
Intelligent Reliability Management in
Large-scale Cloud Systems

Jinyang Liu
PhD Oral Defense

Supervisor: Prof. Michael R. Lyu

June 24, 2024

Background

Many essential applications
have migrated to the cloud.

The public cloud market is increasing,
estimated 679 billion U.S. dollars in 2024.

https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
2

Background

3

• Deliver services in different
layers of virtualization and
abstraction

• Maintain most resources

Cloud Providers

Customers

• Consume and utilize the
services

• Little maintenance effort

Background

However, incidents can interrupt these services…

4

It is crucial yet challenging to
ensure reliability of cloud systems!

5

Background

• Challenge 1: Large scale of cloud systems

Physical
machines

Storage

Virtual machines

Networking
Computing

Middleware Runtime

Applications APIs

OS

Infrastructure

Platform

Software

AWS Data Centers Today: 100+ Locations, 1.5 Million Servers, and More (cloudzero.com)
AWS brings economic benefits to California, Ohio, Oregon, Virginia (aboutamazon.com) 6

https://www.cloudzero.com/blog/aws-data-center-locations/
https://www.aboutamazon.com/news/aws/aws-data-center-economic-impact-study

Background

• Challenge 2: Complicated dependencies between services

Physical
machines

Storage

Virtual machines

Networking
Computing

Middleware Runtime

Applications APIs

OS

Infrastructure

Platform

Software

7

Background

• Challenge 2: Complicated dependencies between services

Physical
machines

Storage

Virtual machines

Networking
Computing

Middleware Runtime

Applications APIs

OS

Infrastructure

Platform

Software

8

Background

• Challenge 2: Complicated dependencies between services

Physical
machines

Storage

Virtual machines

Networking
Computing

Middleware Runtime

Applications APIs

OS

Infrastructure

Platform

Software

Dependencies between microservices
Zhang, Y., Gan, Y., & Delimitrou, C. (2019). uqSim: Scalable and Validated Simulation of Cloud

Microservices. arXiv preprint arXiv:1911.02122.9

Background

• Challenge 3: Evolving nature of cloud software

Physical
machines

Storage

Virtual machines

Networking
Computing

Middleware Runtime

Applications APIs

OS

Infrastructure

Platform

Software

One week: 726 file changes,
43,044 additions, 25,033 deletions 10

Background

• Challenge 4: Limited observations of cloud systems

Physical
machines

Storage

Virtual machines

Networking
Computing

Middleware Runtime

Applications APIs

OS

Infrastructure

Platform

Software

3. Networks seem good.
Check your configurations!

2. DB runs normally.
Call NETWORK team!

1. Responses become slow!

4. Oh! There is a slow SQL.

11

Background

• Challenges in ensuring reliability of cloud systems

① Large Scale ② Complicated Dependencies

③ Fast Evolving ④ Limited Observations 12

Background: reliability management of modern cloud systems

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

My application
responds slowly.

Platform Layer

Software Layer

Cloud Hierarchy

On-call
Engineers

(OCE)

① Called by alerts (Triage)

② Understand alerts

③ Check monitoring data

⑥ Summarize (Postmortem)

④ Diagnosis & Recovery

⑤ Fix bugs (Resolution)

(Mitigation)

Monitoring data

When an incident (an unexpected problem)
happens:

Background: reliability management of modern cloud systems

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

My application
responds slowly.

Platform Layer

Software Layer

Cloud Hierarchy

On-call
Engineers

(OCE)

① Called by alerts (Triage)

② Understand alerts

③ Check monitoring data

⑥ Summarize (Postmortem)

④ Diagnosis & Recovery

⑤ Fix bugs (Resolution)

(Mitigation)

Monitoring data

When an incident (an unexpected problem)
happens:

Labor-intensive

Error-prone

Skill-intensive

14

Our goal: Intelligent reliability management

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

My application
responds slowly.

Platform Layer

Software Layer

Cloud Hierarchy

① Called by alerts (Triage)

② Understand alerts

③ Check monitoring data

⑥ Summarize (Postmortem)

④ Diagnosis & Recovery

⑤ Fix bugs (Resolution)

(Mitigation)

Monitoring data

When an incident (an unexpected problem)
happens:

OCE

Intelligent
solutions

Automated
Efficient
Scalable
Evolving

15

Our goal: Intelligent reliability management

16

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

Monitoring data

Our goal: Intelligent reliability management

17

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

Monitoring data

Our goal: Intelligent reliability management

18

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

② Prism

Improving observability across
different layers of cloud hierarchy

Monitoring data

Our goal: Intelligent reliability management

19

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

② Prism

Improving observability across
different layers of cloud hierarchy

③ iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication

Monitoring data

Our goal: Intelligent reliability management

20

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

② Prism

Improving observability across
different layers of cloud hierarchy

③ iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication

Monitoring data

Background

• Log data is one of the most important data sources.

Software runtime behaivors

Trouble
shooting

Performance
analysis

User behavior
analysis

Security
audit 21

Background

• Automatic log-based anomaly detection is essential.

Example of a log anomaly

…

Anomaly: unexpected patterns or events that
deviate from the norm or expected operation.

CreateInstance:

Get request..
Authenticating..
No enough resources..
Returning..

22

Raw logs

Structured logs

Log Parsing

Focus: template anomalies

Motivation: a pilot study

• Characteristics of log data in real-world industrial environment

23

• Characteristic 1:
Massive and distributed

• Datasets
• 20 microservices

• Duration: 1 month

• 1.48 million+ lines

• 3,241 templates 4 cores, 8GB
0 GPU 1 core, 200MB

Monitoring

• Requirement 1:
Lightweight for local
analysis

Transmission
overhead

Functionality

Limited local
resource

Motivation: a pilot study

• Characteristics of log data in real-world industrial environment

24

• 40% microservice pairs share

no overlapping templates

• 80% microservices pairs share

<50% templates overlapping

1. Pairwise combine 20

microservices

2. Compute their template set

similarity:
𝑆1⋂𝑆2
𝑆1 ∪ 𝑆2	

Comparison 1: Across-microservice

Share templates?

Motivation: a pilot study

• Characteristics of log data in real-world industrial environment

25

1. Within each microservice

2. Represent log semantics with

OpenAI-embedding

3. Compare log pairs before and after

Feb 15 based on Cosine similarity

• Some logs may repeat over time.• Most new logs share little semantic

similarities with seen logs

Comparison 2: Across-timeframe

Share templates?

Motivation: a pilot study

• Characteristics of log data in real-world industrial environment

26

Comparison 2: Across-timeframe

Comparison 1: Across-microservice
• 40% microservices pair share

no overlapping templates

• 80% microservices pairs share

<50% templates overlapping

• Some logs may repeat over time

• Most new logs share little semantic

similarities with seen logs

• Characteristic 2:
Diverse across different microservices

• Characteristic 3:
Evolving overtime

• Requirement 2:
Accurate enough for various logs

• Requirement 3:
Adaptive to unseen logs

Motivation: a pilot study

• Existing solutions cannot fulfill all requirements

27

• Requirement 1:
Lightweight for local analysis

• Requirement 2:
Accurate enough for various logs

• Requirement 3:
Adaptive to unseen logs

Loglizer

DeepLog
LogAnomaly

RobustLog
NeruaLog

Without handling
unseen cases

Label-intensive
Compute-intensive

Statistics-based

[ICSE’22] Le V H, Zhang H. Log-based anomaly detection with deep learning: How far are we?[C]//Proceedings of
the 44th international conference on software engineering. 2022: 1356-1367.

Key idea

• Integrating large language models (LLM) with lightweight ML methods

28

• Requirement 1:
Lightweight for local analysis

• Requirement 2:
Accurate enough for various logs

• Requirement 3:
Adaptive to unseen logs

ML method
+ Lightweight
- Needs extensive training data
- Not adaptive

Filter massive normal
log messages

Large language models
+ Semantic comprehension
+ Zero/few-shot prediction
+ Follow instructions
- Slow
- High cost

Analyze only suspicious
log messages in detail

Our synergistic approach: Sealog

• Integrating large language models (LLM) with lightweight ML methods

29Overall Framework of Sealog

!!
!"
!#

NPT

generating core.89
FATAL data error interrupt.
machine check register: 0x00

Suspicious window

Decision:
anomaly/normal

Explanation: The
decision is made
by considering... LLM

Detection Agent

Scoring

...
ICL

generating core.90
generating core.216
generating core.217
generating core.89
FATAL data error interrupt.
machine check register: 0x00...

Input logs

Confirm

Log window:

Groundtruth:
anomaly/normal
Confirmed case

Backbone AnalyzerHuman Feedback

Fault library

Detection agent of Sealog

• Detection agent (N-gram probabilistic tree, NPT)

!!
!"
!#

NPT

generating core.89
FATAL data error interrupt.
machine check register: 0x00

Suspicious window

Detection Agent

Scoring

generating core.90
generating core.216
generating core.217
generating core.89
FATAL data error interrupt.
machine check register: 0x00...

Input logs

① Parse logs to event templates

③ Ensure efficiency and high recall

Log window

(INFO, open, =)
Grouping
signature (Debug, load, #)

... ...Leaf node

Streaming logs

NPT:

Log Cluster 1

Log Cluster 2
...

match

log! 	: ready to load data
to node b10a8db.

No Match

Add
Template

Mark
New Cluster	"!

30

Anomaly
detection

Log
statistics

...

Recent
clusters

Token-level

Template
-level

log! :ready to load data to node b10a8db.
log" :ready to load data to node 23bbefa.

template: ready to load data to node <*>.

Logs with unseen tokens: =
#	𝑢𝑛𝑠𝑒𝑒𝑛	𝑡𝑜𝑘𝑒𝑛𝑠
#	𝑇𝑜𝑡𝑎𝑙	𝑡𝑜𝑘𝑒𝑛𝑠

Log n-gram tokensAnomaly / Normal

Otherwise: naive bayes classifier

② Deploy locally

Backbone analyzer of Sealog

• Backbone Analyzer (ICL-enhanced LLM)

31

generating core.89
FATAL data error interrupt.
machine check register: 0x00

Suspicious window Decision:
anomaly/normal

Explanation: The
decision is made
by considering... LLM

...
ICL

Backbone Analyzer

① Understand log semantics

② Deployed as a remote service

③ Receive limited queries from detection agent

Demonstration
examples

Instruction

Query logs

① Decision
② Explanation

LLM
Querying

Prompt Formulation

Fault library

Example
Retrieval

generating core.89
FATAL data error interrupt.
machine check register: 0x00

Suspicious window

Confirmation

Please determine if the given log
messages indicate a system run-time
anomaly or not. In the following,
some similar examples are provided
for reference, you should compare the
given log messages with them and
make your own decision.

Your output should be in JSON format
including two fields: "decision" and
"explanation” …

In-context learning (ICL)

Data archive

Evaluation

• Datasets

32

Industry
• Real-world data from Huawei Cloud
• 103 types of anomalies
• Labeled by on-site engineers

• Research Questions
• RQ1: How effective is SeaLog under the offline setting?

• RQ2: How effective is SeaLog under the online setting?

• RQ3: How does the number of queries affect the

performance of SeaLog?

• RQ4: How efficient is Sealog?

• Metrics
• Precision:

• Recall:

• F1 Score:

𝑇𝑃
T𝑃 + 𝐹𝑃

𝑇𝑃
T𝑃 + 𝐹𝑁

2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Evaluation

• RQ1: Offline Effectiveness

33

• RQ2: Online Effectiveness
Observation 1: Sealog is the most effective
solution in the offline setting.

Observation 2: Sealog keeps a high
performance in the online setting.

Evaluation

• RQ3: Impact of query numbers

34

• RQ4: Time and Memory Efficiency

Observation 3: Only limited
queries are forwarded to
LLM.

Observation 4: SeaLog
demonstrates high efficiency
in both time and memory
consumption.

Industry deployment

• Deployment in Huawei Cloud

35

Summary of① Sealog

• Log-based anomaly is essential, which requires an
anomaly detector accurate, lightweight and adaptive.

• We propose Sealog, a synergistic approach
integrating both the advantages of ML-based and
LLM-based methods.

• Sealog fulfills these three requirements and has been
deployed in real-world production environment.

36

Our goal: Intelligent reliability management

37

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

② Prism

Improving observability across
different layers of cloud hierarchy

③ iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication

Black-box view of cloud vendors facing millions of instances

38

Massive Black-box Instances
(typically millions of)

Applications

A Motivating Example

39

Massive Black-box Instances
(typically millions of)

Packet loss Do they affect customers?
 Should I launch diagnosis?

Applications

A Motivating Example

40

Clustered Instances
(Serving the same functionalities)

Packet loss This functionality is very likely
affected. Notify the customer

and launch diagnosis proactively.

Applications

Our Problem

41

Massive Black-box Instances
(typically millions of)

Clustered Instances
(Serving the same functionalities)

Functional Clusters

Problem: How do we find functional clusters in massive instances
with ONLY data visible to cloud vendors (with customers’ consent)?

Data visible to cloud vendors

• Two types of typical monitoring data

42

Monitoring Metrics

cpu utilization
packet received

mem usage
disk read
disk write

packet sent

...

Communication Traces

Trace: (srcIp, dstIp, srcPort, dstPort)

A Pilot Study

• 3,062 internal instances covering 397 types of functionalities

43

Communication
Similarity

Resource Utilization
Similarity

Findings

• In-cluster instances share similar
communication and resource patterns.

• Most instances only communicate with a
small number of instances (locality).

• Both data are noisy.

Huawei Cloud> 75% across-cluster instances
have nearly zero similarity.

> 50% in-cluster instances
have > 0.8 similarity.

Method

44

Problem: How do we find functional clusters in massive instances
with ONLY data visible to cloud vendors (with customers’ consent)?

Challenges:

• Massive instances (typically millions in cloud systems)

• Limited noisy monitoring data for cloud vendors

Our Solution: Prism

Method

45

Problem: How do we find functional clusters in massive instances
with ONLY data visible to cloud vendors (with customers’ consent)?

Challenges:

• Massive instances (typically millions in cloud systems)

• Limited noisy monitoring data for cloud vendors

Our Solution: Prism

Method

46

Input:
• All instances
• Communication traces

Output:
• Coarse-grained chunks

Trace-based Partitioning Metric-based Clustering

Destination Sets

Efficient Locality
Sensitive Hashing

Jaccard similarity:
𝐽 𝑥! , 𝑥" = |$!∩$"|

|$!∪$"|

Strong
Locality!

Input:
• Coarse-grained chunks
• Monitoring metrics (cpu, mem, disk, etc.)

Output:
• Functional clusters

Dynamic Time
Warping (DTW) Distance

𝜪(𝒏𝟐)

Apply independently for each
small chunk (<=50 instances)Pairwise

comparison

Evaluation

• Datasets

47

• Metrics
• Homogeneity: how precise?

• Completeness: how complete?

• V-measure: a balanced metric

• Real-world data
from Huawei Cloud

• Research Questions
• RQ1: What is the effectiveness of Prism?

• RQ2: What is the contribution of each component?

• RQ3: What is the impact of parameter settings?

• RQ4: What is the efficiency of Prism?

• Manually labeled
internal instances

Evaluation

• RQ1: Effectiveness

48

• RQ2: Ablation

Observation 1: Prism outperforms
all state-of-the-art comparative
methods.

Observation 2: Both components
contribute to the overall
performance.

Evaluation

• RQ3: Parameter Sensitivity

49

• RQ4: Efficiency

Observation 3: Prism is robust to
threshold settings for both LSH and HAC.

Observation 4: Prism can efficiently handle
massive instances in cloud systems.

Industrial Experience

• Use case 1: vulnerable deployment identification

50

Functionality 1

Functionality 2

Functionality 3

The entire functionality 1 fails! Parts of functionality 2&3 exist!

Industrial Experience

• Use case 2: latent issue discovery

51

Fragmented lost packets of massive instances

Aggregated by region Aggregated by functional clusters
(Prism applied)

Summary of② Prism

• Virtualization technologies improve resource utilization
but lead to limited observability in the cloud.

• The proposed Prism reveals functional clusters by
leveraging communication patterns and resource
patterns among instances.

• Prism is effective and efficienct, which provides
additional insights for enhanced cloud reliabiilty.

52

Our goal: Intelligent reliability management

53

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle

Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

② Prism

Improving observability across
different layers of cloud hierarchy

③ iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication

Customers submit tickets to cloud vendors for help

54

Incidents

affect

submit
tickets

locationssymptoms

time

Category: Kubernetes\container creation\cannot create
Creation Time: Product Name:2022/7/25 15:34:42 Kubernetes
Summary: Region: West USError deploying the container.

Ticket: 2022072505 Status: Open

categories

Customers submit tickets to cloud vendors for help

55

Thousands of services

Hundreds of millions of
customers

Overwhelming
tickets

affect

submit
tickets

Incidents

Customers submit tickets to cloud vendors for help

56

Thousands of services

Hundreds of millions of
customers

Overwhelming
tickets

Incidents are
Inevitable!

affect

submit
tickets

Problem: how to identify duplicate tickets?

57

• Intuition: duplicate tickets have similar semantics

57

BERT-based methods
(ICSE’21)

Word2Vec-based methods
(ASE’19)

Topic modeling-baseds methods
(ICSE’18)

[ICSE18] Lwe: Lda refined word embeddings for duplicate bug report detection
[ASE19] iFeedback: exploiting user feedback for real-time issue detection in large-scale online service systems.
[ICSE21] Automatically matching bug reports with related app reviews

The app service stopped working.

Failed accessing web app.

The web app is unavailable.

Limitations of text similarity-based solutions

Limitations of text similarity-based solutions

58

• However, duplicate tickets in cloud may have distinct semantics

58

Disk Resource
Provider

Virtual Machine
Kubernetes
Databricks

TABLE II
ALERTS CAUSED BY THE SAME INCIDENT AND THE RESULTANT TICKETS (SOME FEATURES ARE OMITTED DUE TO SPACE LIMITATION.)

Service
Tickets Alerts

Category Summary Component Title

VM VM/Scale Update t1: Virtual machine scale sets resize issue. Resource
Provider

a1 : VMStart Failures exceed 300 times.
VM/VM Start t2: Server did not start on time.

Databricks Databricks/Job Issue t3: Unable to open cluster of Databricks. Control
Plane

a2 : Databricks cluster creation fails.
Databricks/Cluster Launch t4: Unable to provision clusters.

K8S K8S/Cluster Update t5: Unable to autoscale. Resource
Scheduler

a3 : The PUT operation success rate <80%.
K8S/Cluster Update t6: Cannot upgrade node pool, stuck. a4 : CPU utilization exceeds 90%.

alert relations. We take Table II as an example to elaborate
our intuition. First, we need to know what alerts are triggered
by an incident, i.e., profiling the incident. In this example, we
link the alerts a1�a2�a3 via capturing the alert-alert relations
(i.e., they are caused by the same incident). Second, we need to
know what tickets are caused by these alerts, namely, linking
a1 � (t1, t2), a2 � (t3, t4), and a3 � (t5, t6). Finally, because
the alerts a1 ⇠ a3 are linked as an incident and t1 ⇠ t6 are
further linked to these alerts, we can aggregate t1 ⇠ t6 as the
same cluster even though they possess dissimilar semantics.

Challenges. To achieve this, iPACK should address the fol-
lowing two challenges originated from the large scale and
complicated architecture of cloud systems [5][18][24].

Challenge 1: Massive and noisy alerts. Cloud systems could
contain thousands of interdependent services. These services
are closely monitored from various aspects to capture any
unexpected behaviors. For example, there could be hundreds,
even thousands of high-severity alerts reported in Azure per
day. Some alerts are regular alerts that are reported frequently
(due to sensitive monitoring rules) and periodically (due to
periodical monitoring). These regular alerts are generally not
related to a particular cloud incident and only report usual
system runtime status such as CPU/memory usage rate (e.g.,
a4 in Table II). In contrast, indicative alerts are caused by
an actual problem of cloud systems. For example, the alerts
a1 ⇠ a3 in Table II are indicative alerts. It is challenging to
identify the indicative alerts and correctly link them among
massive and noisy alerts.

Challenge 2: High feature cardinality. High feature car-
dinality refers to a situation where a feature has a large
number of unique values. For example, the feature category
of a ticket has more than 3,000 options, and the features
component and monitor ID of alerts have more than 2,000
and 10,000 options, respectively. Using traditional one-hot
encoding [28] methods to process these features would lead
to a high-dimensional feature space, resulting in the curse
of dimensionality [29]. Additionally, linking alerts to tickets
requires the consideration of various combinations of features
between them. However, due to the high feature cardinality, the
number of possible combinations grows exponentially, making
it difficult to identify the most effective combinations that
accurately reflect the correlation between alerts and tickets.
This constitutes a significant challenge in our work.

III. METHODOLOGY

A. Overview of iPACK

The goal of iPACK is to aggregate duplicate tickets that are
caused by the same cloud incident among all tickets. Due to
the large scale and heterogeneous architecture [4][17][18] of
cloud systems, it is insufficient to solely consider the textual
similarity of tickets to achieve this goal. To address this
problem, we introduce cloud run-time information (i.e., alerts)
and formulate it as a two-stage linking problem. Intuitively,
iPACK first finds links between alerts by leveraging alert-
alert relations. These inter-linked alerts constitute a graph to
represent an incident. Then iPACK identifies the tickets that
are caused by these alerts according to ticket-alert relations.
The tickets linked to the alerts within the same graph (i.e.,
incident) are aggregated. Thus, we can aggregate the tickets
with dissimilar semantics via the bridge of alert-alert links.

As shown in Fig. 5, iPACK consists of three steps: alert
parsing, incident profiling and ticket-event correlation. In the
alert parsing step, we parse alerts as more coarse-grained
events to reduce redundant alerts. Next, in the incident pro-
filing step, we propose a graph-based incident profiling (GIP)
method to remove the regular events (i.e., parsed regular alerts)
and link correlated indicative events. Then, in the ticket-event
correlation, we propose an attentive interaction network (AIN)
to correlate a ticket to an event. Finally, if two tickets are
correlated to the events within the same event graph (i.e.,
the same incident), we aggregate the tickets as the same
cluster. The results of the ticket aggregation are presented to
the CSS (Customer Support Services) team to streamline the
ticket processing process and improve efficiency. This allows
support engineers to send out batch notifications to potentially
affected customers and provide quick guidance for service
recovery. Additionally, the results can aid on-call engineers in
conducting impact assessments, including identifying affected
services and determining the extent of customer impact caused
by the incident (e.g., number of affected customers).

B. Alert Parsing

The title of an alert is generated following an engineer-
specified template. Monitors may be triggered multiple times
during an incident causing massive redundant alerts. To reduce
the volume of alerts and avoid redundancy, we parse each alert
to its corresponding template and aggregate the alerts sharing
the same template as an event. Take a1 in Table II as an
example; multiple similar alerts can fire concurrently such as

4

diverse
symptoms!

incident

Limitations of text similarity-based solutions

59

• Reason: dependency between different services

59

Disk Resource
Provider

TABLE II
ALERTS CAUSED BY THE SAME INCIDENT AND THE RESULTANT TICKETS (SOME FEATURES ARE OMITTED DUE TO SPACE LIMITATION.)

Service
Tickets Alerts

Category Summary Component Title

VM VM/Scale Update t1: Virtual machine scale sets resize issue. Resource
Provider

a1 : VMStart Failures exceed 300 times.
VM/VM Start t2: Server did not start on time.

Databricks Databricks/Job Issue t3: Unable to open cluster of Databricks. Control
Plane

a2 : Databricks cluster creation fails.
Databricks/Cluster Launch t4: Unable to provision clusters.

K8S K8S/Cluster Update t5: Unable to autoscale. Resource
Scheduler

a3 : The PUT operation success rate <80%.
K8S/Cluster Update t6: Cannot upgrade node pool, stuck. a4 : CPU utilization exceeds 90%.

alert relations. We take Table II as an example to elaborate
our intuition. First, we need to know what alerts are triggered
by an incident, i.e., profiling the incident. In this example, we
link the alerts a1�a2�a3 via capturing the alert-alert relations
(i.e., they are caused by the same incident). Second, we need to
know what tickets are caused by these alerts, namely, linking
a1 � (t1, t2), a2 � (t3, t4), and a3 � (t5, t6). Finally, because
the alerts a1 ⇠ a3 are linked as an incident and t1 ⇠ t6 are
further linked to these alerts, we can aggregate t1 ⇠ t6 as the
same cluster even though they possess dissimilar semantics.

Challenges. To achieve this, iPACK should address the fol-
lowing two challenges originated from the large scale and
complicated architecture of cloud systems [5][18][24].

Challenge 1: Massive and noisy alerts. Cloud systems could
contain thousands of interdependent services. These services
are closely monitored from various aspects to capture any
unexpected behaviors. For example, there could be hundreds,
even thousands of high-severity alerts reported in Azure per
day. Some alerts are regular alerts that are reported frequently
(due to sensitive monitoring rules) and periodically (due to
periodical monitoring). These regular alerts are generally not
related to a particular cloud incident and only report usual
system runtime status such as CPU/memory usage rate (e.g.,
a4 in Table II). In contrast, indicative alerts are caused by
an actual problem of cloud systems. For example, the alerts
a1 ⇠ a3 in Table II are indicative alerts. It is challenging to
identify the indicative alerts and correctly link them among
massive and noisy alerts.

Challenge 2: High feature cardinality. High feature car-
dinality refers to a situation where a feature has a large
number of unique values. For example, the feature category
of a ticket has more than 3,000 options, and the features
component and monitor ID of alerts have more than 2,000
and 10,000 options, respectively. Using traditional one-hot
encoding [28] methods to process these features would lead
to a high-dimensional feature space, resulting in the curse
of dimensionality [29]. Additionally, linking alerts to tickets
requires the consideration of various combinations of features
between them. However, due to the high feature cardinality, the
number of possible combinations grows exponentially, making
it difficult to identify the most effective combinations that
accurately reflect the correlation between alerts and tickets.
This constitutes a significant challenge in our work.

III. METHODOLOGY

A. Overview of iPACK

The goal of iPACK is to aggregate duplicate tickets that are
caused by the same cloud incident among all tickets. Due to
the large scale and heterogeneous architecture [4][17][18] of
cloud systems, it is insufficient to solely consider the textual
similarity of tickets to achieve this goal. To address this
problem, we introduce cloud run-time information (i.e., alerts)
and formulate it as a two-stage linking problem. Intuitively,
iPACK first finds links between alerts by leveraging alert-
alert relations. These inter-linked alerts constitute a graph to
represent an incident. Then iPACK identifies the tickets that
are caused by these alerts according to ticket-alert relations.
The tickets linked to the alerts within the same graph (i.e.,
incident) are aggregated. Thus, we can aggregate the tickets
with dissimilar semantics via the bridge of alert-alert links.

As shown in Fig. 5, iPACK consists of three steps: alert
parsing, incident profiling and ticket-event correlation. In the
alert parsing step, we parse alerts as more coarse-grained
events to reduce redundant alerts. Next, in the incident pro-
filing step, we propose a graph-based incident profiling (GIP)
method to remove the regular events (i.e., parsed regular alerts)
and link correlated indicative events. Then, in the ticket-event
correlation, we propose an attentive interaction network (AIN)
to correlate a ticket to an event. Finally, if two tickets are
correlated to the events within the same event graph (i.e.,
the same incident), we aggregate the tickets as the same
cluster. The results of the ticket aggregation are presented to
the CSS (Customer Support Services) team to streamline the
ticket processing process and improve efficiency. This allows
support engineers to send out batch notifications to potentially
affected customers and provide quick guidance for service
recovery. Additionally, the results can aid on-call engineers in
conducting impact assessments, including identifying affected
services and determining the extent of customer impact caused
by the incident (e.g., number of affected customers).

B. Alert Parsing

The title of an alert is generated following an engineer-
specified template. Monitors may be triggered multiple times
during an incident causing massive redundant alerts. To reduce
the volume of alerts and avoid redundancy, we parse each alert
to its corresponding template and aggregate the alerts sharing
the same template as an event. Take a1 in Table II as an
example; multiple similar alerts can fire concurrently such as

4

diverse
symptoms!

Depend on

Virtual Machine
Kubernetes
Databricksincident

Our solution: two-stage linking

60

TABLE II
ALERTS CAUSED BY THE SAME INCIDENT AND THE RESULTANT TICKETS (SOME FEATURES ARE OMITTED DUE TO SPACE LIMITATION.)

Service
Tickets Alerts

Category Summary Component Title

VM VM/Scale Update t1: Virtual machine scale sets resize issue. Resource
Provider

a1 : VMStart Failures exceed 300 times.
VM/VM Start t2: Server did not start on time.

Databricks Databricks/Job Issue t3: Unable to open cluster of Databricks. Control
Plane

a2 : Databricks cluster creation fails.
Databricks/Cluster Launch t4: Unable to provision clusters.

K8S K8S/Cluster Update t5: Unable to autoscale. Resource
Scheduler

a3 : The PUT operation success rate <80%.
K8S/Cluster Update t6: Cannot upgrade node pool, stuck. a4 : CPU utilization exceeds 90%.

alert relations. We take Table II as an example to elaborate
our intuition. First, we need to know what alerts are triggered
by an incident, i.e., profiling the incident. In this example, we
link the alerts a1�a2�a3 via capturing the alert-alert relations
(i.e., they are caused by the same incident). Second, we need to
know what tickets are caused by these alerts, namely, linking
a1 � (t1, t2), a2 � (t3, t4), and a3 � (t5, t6). Finally, because
the alerts a1 ⇠ a3 are linked as an incident and t1 ⇠ t6 are
further linked to these alerts, we can aggregate t1 ⇠ t6 as the
same cluster even though they possess dissimilar semantics.

Challenges. To achieve this, iPACK should address the fol-
lowing two challenges originated from the large scale and
complicated architecture of cloud systems [5][18][24].

Challenge 1: Massive and noisy alerts. Cloud systems could
contain thousands of interdependent services. These services
are closely monitored from various aspects to capture any
unexpected behaviors. For example, there could be hundreds,
even thousands of high-severity alerts reported in Azure per
day. Some alerts are regular alerts that are reported frequently
(due to sensitive monitoring rules) and periodically (due to
periodical monitoring). These regular alerts are generally not
related to a particular cloud incident and only report usual
system runtime status such as CPU/memory usage rate (e.g.,
a4 in Table II). In contrast, indicative alerts are caused by
an actual problem of cloud systems. For example, the alerts
a1 ⇠ a3 in Table II are indicative alerts. It is challenging to
identify the indicative alerts and correctly link them among
massive and noisy alerts.

Challenge 2: High feature cardinality. High feature car-
dinality refers to a situation where a feature has a large
number of unique values. For example, the feature category
of a ticket has more than 3,000 options, and the features
component and monitor ID of alerts have more than 2,000
and 10,000 options, respectively. Using traditional one-hot
encoding [28] methods to process these features would lead
to a high-dimensional feature space, resulting in the curse
of dimensionality [29]. Additionally, linking alerts to tickets
requires the consideration of various combinations of features
between them. However, due to the high feature cardinality, the
number of possible combinations grows exponentially, making
it difficult to identify the most effective combinations that
accurately reflect the correlation between alerts and tickets.
This constitutes a significant challenge in our work.

III. METHODOLOGY

A. Overview of iPACK

The goal of iPACK is to aggregate duplicate tickets that are
caused by the same cloud incident among all tickets. Due to
the large scale and heterogeneous architecture [4][17][18] of
cloud systems, it is insufficient to solely consider the textual
similarity of tickets to achieve this goal. To address this
problem, we introduce cloud run-time information (i.e., alerts)
and formulate it as a two-stage linking problem. Intuitively,
iPACK first finds links between alerts by leveraging alert-
alert relations. These inter-linked alerts constitute a graph to
represent an incident. Then iPACK identifies the tickets that
are caused by these alerts according to ticket-alert relations.
The tickets linked to the alerts within the same graph (i.e.,
incident) are aggregated. Thus, we can aggregate the tickets
with dissimilar semantics via the bridge of alert-alert links.

As shown in Fig. 5, iPACK consists of three steps: alert
parsing, incident profiling and ticket-event correlation. In the
alert parsing step, we parse alerts as more coarse-grained
events to reduce redundant alerts. Next, in the incident pro-
filing step, we propose a graph-based incident profiling (GIP)
method to remove the regular events (i.e., parsed regular alerts)
and link correlated indicative events. Then, in the ticket-event
correlation, we propose an attentive interaction network (AIN)
to correlate a ticket to an event. Finally, if two tickets are
correlated to the events within the same event graph (i.e.,
the same incident), we aggregate the tickets as the same
cluster. The results of the ticket aggregation are presented to
the CSS (Customer Support Services) team to streamline the
ticket processing process and improve efficiency. This allows
support engineers to send out batch notifications to potentially
affected customers and provide quick guidance for service
recovery. Additionally, the results can aid on-call engineers in
conducting impact assessments, including identifying affected
services and determining the extent of customer impact caused
by the incident (e.g., number of affected customers).

B. Alert Parsing

The title of an alert is generated following an engineer-
specified template. Monitors may be triggered multiple times
during an incident causing massive redundant alerts. To reduce
the volume of alerts and avoid redundancy, we parse each alert
to its corresponding template and aggregate the alerts sharing
the same template as an event. Take a1 in Table II as an
example; multiple similar alerts can fire concurrently such as

4

• Leverage cloud runtime information: Alerts

alert
⼁

tickets

𝑎% 𝑎& 𝑎'

𝑡% 𝑡& 𝑡' 𝑡(𝑡) 𝑡*

alert 一 alert①

②

Challenge 1

Challenge 2

Alerts are massive and noisy

High feature cardinality

𝑎"

𝑎# 𝑎$ 𝑎%
• Regular alerts:

• Indicative alerts:

• Tickets: free text, 3000+ categories, etc

• Alerts : free text, 2000+ components, 10000+ IDs, etc

Large
Combinations!

Overall Framework of iPACK

61

Overall Framework of iPACK

62

① Reduce redundant alerts

Support Team

Overall Framework of iPACK

63

① Reduce redundant alerts

VMStart Failures exceed 100 times
VMStart Failures exceed 150 times

VMStart Failures exceed 200 times
VMStart Failures exceed 250 times

VMStart Failures exceed <*> timesEvents

Drain1

 (log parser)

1 Drain: An Online Log Parsing Approach with Fixed Depth Tree

Overall Framework of iPACK

64

① Reduce redundant alerts

② Link alert - alert

Overall Framework of iPACK

65

① Reduce redundant alerts

② Link alert - alert

Static Event Relation
Learning
(offline)

pairwise PMI*

Historical
alerts

Dynamic Event
Graph Construction

(online)

PMI

Complete
event graph

PMI

new alerts

Graph-based Incident Profiling (GIP)

How historical events correlate
with each other?

Prune events that correlate
with most of other events.

*PMI: Pointwise mutual information

Overall Framework of iPACK

66

① Reduce redundant alerts

② Link alert - alert

③ Link ticket - alert

Overall Framework of iPACK

67

① Reduce redundant alerts

② Link alert - alert

③ Link ticket - alert feature
combinations

OneHot:
1 0 0 0 0 ... 0 1 0 0 ... 0 0 0 0 0 1 ...

Decomposition:

feature1
(100)

feature2
(1000)

feature1+2
(100 * 1000)

embedding1 embedding2 interaction

AIN: Attentive Interaction Network

Overall Framework of iPACK

68

① Reduce redundant alerts

② Link alert - alert

③ Link ticket - alert

Evaluation

• Dataset

•Metrics
• How well a method can cluster duplicate tickets together?

• Rand index-based precision, recall and F1

69

Shape: prediction
Number: ground truth

Three regions from Azure

to analyze. We can reduce the great volume of ticket-event
pairs by filtering with region and time. The tickets and alerts
in the same time window and region constitute a chunk.

In each chunk, after parsing alerts as events, GIP is applied
to link events as event graphs (i.e., incidents). Then, we
apply AIN to link each ticket to one of the events. For
each ticket, AIN recommends a list of events ranked by
the associated correlation probabilities. Note that we exclude
the tickets whose largest probability in the ranked list is
smaller than a confidence threshold ✓ = 0.8, because they are
more likely caused by a customer-side issue (e.g., incorrect
configurations). Next, tickets that are correlated to the events
within the same event graph are aggregated as a cluster.
Based on the aggregation results, on the one hand, on-call
engineers can conduct impact assessment (i.e., how many
customers are impacted) for an incident; on the other hand,
CSS team can avoid duplicate manual inspection and make
batched communication to customers. (e.g., provide the latest
mitigation progress of the internal incident).

IV. EXPERIMENTS

We answer the following research questions (RQs) to eval-
uate the performance of iPACK:
• RQ1: How effective is iPACK in aggregating duplicate

tickets caused by the same incident?
• RQ2: How effective is AIN in correlating a ticket to the

responsible event?
• RQ3: How does graph-based incident profiling (GIP) impact

the effectiveness of iPACK?

A. Experimental Setting
1) Dataset: We collect the datasets presented in Table II

from the production environment of CloudX from 2020/01/01
to 2022/06/01. To evaluate the generality of iPACK, we
collect three datasets from different physically isolated regions,
which contain different services serving different numbers of
customers. The # Tickets/Incident varies because some regions
serve more heavy workloads or more customers. Different
regions may own the same services so the # Service in the
“Total” column is smaller than the sum of # Service of all
three regions. We use the data before 2022/01/01 to compute
PMI values (Section III-C) and train AIN (Section III-D). The
data after the date is used for evaluation.

2) Comparative solutions: We select the following state-
of-the-art approaches as our comparative solutions:

Categorization. We aggregate tickets by referring to their
feature category (Section II-A), i.e., if two tickets share the
same category, then they are aggregated into the same cluster.

iFeedback. iFeedback is proposed and adopted by WeChat
in their production environment [10], which targets aggre-
gating similar user feedback by identifying frequent word
combinations (and groups of combinations). For example, if
the word combination of “pay” and “fail” bursts, an issue may
happen to the payment feature of the product.

LWE. LWE [13] is a method integrating Latent Dirichlet
Allocation (LDA) and word embeddings to leverage the advan-
tages of both techniques. LWE first utilizes LDA to represent

TABLE II
STATISTICS OF DATASETS

Dataset A B C Total

Services 49 57 51 81
Incidents 462 579 642 1,575

Tickets/Incident 23⇠275 36⇠292 25⇠95 23⇠292
Alerts 398,735 409,590 445,089 1,253,414

all tickets and roughly identify candidates of duplicated tickets.
Then, the candidates are represented using word embeddings
to conduct more fine-grained clustering.

BERT. BERT [39] is a popular pretraining model in natural
language processing and has shown its power in capturing
the semantics of user feedback in recent studies [14][42][43].
Because these studies do not directly aggregate user feedback,
in this work, we adopt BERT to first represent the tickets
as dense vectors, based on which we use agglomerative
hierarchical clustering [44] to aggregate tickets.

LinkCM. LinkCM [45] is proposed to facilitate the triage of
a customer-reported alert by matching it with an alert of cloud
systems. LinkCM learns the correlation by purely fusing the
titles between the report and alert via a decomposable attention
mechanism and transfer learning. In our scenario, if two tickets
are correlated to the same event by LinkCM, they are grouped
together. LinkCM can also link a ticket to an event as AIN
does, so we combine GIP with LinkCM (i.e., LinkCM w/

GIP) as a strong baseline for comparison.
3) Implementation Details: We implement iPACK with

⇠ 3000 lines of Python code and pack it as a serverless func-
tion [17] for easy use in CloudX. We set AIN’s default hyper-
parameters k=128 and r=256. We periodically train AIN until
its training loss stops decreasing for ten continuous epochs, i.e,
early stopping. In addition, since the comparative solutions are
not open-sourced, we follow their papers and leverage mature
libraries for implementation to ensure correctness, e.g., we use
AllenNLP [46] for LinkCM, scikit-learn [47] and gensim [48]
for LWE, HuggingFace [49] for BERT.

B. Evaluation Metrics
Metrics for evaluating ticket aggregation (RQ1 and

RQ3). Given a sequence of tickets, iPACK marks the tick-
ets caused by the same incident with a unique cluster ID,
e.g., “incident-1278”. Then we mark the remaining unrelated
tickets (not caused by a cloud-side issue) using the cluster
ID “non-incident”. To evaluate the aggregation accuracy, we
follow the widely-used pair-wise comparison manner of Rand
Index [50][51][52] in clustering. Specifically, we conduct
pair-wise combinations of all tickets between the ground-
truth cluster ID and predicted cluster ID. Among these pairs,
we can count the number of the following pairs. TP (true
positive): two duplicate pairs are correctly predicted as the
same cluster label. TN (true negative): two non-duplicate pairs
are correctly predicted as different cluster labels. FP (false
positive): two non-duplicate pairs are wrongly predicted as
the same cluster label. FN (false negative): two duplicate
pairs are wrongly predicted as different cluster labels. Based
on the results, we use the following metrics to evaluate the

7

Evaluation

• Overall effectiveness of iPACK

70

TABLE III
EFFECTIVENESS OF AGGREGATING DUPLICATE TICKETS CAUSED BY THE SAME CLOUD INCIDENT.

Methods Dataset A Dataset B Dataset C
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Categorization 0.930 0.205 0.336 0.943 0.373 0.535 0.925 0.207 0.338
iFeedback 0.901 0.590 0.713 0.876 0.473 0.614 0.886 0.626 0.733

LWE 0.862 0.453 0.594 0.824 0.515 0.634 0.861 0.672 0.755
BERT 0.884 0.587 0.705 0.854 0.710 0.775 0.843 0.629 0.720

LinkCM 0.931 0.507 0.657 0.892 0.538 0.671 0.901 0.628 0.740

LinkCM w/ GIP 0.900 0.685 0.778 0.886 0.756 0.816 0.899 0.809 0.852
iPACK 0.912 0.960 0.935 0.882 0.861 0.871 0.899 0.888 0.894

aggregation results: precision = TP
TP+FP , recall = TP

TP+FN ,
and F1 score = 2 · precision · recall

precision + recall .
Metrics for evaluating ticket-event correlation (RQ2).

Correlating tickets with an event (i.e., AIN in Section III-D)
is a major component of iPACK, which recommends a list
of responsible events for a given ticket ranked by the associ-
ated probability (AIN’s output) in descending order. We use
Acc@K (accuracy@K) to evaluate the accuracy of this step.
For each ticket, if the ground-truth event appears within the
top-K position of the list, we regard the ticket as a hit. The
Acc@K is computed by Acc@K = # of hit tickets

of all tickets . We use
Acc@1, Acc@2 and Acc@3 and their average for evaluation.

C. Experimental Details

1) RQ1 The Effectiveness of iPACK: In this RQ, we aim
to evaluate how accurately iPACK can aggregate the duplicate
tickets by comparing it with all comparative solutions (Sec-
tion IV-A2) on datasets A, B and C in terms of precision,
recall and F1 score. In particular, precision and recall denote
how precise and comprehensive the clustering results are,
respectively; and F1 score is the balance of them measuring
an approach’s overall performance. The results are shown in
Table III. The values for the best F1 score are marked in
boldface, and the second-best ones are underlined.

We can make the following observations: (1) iPACK
achieves the best F1 score across all three datasets, i.e.,
0.935, 0.871, and 0.894, outperforming the second-best meth-
ods by 31.2%, 12.4% and 18.4% in dataset A, B and C,
respectively. (2) Categorization can achieve the highest pre-
cision (0.930⇠0.943) although its recall is considerably low
(0.205⇠0.373). The reason is that the ticket feature category
is defined in a fine-grained manner by support engineers in
CloudX. Therefore, it tends to aggressively split the complete
set of duplicate tickets into many small groups, leading to a
low recall score. However, tickets in each such small group
share precisely similar semantics as evidenced by the high
precision. (3) iFeedback, LWE, BERT show lower precision
but higher recall than Categorization. The reason is that these
methods can capture more coarse-grained semantic similar-
ity between tickets. Consequently, they can generate larger
clusters (higher recall) but introduce additional noises (lower
precision) (4) LinkCM can achieve a higher precision among
all baseline methods except Categorization. Moreover, after

combining with GIP, LinkCM w/ GIP can increase its recall
because more tickets are aggregated together through event-
event linking. However, it still under-performs iPACK because
LinkCM cannot correlate a ticket to an event as accurately as
iPACK does (will show in RQ2). For example, LinkCM might
link a group of similar tickets to an incorrect event, which
causes high precision but low recall.

Answer to RQ1. iPACK achieves the best F1 score among
all state-of-the-art baselines across three datasets collected
from different regions. iPACK slightly sacrifices precision
compared with the Categorization method but achieves the
highest F1 score 0.871⇠0.935, outperforming state-of-the-
art methods by 12.4%⇠31.2%.

2) RQ2 The Effectiveness of ticket-event correlation: In
this RQ, we solely evaluate the accuracy of the ticket-event
correlation step of iPACK (i.e., the proposed AIN). We com-
pare the effectiveness of AIN with LinkCM [45] and other
popular machine learning algorithms, i.e., LR (logistic regres-
sion), SVM (support vector machine), RF (random forest),
LightGBM (light gradient boosting machine). Besides, we
study how much the proposed attentive feature interaction
component contributes to AIN.

Considering LR, SVM, RF and LightGBM take numeric
input, we represent all categorical features as one-hot vectors,
which are then concatenated with the representation of the
textual features extracted via BERT. In this way, we guarantee
that the comparison with AIN is fair by using the same input
features. In addition, we develop a variant of AIN by removing
its attentive feature interaction component, (i.e., “AIN w/o
atten.” in Table IV); instead, we directly concatenate all feature
embeddings as a single feature vector as the input for the
prediction layer in Fig. 6. For clarity, this experiment is
conducted using all pairs of ticket-event data from datasets A,
B and C. We compare AIN with the baselines and its variant
in terms of Acc@1, Acc@2, Acc@3 and the average of them.

We can make the following observations in the results
shown in Table IV: (1) AIN outperforms all baseline models
in terms of all four metrics. Especially, AIN achieves the
best Acc@1, i.e., 0.817, which indicates that AIN can link
the ticket to the correct event and potentially facilitate more
effective ticket aggregation. (2) After introducing the attentive
feature interaction component, AIN is improved by 21.4%
and 17.8% in terms of Acc@1 and the average accuracy,

8

Observation 1: SOTA semantic-based baselines achieve high precision but low recall

Evaluation

• Overall effectiveness of iPACK

71

TABLE III
EFFECTIVENESS OF AGGREGATING DUPLICATE TICKETS CAUSED BY THE SAME CLOUD INCIDENT.

Methods Dataset A Dataset B Dataset C
Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

Categorization 0.930 0.205 0.336 0.943 0.373 0.535 0.925 0.207 0.338
iFeedback 0.901 0.590 0.713 0.876 0.473 0.614 0.886 0.626 0.733

LWE 0.862 0.453 0.594 0.824 0.515 0.634 0.861 0.672 0.755
BERT 0.884 0.587 0.705 0.854 0.710 0.775 0.843 0.629 0.720

LinkCM 0.931 0.507 0.657 0.892 0.538 0.671 0.901 0.628 0.740

LinkCM w/ GIP 0.900 0.685 0.778 0.886 0.756 0.816 0.899 0.809 0.852
iPACK 0.912 0.960 0.935 0.882 0.861 0.871 0.899 0.888 0.894

aggregation results: precision = TP
TP+FP , recall = TP

TP+FN ,
and F1 score = 2 · precision · recall

precision + recall .
Metrics for evaluating ticket-event correlation (RQ2).

Correlating tickets with an event (i.e., AIN in Section III-D)
is a major component of iPACK, which recommends a list
of responsible events for a given ticket ranked by the associ-
ated probability (AIN’s output) in descending order. We use
Acc@K (accuracy@K) to evaluate the accuracy of this step.
For each ticket, if the ground-truth event appears within the
top-K position of the list, we regard the ticket as a hit. The
Acc@K is computed by Acc@K = # of hit tickets

of all tickets . We use
Acc@1, Acc@2 and Acc@3 and their average for evaluation.

C. Experimental Details

1) RQ1 The Effectiveness of iPACK: In this RQ, we aim
to evaluate how accurately iPACK can aggregate the duplicate
tickets by comparing it with all comparative solutions (Sec-
tion IV-A2) on datasets A, B and C in terms of precision,
recall and F1 score. In particular, precision and recall denote
how precise and comprehensive the clustering results are,
respectively; and F1 score is the balance of them measuring
an approach’s overall performance. The results are shown in
Table III. The values for the best F1 score are marked in
boldface, and the second-best ones are underlined.

We can make the following observations: (1) iPACK
achieves the best F1 score across all three datasets, i.e.,
0.935, 0.871, and 0.894, outperforming the second-best meth-
ods by 31.2%, 12.4% and 18.4% in dataset A, B and C,
respectively. (2) Categorization can achieve the highest pre-
cision (0.930⇠0.943) although its recall is considerably low
(0.205⇠0.373). The reason is that the ticket feature category
is defined in a fine-grained manner by support engineers in
CloudX. Therefore, it tends to aggressively split the complete
set of duplicate tickets into many small groups, leading to a
low recall score. However, tickets in each such small group
share precisely similar semantics as evidenced by the high
precision. (3) iFeedback, LWE, BERT show lower precision
but higher recall than Categorization. The reason is that these
methods can capture more coarse-grained semantic similar-
ity between tickets. Consequently, they can generate larger
clusters (higher recall) but introduce additional noises (lower
precision) (4) LinkCM can achieve a higher precision among
all baseline methods except Categorization. Moreover, after

combining with GIP, LinkCM w/ GIP can increase its recall
because more tickets are aggregated together through event-
event linking. However, it still under-performs iPACK because
LinkCM cannot correlate a ticket to an event as accurately as
iPACK does (will show in RQ2). For example, LinkCM might
link a group of similar tickets to an incorrect event, which
causes high precision but low recall.

Answer to RQ1. iPACK achieves the best F1 score among
all state-of-the-art baselines across three datasets collected
from different regions. iPACK slightly sacrifices precision
compared with the Categorization method but achieves the
highest F1 score 0.871⇠0.935, outperforming state-of-the-
art methods by 12.4%⇠31.2%.

2) RQ2 The Effectiveness of ticket-event correlation: In
this RQ, we solely evaluate the accuracy of the ticket-event
correlation step of iPACK (i.e., the proposed AIN). We com-
pare the effectiveness of AIN with LinkCM [45] and other
popular machine learning algorithms, i.e., LR (logistic regres-
sion), SVM (support vector machine), RF (random forest),
LightGBM (light gradient boosting machine). Besides, we
study how much the proposed attentive feature interaction
component contributes to AIN.

Considering LR, SVM, RF and LightGBM take numeric
input, we represent all categorical features as one-hot vectors,
which are then concatenated with the representation of the
textual features extracted via BERT. In this way, we guarantee
that the comparison with AIN is fair by using the same input
features. In addition, we develop a variant of AIN by removing
its attentive feature interaction component, (i.e., “AIN w/o
atten.” in Table IV); instead, we directly concatenate all feature
embeddings as a single feature vector as the input for the
prediction layer in Fig. 6. For clarity, this experiment is
conducted using all pairs of ticket-event data from datasets A,
B and C. We compare AIN with the baselines and its variant
in terms of Acc@1, Acc@2, Acc@3 and the average of them.

We can make the following observations in the results
shown in Table IV: (1) AIN outperforms all baseline models
in terms of all four metrics. Especially, AIN achieves the
best Acc@1, i.e., 0.817, which indicates that AIN can link
the ticket to the correct event and potentially facilitate more
effective ticket aggregation. (2) After introducing the attentive
feature interaction component, AIN is improved by 21.4%
and 17.8% in terms of Acc@1 and the average accuracy,

8

Observation 2: iPACK slightly sacrifices precision and achieves best overall performance

Observation 1: SOTA semantic-based baselines achieve high precision but low recall

Summary of③ iPACK

• Duplicate ticket in cloud systems can poccess semantically different
content caused by inter-dependent services, making existing work
ineffective.

• We propose iPACK to introduce alerts to facilitate grouping duplicate
tickets.
• Incident Profiling: alert – alert linking
• Attentive Intraction Network: alert – ticket linking

• iPACK outperforms existing state-of-the-art solutions by 12.4% ~
31.2% across three industial datasets collected from Azure.

72

Thesis Conclusion

73

Thesis Contribution

① Sealog
Scalable and adaptive log-based
anomaly detection

② Prism

Improving observability across
different layers of cloud hierarchy

③ iPACK

Correlating tickets and alerts for more
comprehensive ticket deduplication

Infrastructure Layer

Users

MetricLog Trace

Alert

The success rate of service
X has dropped below 95%.

Alert Lifecycle
Triage Mitigation Resolution Postmortem

Real-time
Detection

Support
Request

Ticket

Platform Layer

Software Layer

Cloud Hierarchy

My application
responds slowly.

Monitoring data

Reliability Management

① Large Scale

② Complicated
Dependencies

③ Fast Evolving

④ Limited
Observations

OCE

Intelligent
solutions

Automated
Efficient
Scalable
Evolving

Future work: Towards Autonomous Cloud Systems

74

Where/What to Monitor How to Monitor How to Analyse How to Decide

High-quality data Intelligent solutions

Goal: comprehensively and precisely capture
system runtime information

Postmortem Analysis

KPI Design (aggregation) Monitor Recommendation

Monitor Rules Generation

Monitor Optimization

LLM-powered Operation Agent

Domain knowledge adaption Prompt OptimizationTool Learning Self-debugging

Full Link Topology

Goal: Unify and leverage cloud knowledge to
automate various Ops tasks.

Human
Feedback

Interactive ChatOps

Cloud Q&A
(internal & external)

Interpretable
Multi-modal Analysis

Automatic Mitigation

Root Cause Analysis

Impact Scoping

Unified abstraction

Publication list

• Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Jieming Zhu and Michael R. Lyu. “LILAC: Log Parsing using LLMs
with Adaptive Parsing Cache.” In Proceedings of the 32rd International Conference on Software Engineering (FSE 2024).

• Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Jieming Zhu and Michael R. Lyu. “A Large-scale Evaluation for Log
Parsing Techniques: How Far are We?.” In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2024).

• Junjie Huang, Jinyang Liu, Zhuangbin Chen, Zhihan Jiang, Yichen Li, Jiazhen Gu, Cong Feng, Zengyin Yang, Yongqiang Yang, and Michael R. Lyu. “FaultProfIT:
Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems.” In Proceedings of the 46th International Conference on Software Engineering,
Software Engineering in Practice track (ICSE-SEIP 2024).

• Jinxi Kuang, Jinyang Liu, Junjie Huang, Renyi Zhong, Jiazhen Gu, Lan Yu, Rui Tan, Zengyin Yang, Michael R. Lyu. “Knowledge-aware Alert Aggregation in Large-
scale Cloud Systems: a Hybrid Approach.” In Proceedings of the 46th International Conference on Software Engineering, Software Engineering in Practice track
(ICSE-SEIP 2024).

• Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin Chen, Cong Feng, Minzhi Yan, Michael R Lyu. “Scalable and Adaptive Log-based
Anomaly Detection with Expert in the Loop.” (under review, ICSE 2025).

• Jinyang Liu, Shilin He, Zhuangbin Chen, Liqun Li, Yu Kang, Xu Zhang, Pinjia He, Hongyu Zhang, Qingwei Lin, Zhangwei Xu, Saravan Rajmohan, Dongmei Zhang,
Michael Lyu. “Incident-aware Duplicate Ticket Aggregation for Cloud Systems.” In Proceedings of the 45h International Conference on Software and
Engineering (ICSE 2023).

• Jinyang Liu, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Cong Feng, Zengyin Yang, Michael R. Lyu. “Practical Anomaly Detection over Multivariate Monitoring
Metrics for Online Services.” In Proceedings of the 34th IEEE International Symposium on Software Reliability Engineering (ISSRE 2023).

• Jinyang Liu*, Zhihan Jiang*, Jiazhen Gu, Junjie Huang, Zhuangbin Chen, Cong Feng, Zengyin Yang, Yongqiang Yang, Michael R. Lyu. “Prism: Revealing Hidden
Functional Clusters from Massive Instances in Cloud Systems.” In Proceedings of the 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2023).

75

Publication list

• Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, Michael R. Lyu. “Loghub: A Large Collection of System Log Datasets for AI-driven Log Analytics.” In Proceedings of
the 34th IEEE International Symposium on Software Reliability Engineering (ISSRE 2023).

• Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Michael R. Lyu. “Adaptive Performance Anomaly Detection for Online Service Systems via
Pattern Sketching.” In Proceedings of the 44th International Conference on Software and Engineering (ICSE 2022).

• Yichen Li, Xu Zhang, Shilin He, Zhuangbin Chen, Yu Kang, Jinyang Liu, Liqun Li, Yingnong Dang, Feng Gao, Zhangwei Xu, Saravan Rajmohan, Qingwei Lin,
Dongmei Zhang, Michael R. Lyu. “An Intelligent Framework for Timely, Accurate, and Comprehensive Cloud Incident Detection.” ACM SIGOPS Operating
Systems Review, 2022.

• Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xuemin Wen, et al. Graph-based Incident Aggregation for Large-Scale Online Service Systems.” In
Proceedings of The 36th IEEE/ACM International Conference on Automated Software Engineering (ASE 2021).

• Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R. Lyu. “Logzip: Extracting Hidden Structures via Iterative Clustering for Log
Compression.” In Proceedings of the 34th IEEE/ACM International Conference on Au- tomated Software Engineering (ASE 2019).

• Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, Michael R. Lyu. Tools and Benchmarks for Auto- mated Log Parsing.” In Proceedings of the
41st International Conference on Software Engineering, Software Engineering in Practice track (ICSE-SEIP 2019).

76

Thank you!
Q & A

77

Backbone analyzer of Sealog

• Utilizing confirmed cases as feedback

78

!!
!"
!#

NPT

generating core.89
FATAL data error interrupt.
machine check register: 0x00

Suspicious window

Decision:
anomaly/normal

Explanation: The
decision is made
by considering... LLM

Detection Agent

Scoring

...
ICL

Confirm

Log window:

Groundtruth:
anomaly/normal
Confirmed case

Backbone AnalyzerHuman Feedback

Fault library

Log window

(INFO, open, =)
Grouping
signature (Debug, load, #)

... ...Leaf node

Streaming logs

Log Cluster 1

Log Cluster 2
...

match

log! 	: ready to load data
to node b10a8db.

No Match

Add
Template

Mark
New Cluster	"!

①Mark templates with labels

Log n-gram tokensAnomaly / Normal

② Continuously update statistics

③ Serve as ICL demonstrations

Demonstration
examples

Instruction

Query logs

Prompt Formulation

Fault library

Evaluation

• Ablation study of Sealog

79

Industry deployment

• Deployment in Huawei Cloud

80

Analysis case of Sealog

Please determine if the given log messages indicate a system run-time anomaly or not. In the following, some similar examples are provided for
reference, you should compare the given log messages with them and make your own decision.

Query:
"User login attempt took longer than expected, <*> seconds."

Examples:
Input: "Unable to reach the authentication server. Timeout occurred after <*> seconds." Label: Anomaly

The output MUST be in standard JSON format and MUST consist of TWO keys: 'prediction' and 'analysis' .
"Prediction": <you should choose one of from 'normal' or 'anomaly' according to your analysis, do not use other words.>
"Analysis": <your analysis for the given log messages based on its semantics>
```

Output of backbone analyzer:
```
{
"Prediction": "anomaly",
"Analysis": "The log message 'User login attempt took longer than expected, <*> seconds.' indicates that the login process is experiencing delays

beyond the expected duration. This is similar to the example where a timeout occurs after a certain number of seconds, which is labeled as an
anomaly. Therefore, the prolonged login attempt time suggests a potential issue in the system's performance."
}
```

81



Cloud Infrastructure

82

Virtualization reduces cloud observability for 
cloud vendors during maintenance tasks.



83

• Intuition: first identify impacted services, then associated tickets

83

Disk Resource 
Provider

TABLE II
ALERTS CAUSED BY THE SAME INCIDENT AND THE RESULTANT TICKETS (SOME FEATURES ARE OMITTED DUE TO SPACE LIMITATION.)

Service
Tickets Alerts

Category Summary Component Title

VM VM/Scale Update t1: Virtual machine scale sets resize issue. Resource
Provider

a1 : VMStart Failures exceed 300 times.
VM/VM Start t2: Server did not start on time.

Databricks Databricks/Job Issue t3: Unable to open cluster of Databricks. Control
Plane

a2 : Databricks cluster creation fails.
Databricks/Cluster Launch t4: Unable to provision clusters.

K8S K8S/Cluster Update t5: Unable to autoscale. Resource
Scheduler

a3 : The PUT operation success rate <80%.
K8S/Cluster Update t6: Cannot upgrade node pool, stuck. a4 : CPU utilization exceeds 90%.

alert relations. We take Table II as an example to elaborate
our intuition. First, we need to know what alerts are triggered
by an incident, i.e., profiling the incident. In this example, we
link the alerts a1�a2�a3 via capturing the alert-alert relations
(i.e., they are caused by the same incident). Second, we need to
know what tickets are caused by these alerts, namely, linking
a1 � (t1, t2), a2 � (t3, t4), and a3 � (t5, t6). Finally, because
the alerts a1 ⇠ a3 are linked as an incident and t1 ⇠ t6 are
further linked to these alerts, we can aggregate t1 ⇠ t6 as the
same cluster even though they possess dissimilar semantics.

Challenges. To achieve this, iPACK should address the fol-
lowing two challenges originated from the large scale and
complicated architecture of cloud systems [5][18][24].

Challenge 1: Massive and noisy alerts. Cloud systems could
contain thousands of interdependent services. These services
are closely monitored from various aspects to capture any
unexpected behaviors. For example, there could be hundreds,
even thousands of high-severity alerts reported in Azure per
day. Some alerts are regular alerts that are reported frequently
(due to sensitive monitoring rules) and periodically (due to
periodical monitoring). These regular alerts are generally not
related to a particular cloud incident and only report usual
system runtime status such as CPU/memory usage rate (e.g.,
a4 in Table II). In contrast, indicative alerts are caused by
an actual problem of cloud systems. For example, the alerts
a1 ⇠ a3 in Table II are indicative alerts. It is challenging to
identify the indicative alerts and correctly link them among
massive and noisy alerts.

Challenge 2: High feature cardinality. High feature car-
dinality refers to a situation where a feature has a large
number of unique values. For example, the feature category
of a ticket has more than 3,000 options, and the features
component and monitor ID of alerts have more than 2,000
and 10,000 options, respectively. Using traditional one-hot
encoding [28] methods to process these features would lead
to a high-dimensional feature space, resulting in the curse
of dimensionality [29]. Additionally, linking alerts to tickets
requires the consideration of various combinations of features
between them. However, due to the high feature cardinality, the
number of possible combinations grows exponentially, making
it difficult to identify the most effective combinations that
accurately reflect the correlation between alerts and tickets.
This constitutes a significant challenge in our work.

III. METHODOLOGY

A. Overview of iPACK

The goal of iPACK is to aggregate duplicate tickets that are
caused by the same cloud incident among all tickets. Due to
the large scale and heterogeneous architecture [4][17][18] of
cloud systems, it is insufficient to solely consider the textual
similarity of tickets to achieve this goal. To address this
problem, we introduce cloud run-time information (i.e., alerts)
and formulate it as a two-stage linking problem. Intuitively,
iPACK first finds links between alerts by leveraging alert-
alert relations. These inter-linked alerts constitute a graph to
represent an incident. Then iPACK identifies the tickets that
are caused by these alerts according to ticket-alert relations.
The tickets linked to the alerts within the same graph (i.e.,
incident) are aggregated. Thus, we can aggregate the tickets
with dissimilar semantics via the bridge of alert-alert links.

As shown in Fig. 5, iPACK consists of three steps: alert
parsing, incident profiling and ticket-event correlation. In the
alert parsing step, we parse alerts as more coarse-grained
events to reduce redundant alerts. Next, in the incident pro-
filing step, we propose a graph-based incident profiling (GIP)
method to remove the regular events (i.e., parsed regular alerts)
and link correlated indicative events. Then, in the ticket-event
correlation, we propose an attentive interaction network (AIN)
to correlate a ticket to an event. Finally, if two tickets are
correlated to the events within the same event graph (i.e.,
the same incident), we aggregate the tickets as the same
cluster. The results of the ticket aggregation are presented to
the CSS (Customer Support Services) team to streamline the
ticket processing process and improve efficiency. This allows
support engineers to send out batch notifications to potentially
affected customers and provide quick guidance for service
recovery. Additionally, the results can aid on-call engineers in
conducting impact assessments, including identifying affected
services and determining the extent of customer impact caused
by the incident (e.g., number of affected customers).

B. Alert Parsing

The title of an alert is generated following an engineer-
specified template. Monitors may be triggered multiple times
during an incident causing massive redundant alerts. To reduce
the volume of alerts and avoid redundancy, we parse each alert
to its corresponding template and aggregate the alerts sharing
the same template as an event. Take a1 in Table II as an
example; multiple similar alerts can fire concurrently such as

4

① ②
service
⼁

service

service
⼁

tickets

Virtual Machine
Kubernetes
Databricks

Depend on

incident

Our solution: two-stage linking



Our solution: two-stage linking

84

• How to know what services are affected by an incident?

Title:
Creation Time: Region:
Owning Service:

West US2022/7/25  12:14:26
Kubernetes

Alert: 21456282

Monitor ID:
Severity: Medium

Owning Component: Kubernetes\Scheduler

Status: Active

Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.

Alert time locations
68ba52c9f

Severityissue

If [latency] of [API] > [threshold]

Monitoring rules

① ②
service
⼁

service

service
⼁

tickets

① ②
alert
⼁

alert

alert
⼁

ticketsincident incident



Methodology

• Alert Parsing (reduce redundancy)

85

• Incident Profiling (reduce regular events & link indicative events)

VMStart Failures exceed 100 times
VMStart Failures exceed 150 times

VMStart Failures exceed 200 times
VMStart Failures exceed 250 times

VMStart Failures exceed <*> timesRedundant
Alert

Events

Drain1

 (log parser)

Static Event Relation 
Learning
(offline)

pairwise PMI2

Historical
incidents

2 PMI: Pointwise mutual information

Higher PMI

1 Drain: An Online Log Parsing Approach with Fixed Depth Tree 

More co-occurrences

More likely
caused by the same 

incident

Dynamic Event 
Graph Construction

(online)

PMI

Complete
event graph

PMI

Regular 
events

Indicative 
events

PMIs

PMIs

co-occur with
few 

other events

co-occur with
many 

other eventsnew incident



Methodology

• Ticket-Event Correlation (link tickets to events)

86

Category: Kubernetes\container creation\cannot create
Creation Time: Product Name:2022/7/25  15:34:42 Kubernetes
Summary: Region: West USError deploying the container.

Ticket: 2022072505

Title:
Creation Time: Region:
Owning Service:

West US2022/7/25  12:14:26
Kubernetes

Alert: 21456282

Monitor ID:
Severity: Medium

Owning Component:

Status: Open

68ba52c9fKubernetes\Scheduler

Status: Active

Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.

feature
combinations

Embed

Embed

BERT

×

×

×

×
...

...

Embedding
Layer

Attentive
Interaction Layer

Prediction
Layer

𝐯!

𝐯"

𝐯#
𝐯$

𝐯! 𝐯#

𝐯! 𝐯$

𝐯" 𝐯#

𝐯" 𝐯$

𝑎!#

𝑎!$

𝑎"#

𝑎"$...

Ticket

Event

BERT
𝑝

𝑎𝑡𝑡𝑒𝑛

Input
Features

FC
Correlated

Unrelated0

1

𝑓!
𝑓"

*𝑓!

...
...

𝑎𝑡𝑡𝑒𝑛

𝑎𝑡𝑡𝑒𝑛

𝑎𝑡𝑡𝑒𝑛*𝑓"

𝐳

OneHot: 
1 0 0 0 0 ... 0 1 0 0 ... 0 0 0 0 0 1 ... 

Decomposition: 

feature1
(100)

feature2
(1000)

feature1+2
(100 * 1000)

Attentive Interaction Network
(AIN)

embedding1 embedding2 interaction



Evaluation

• Research Questions

87

RQ1: How effective is iPACK in aggregating duplicate tickets?

RQ2: How effective is AIN in correlating tickets and events? 

RQ3: How does incident profiling impact the effectiveness of iPACK?



Evaluation

• RQ2: The Effectiveness of ticket-event correlation 

88

TABLE IV
EFFECTIVENESS OF CORRELATING A TICKET TO AN EVENT.

Models Acc@1 Acc@2 Acc@3 Average

LR 0.519 0.657 0.733 0.636
SVM 0.332 0.409 0.493 0.411
RF 0.563 0.684 0.761 0.669

LightGBM 0.658 0.723 0.832 0.712
LinkCM 0.743 0.769 0.882 0.798

AIN w/o atten. 0.673 0.762 0.824 0.753
AIN 0.817 0.907 0.936 0.887

�(%) +21.4% +19.0% +13.6% +17.8%

respectively. This shows that the proposed component help
identify the effective feature combinations for accurate ticket-
event linking. (3) Interestingly, AIN w/o atten. underperforms
LinkCM and achieves similar performance as LightGBM. The
reason is that AIN w/o atten. adopts simple concatenation of
feature embedding, which fails to capture effective feature
combinations. (4) LinkCM can outperform other baseline
methods since its decomposable attention mechanism is able
to capture the semantic matching between tickets and events.
For other baseline methods, their Acc@1 is less than 0.7.
They may suffer from the sparsity and high dimension of input
features. RF and LightGBM are more accurate than LR and
SVM since they alleviate the problem by feature selections.

Answer to RQ2. AIN outperforms all other baseline meth-
ods by a large margin in correlating a ticket to the event
that causes it. The proposed attentive feature combination
is the key to achieve the performance, which improves the
average accuracy of AIN by 17.8%.

3) RQ3 The impact of graph-based incident profiling (GIP)
of iPACK: We propose GIP to reduce regular events (noisy
events) and link correlated indicative events to profile an
incident, which bridges the tickets linked to the events even
though they are semantically different. We evaluate its impact
on iPACK using the union of all three datasets as in RQ2. We
conduct the evaluation from the following two aspects:

(1) The ratio of events reduced. GIP builds a fully-connected
event graph (link every two events with positive PMI values),
and then prunes this graph via Algorithm 1. We measure the
effectiveness of GIP with the ratio of nodes and edges that are
pruned (reduced). Fig. 7 (left) presents the ratio of nodes and
edges in the event graph without or with GIP (we normalize
the ratio for better presentation). We can observe that only 2%
of nodes and 0.2% of edges remain after using GIP, which
shows GIP can reduce the large volume of events effectively.

(2) The impact on the overall performance in aggregating
duplicate tickets. Though GIP can reduce the number of
events, we aim to further evaluate whether it can accurately
remove the regular events and link the correlated events as
expected. To achieve this, we compare the ticket aggregation
performance of iPACK with or without GIP. After removing
GIP, we regard those tickets linked to the same event by AIN
as belonging to the same cluster. The results are shown in
Fig. 7 (right). We can observe that after applying GIP, its
precision drops slightly, but the recall is largely improved. As

Fig. 7. The Effectiveness of Graph-based Profiling (GIP)

a result, the overall F1 score is improved by 18.9% , from
0.743 to 0.884. This indicates that only a small portion of
events are not correctly linked; however, more duplicate tickets
are accurately aggregated via event-event linking.

Answer to RQ3. GIP greatly boosts the overall performance
of iPACK. On the one hand, GIP reserves 2% nodes and
0.2% edges in the pruned event graph. On the other hand,
GIP accurately reserves and links the indicative events and
improves the F1 score from 0.743 to 0.884.

V. INDUSTRIAL EXPERIENCE

In this section, we share our industrial experience by pre-
senting a success case and a failure case from the real-world
deployment of iPACK in CloudX.

1) A success case: In September 2021, a water tower
pump (an essential part of cooling systems) was accidentally
shut down when a datacenter maintenance activity was being
performed. The maintainers had to shut down the downstream
storage hardware to prevent it from being overheated and
damaged to protect users’ data. Consequently, the storage
service became problematic, cascadingly impacting several
services depending on it (e.g., SQL DB and Workflow App)
and triggering alerts. On the CSS team side, massive tickets
describing diverse issues were received. iPACK continuously
collected the alerts and tickets for analysis. Fig. 8 shows
iPACK’s partial output. iPACK successfully linked the alert
from storage with the alerts from SQL DB and Workflow App,
respectively (denoted as the red arrows). Besides, the caused
tickets were linked to their responsible events (denoted as the
blue arrows). In this way, these tickets were aggregated though
they were significantly different in semantics. The results were
pushed to support engineers. With such information, support
engineers could immediately launch batched communications
with the potentially affected customers and avoid duplicate
manual individual inspections. The customers were continu-
ously informed about the mitigation progress of the incident.

2) A failure case: iPACK could sometimes fail when it
cannot find responsible alerts in the cloud systems for a ticket.
In August 2021, the CSS team received multiple tickets com-
plaining 503 (service unavailable) errors when the customers
were using Web Services. Though the tickets were suspected to
be caused by an internal issue due to their similar symptoms,
iPACK did not correlate them with any alert. Only around five
hours after the first ticket had been received, a related alert was
fired and correlated by iPACK. According to the after-the-fact
analysis of on-call engineers, the root cause of this incident

9

Observation 1: AIN outperforms existing SOTA solutions

Observation 2: The attention module improves AIN by 13.6% ~ 21.4%



TABLE IV
EFFECTIVENESS OF CORRELATING A TICKET TO AN EVENT.

Models Acc@1 Acc@2 Acc@3 Average

LR 0.519 0.657 0.733 0.636
SVM 0.332 0.409 0.493 0.411
RF 0.563 0.684 0.761 0.669

LightGBM 0.658 0.723 0.832 0.712
LinkCM 0.743 0.769 0.882 0.798

AIN w/o atten. 0.673 0.762 0.824 0.753
AIN 0.817 0.907 0.936 0.887

�(%) +21.4% +19.0% +13.6% +17.8%

respectively. This shows that the proposed component help
identify the effective feature combinations for accurate ticket-
event linking. (3) Interestingly, AIN w/o atten. underperforms
LinkCM and achieves similar performance as LightGBM. The
reason is that AIN w/o atten. adopts simple concatenation of
feature embedding, which fails to capture effective feature
combinations. (4) LinkCM can outperform other baseline
methods since its decomposable attention mechanism is able
to capture the semantic matching between tickets and events.
For other baseline methods, their Acc@1 is less than 0.7.
They may suffer from the sparsity and high dimension of input
features. RF and LightGBM are more accurate than LR and
SVM since they alleviate the problem by feature selections.

Answer to RQ2. AIN outperforms all other baseline meth-
ods by a large margin in correlating a ticket to the event
that causes it. The proposed attentive feature combination
is the key to achieve the performance, which improves the
average accuracy of AIN by 17.8%.

3) RQ3 The impact of graph-based incident profiling (GIP)
of iPACK: We propose GIP to reduce regular events (noisy
events) and link correlated indicative events to profile an
incident, which bridges the tickets linked to the events even
though they are semantically different. We evaluate its impact
on iPACK using the union of all three datasets as in RQ2. We
conduct the evaluation from the following two aspects:

(1) The ratio of events reduced. GIP builds a fully-connected
event graph (link every two events with positive PMI values),
and then prunes this graph via Algorithm 1. We measure the
effectiveness of GIP with the ratio of nodes and edges that are
pruned (reduced). Fig. 7 (left) presents the ratio of nodes and
edges in the event graph without or with GIP (we normalize
the ratio for better presentation). We can observe that only 2%
of nodes and 0.2% of edges remain after using GIP, which
shows GIP can reduce the large volume of events effectively.

(2) The impact on the overall performance in aggregating
duplicate tickets. Though GIP can reduce the number of
events, we aim to further evaluate whether it can accurately
remove the regular events and link the correlated events as
expected. To achieve this, we compare the ticket aggregation
performance of iPACK with or without GIP. After removing
GIP, we regard those tickets linked to the same event by AIN
as belonging to the same cluster. The results are shown in
Fig. 7 (right). We can observe that after applying GIP, its
precision drops slightly, but the recall is largely improved. As

Fig. 7. The Effectiveness of Graph-based Profiling (GIP)

a result, the overall F1 score is improved by 18.9% , from
0.743 to 0.884. This indicates that only a small portion of
events are not correctly linked; however, more duplicate tickets
are accurately aggregated via event-event linking.

Answer to RQ3. GIP greatly boosts the overall performance
of iPACK. On the one hand, GIP reserves 2% nodes and
0.2% edges in the pruned event graph. On the other hand,
GIP accurately reserves and links the indicative events and
improves the F1 score from 0.743 to 0.884.

V. INDUSTRIAL EXPERIENCE

In this section, we share our industrial experience by pre-
senting a success case and a failure case from the real-world
deployment of iPACK in CloudX.

1) A success case: In September 2021, a water tower
pump (an essential part of cooling systems) was accidentally
shut down when a datacenter maintenance activity was being
performed. The maintainers had to shut down the downstream
storage hardware to prevent it from being overheated and
damaged to protect users’ data. Consequently, the storage
service became problematic, cascadingly impacting several
services depending on it (e.g., SQL DB and Workflow App)
and triggering alerts. On the CSS team side, massive tickets
describing diverse issues were received. iPACK continuously
collected the alerts and tickets for analysis. Fig. 8 shows
iPACK’s partial output. iPACK successfully linked the alert
from storage with the alerts from SQL DB and Workflow App,
respectively (denoted as the red arrows). Besides, the caused
tickets were linked to their responsible events (denoted as the
blue arrows). In this way, these tickets were aggregated though
they were significantly different in semantics. The results were
pushed to support engineers. With such information, support
engineers could immediately launch batched communications
with the potentially affected customers and avoid duplicate
manual individual inspections. The customers were continu-
ously informed about the mitigation progress of the incident.

2) A failure case: iPACK could sometimes fail when it
cannot find responsible alerts in the cloud systems for a ticket.
In August 2021, the CSS team received multiple tickets com-
plaining 503 (service unavailable) errors when the customers
were using Web Services. Though the tickets were suspected to
be caused by an internal issue due to their similar symptoms,
iPACK did not correlate them with any alert. Only around five
hours after the first ticket had been received, a related alert was
fired and correlated by iPACK. According to the after-the-fact
analysis of on-call engineers, the root cause of this incident

9

Evaluation

• RQ3: The Effectiveness of incident profiling

89

Observation 2: Incident Profiling mainly contributes to the Recall with 
an improvement from 0.632  to 0.743

Observation 1: Only 2% of events are reserved after applying pruning


