What to Monitor

How to Monitor

How to Analyse

How to Decide

Postmortem Analysis

Monitor Rules Generation

Interactive ChatOps

Automatic Mitigation

KPI Design (aggregation)

Monitor Recommendation

Cloud Q&A
(internal & external)

Root Cause Analysis

Full Link Topology

Monitor Optimization

Interpretable
Multi-modal Analysis

Impact Scoping

LLM-powered Operation Agent

Human

Domain knowledge adaption

Tool Learning

Prompt Optimization

Self-debugging

Feedback
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Backbone analyzer of Sealog

e Utilizing confirmed cases as feedback

generating core.89
FATAL data error interrupt.

. / Suspicious window
\\\\‘ machine check register: 0x00
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Evaluation

* Ablation study of Sealog

1.1

I Precision
] Recall
B F1 Score

1.0 1

0.9 1

0.8 -

Score

0.7 -

0.6 -

0.5 1

0.4 -

Seal.og Seal.og w/o backbone Seal.og w/ weak backbone Sealog w/o ICL
Models




Industry deployment

* Deployment in Huawei Cloud

{ Backbone ] Alert @

Analyzer

Remote < Alert
.. Feedback
suspicious Panel
Detection  anomalies

Agent ‘ ‘ ‘ Feedback

Components of Product X

1.0 X/G___M—M
/e//@\&ae
0.71
K
Feedback
0.4- -8~ FI
—— Precision
—>¢— Recall
0.1

Aug 8 Aug 15Aug 22 Aug 29 Sep 5 Sep 12
Date
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Analysis case of Sealog

Please determine if the given log messages indicate a system run-time anomaly or not. In the following, some similar examples are provided for
reference, you should compare the given log messages with them and make your own decision.

Query:
"User login attempt took longer than expected, <*> seconds."

Examples:
Input: "Unable to reach the authentication server. Timeout occurred after <*> seconds." Label: Anomaly

The output MUST be in standard JSON format and MUST consist of TWO keys: 'prediction' and 'analysis' .
"Prediction": <you should choose one of from 'normal' or 'anomaly' according to your analysis, do not use other words.>
"Analysis": <your analysis for the given log messages based on its semantics>

Output of backbone analyzer:

{

"Prediction": "anomaly",

"Analysis": "The log message 'User login attempt took longer than expected, <*> seconds.' indicates that the login process is experiencing delays
beyond the expected duration. This is similar to the example where a timeout occurs after a certain number of seconds, which is labeled as an
anomaly. Therefore, the prolonged login attempt time suggests a potential issue in the system's performance."

AN



Cloud Infrastructure

. ngsn DO :'
Functionalities 23 @ @ Q ®
support T ----------------------------------
Instances ‘ _"4__’ [&] ‘
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Virtualization reduces cloud observability for
cloud vendors during maintenance tasks.
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Cloud @
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Our solution: two-stage linking

* Intuition: first identify impacted services, then associated tickets

Depend on

Virtual Machine

Disk Resource

Provider

incident

Kubernetes

j‘> Databricks

Number of Tickets
o
~

1

— ALL K8&S
—— Databricks

o
)

| —— VM

=
o

=
[\

$0:00 00:00 04:00 08:00  12:00
Time
. Tickets
Service
Category Summary
@ VM VM/Scale Update : Virtual machine scale sets resize issue. @
service VM/VM Start : Server did not start on time. service
I : Databricks/Job Issue : Unable to open cluster of Databricks. [
Databricks i bricks/Cluster Launch Unable to provision clust
. ri r n : Un rovision IS. .
service atabricks/Cluster Launc able to provision clusters tickets

K8&S

K8S/Cluster Update

- Unable to autoscale.

K8S/Cluster Update

: Cannot upgrade node pool, stuck.
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Our solution: two-stage linking

* How to know what services are affected by an incident?

Monitoring rules

p
/N Alert: 21456282

Status: Active

If [latency] of [API] > [threshold]

&

/\ Alert

Creation Time: 2022/7/25 12:14:26
Owning|Service: Kubernetes

Title: Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.

\Owning Componenlt: Kubernetes\Scheduler Monitor ID: 68b|;352c9f)

Region: West US
Severity: Medium

|
time locations

I
issue Severity

®

service

incident SErvice

@ @,
service alert

B w— |

tickets i cident alert

@

alert

|

tickets 84



Methodology

e Alert Pa rSing (reduce redundancy)

A VMStart Failures exceed 100 times

Redundant
Alert

A VMStart Failures exceed 150 times
A VMStart Failures exceed 200 times

A VMStart Failures exceed 250 times

Drain'
(log parser)

—

Events

* Incident PrOflllng (reduce regular events & link indicative events)
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A A~
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incidents
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1 Drain: An Online Log Parsing Approach with Fixed Depth Tree
2 PMI: Pointwise mutual information
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Methodology

* Ticket-Event Correlation (ink tickets to events)

.
/\ Alert: 21456282 Status: Active

Title: Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.
Creation Time: 2022/7/25 12:14:26
Owning Service:

Region:  West US

Kubernetes Severity: Medium

L Owning Component: Kubernetes\Scheduler

Monitor ID:  68ba52c9f )

[58 Ticket: 2022072505 Status: Open

Summary: Error deploying the container. Region: West US
Creation Time: 2022/7/25 15:34:42 Product Name: Kubernetes
Category: Kubernetes\container creation\cannot create

U
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Evaluation

* Research Questions

RQ1: How effective is iPACK in aggregating duplicate tickets?

RQ2: How effective is AIN in correlating tickets and events?

RQ3: How does incident profiling impact the effectiveness of iPACK?




Evaluation

e RQ2: The Effectiveness of ticket-event correlation

Models Acc@] Acc@2 Acc@3  Average
LR 0.519 0.657 0.733 0.636
SVM 0.332 0.409 0.493 0.411
RF 0.563 0.684 0.761 0.669
LightGBM 0.658 0.723 0.832 0.712
LinkCM 0.743 0.769 0.882 0.798
AIN w/o atten. 0.673 0.762 0.824 0.753
AIN 0.817 0.907 0.936 0.887
A(%) +21.4% +19.0% +13.6% +17.8%

Observation 1: AIN outperforms existing SOTA solutions

Observation 2: The attention module improves AIN by 13.6% ~ 21.4%
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Evaluation

* RQ3: The Effectiveness of incident profiling

] w/oGIP B w/ GIP

0.05 1.0
1.00 0.980 0.998
0.04 0.901( 894
0.9 - 0.884
0.75 0.875
' 0.03
0.8}
0.50 0.020 0.02 0.743
0.25 ‘ 001 %7
0.632
0.002
| — [ 1]
0.00 # Nodes # Edges 0.00 0.6 precision Recall F1 Score
Regular Events Reduction Aggregation Performance

Observation 1: Only 2% of events are reserved after applying pruning

Observation 2: Incident Profiling mainly contributes to the Recall with
an improvement from 0.632 t0 0.743
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