

Intelligent Reliability Management in Large-scale Cloud Systems

Jinyang Liu PhD Oral Defense Supervisor: Prof. Michael R. Lyu

June 24, 2024

Many **essential** applications **⊂** 24 have migrated to the cloud.

The public cloud market is increasing, estimated **679 billion U.S. dollars** in 2024.

https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/

Cloud Providers

- Deliver services in different layers of virtualization and abstraction
- Maintain most resources

Customers

- Consume and utilize the services
- Little maintenance effort

However, incidents can interrupt these services...

It is crucial yet challenging to ensure reliability of cloud systems!

• Challenge 1: Large scale of cloud systems

AWS Data Centers Today: 100+ Locations, 1.5 Million Servers, and More (cloudzero.com) AWS brings economic benefits to California, Ohio, Oregon, Virginia (aboutamazon.com) August 09, 2023, 10 min read

AWS Data Centers Today: 100+ Locations, 1.5 Million Servers, and More

• Challenge 2: Complicated dependencies between services

• Challenge 2: Complicated dependencies between services

• Challenge 2: Complicated dependencies between services

Zhang, Y., Gan, Y., & Delimitrou, C. (2019). uqSim: Scalable and Validated Simulation of Cloud Microservices. arXiv preprint arXiv:1911.02122.

• Challenge 3: Evolving nature of cloud software

kubernetes / kubernetes		• the E Partic			
	ull requests 762 ()	Actions Projec	ts 6 () Security		
Pulse	May 25, 2024 ·	– June 1, 2024	ļ.	Period: 1 week -	
Contributors					
Community Standards	Overview				
Commits					
Code frequency	118 Active pull reque	sts	79 Active issues		
Dependency graph	* 60	** 50	○ E4	\bigcirc 29	
Network	ہ¢ 6∠ Merged pull	ړ ۲ 50 Open pull	Closed issues	New issues	
Forks	requests	requests			
	Excluding merges, 28 pushed 65 commits commits to all branc files have changed a 43,044 additions an 25,033 deletions.	5 authors have to master and 65 hes. On master, 726 nd there have been <u>d</u>			

One week: **726** file changes, **43,044** additions, **25,033** deletions

• Challenge 4: Limited observations of cloud systems

• Challenges in ensuring reliability of cloud systems

1 Large Scale

(4) Limited Observations

Background: reliability management of modern cloud systems

Monitoring data

When an incident (an unexpected problem) happens: Called by alerts (Triage) Understand alerts Check monitoring data Diagnosis & Recovery Fix bugs (Resolution)

6 Summarize (Postmortem)

Background: reliability management of modern cloud systems

Monitoring data

Engineers Skill-intensive (OCE) Serror-prone When an incident (an unexpected problem) happens:

🚫 Labor-intensive

- ① Called by alerts (Triage)
- ② Understand alerts

On-call

③ Check monitoring data

(Mitigation)

- (4) Diagnosis & Recovery
- (5) Fix bugs (Resolution)
- 6 Summarize (Postmortem)

Thesis Contribution

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based anomaly detection

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based anomaly detection

2 Prism

Improving observability across different layers of cloud hierarchy

Monitoring data

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based anomaly detection

2 Prism

Improving observability across different layers of cloud hierarchy

(3) iPACK

Correlating tickets and alerts for more comprehensive ticket deduplication

• Log data is one of the most important data sources.

Software runtime behaivors

Trouble shooting

Performance analysis

User behavior analysis

Security audit

• Automatic log-based anomaly detection is essential.

Anomaly: <u>unexpected</u> patterns or events that <u>deviate from the norm</u> or expected operation.

. . .

Example of a log anomaly

Focus: template anomalies

Sep 18 08:47:22 DEBUG Partition rdd_2_1 not found in 127.0.0.1 Sep 18 08:47:35 DEBUG Partition rdd_2_2 not found in 127.0.0.1 Sep 18 08:47:49 DEBUG Partition rdd_2_1 not found in 127.0.0.1 Sep 18 08:48:17 DEBUG Partition rdd_2_3 not found in 127.0.0.1

Raw logs

Timestamp	Event	Level	Log Templates	Parameters	
Sep 18 08:47:22	e1	DEBUG	Partition <*> not found in <*>	rdd_2_1 127.0.0.1	
Sep 18 08:47:35	e1	DEBUG	Partition <*> not found in <*>	rdd_2_2 127.0.0.1	
Sep 18 08:47:49	e1	DEBUG	Partition <*> not found in <*>	rdd_2_1 127.0.0.1	
Sep 18 08:48:17	e1	DEBUG	Partition <*> not found in <*>	rdd_2_3 127.0.0.1	

Structured logs

• Characteristics of log data in real-world industrial environment

• Characteristics of log data in real-world industrial environment

• Characteristics of log data in real-world industrial environment

Share templates?

Comparison 2: Across-timeframe

- 1. Within each microservice
- Represent log semantics with
 OpenAI-embedding
- Compare log pairs before and after
 Feb 15 based on Cosine similarity

• Most new logs share little semantic

Some logs may repeat over time.

• Characteristics of log data in real-world industrial environment

Comparison 1: Across-microservice

- 40% microservices pair share no overlapping templates
- 80% microservices pairs share
 <50% templates overlapping

Comparison 2: Across-timeframe

- Some logs may repeat over time
- Most new logs share little semantic similarities with seen logs

<u>Characteristic 2</u>:
 Diverse across different microservices

- <u>Requirement 2</u>: Accurate enough for various logs
- <u>Characteristic 3</u>:
 Evolving overtime

 <u>Requirement 3</u>: Adaptive to unseen logs

• Existing solutions cannot fulfill all requirements

[ICSE'22] Le V H, Zhang H. Log-based anomaly detection with deep learning: How far are we?[C]//Proceedings of the 44th international conference on software engineering. 2022: 1356-1367.

Key idea

- Integrating large language models (LLM) with lightweight ML methods
 - <u>Requirement 1</u>:
 Lightweight for local analysis
 - <u>Requirement 2</u>:
 Accurate enough for various logs

<u>Requirement 3</u>:
 Adaptive to unseen logs

- 🮅 ML method
 - + Lightweight
 - Needs extensive training data
 - Not adaptive

Filter massive <u>normal</u> log messages

- S Large language models
 - + Semantic comprehension
 - + Zero/few-shot prediction
 - + Follow instructions
 - Slow
 - High cost

Analyze <u>only suspicious</u> log messages in detail

Our synergistic approach: Sealog

• Integrating large language models (LLM) with lightweight ML methods

Overall Framework of Sealog

Detection agent of Sealog

• Detection agent (N-gram probabilistic tree, NPT)

Backbone analyzer of Sealog

• Backbone Analyzer (ICL-enhanced LLM)

Evaluation

Datasets

Dataset	BGL	Thunderbird	Industry	
# Log messages	4,747,963	10,000,000	1,488,073	
# Templates	456	1,504	3,241	
# Train windows (anomaly ratio)	2,884 (21%)	416 (55%)	3,048 (13%)	
# Test windows (anomaly ratio)	722 (24%)	105 (30%)	933 (18%)	

Research Questions

- RQ1: How effective is SeaLog under the offline setting?
- RQ2: How effective is SeaLog under the online setting?
- RQ3: How does the number of queries affect the performance of SeaLog?
- RQ4: How efficient is Sealog?

- Real-world data from Huawei Cloud
- 103 types of anomalies
- Labeled by on-site engineers

• Metrics • Precision: $\frac{TP}{TP + FP}$

Recall:
$$\frac{TP}{TP + FN}$$

• F1 Score: $\frac{2 \times precision \times recall}{precision + recall}$

Evaluation

	BGL			Thunderbird		Industry			
Method	Precision	Recall	F1 score	Precision	Recall	F1 score	Precision	Recall	F1 score
IF	0.125	0.615	0.208	0.291	0.968	0.448	0.176	0.994	0.299
LR	0.738	0.437	0.549	0.842	0.516	0.640	0.818	0.655	0.727
DT	1.000	0.570	0.726	1.000	0.839	0.912	0.942	0.788	0.858
DeepLog	0.241	0.895	0.380	0.295	1.000	0.456	0.358	0.909	0.513
LogAnomaly	0.268	0.862	0.409	0.307	1.000	0.470	0.360	0.927	0.519
RobustLog	0.942	0.961	0.951	1.000	0.710	0.830	0.984	0.764	0.860
NeuralLog	0.881	0.886	0.883	0.713	0.719	0.715	0.889	0.895	<u>0.887</u>
SeaLog	0.994	0.991	0.993	1.000	0.903	0.949	1.000	0.931	0.964

• RQ1: Offline Effectiveness

• RQ2: Online Effectiveness

Observation 1: Sealog is the most effective solution in the offline setting.

Observation 2: Sealog keeps a high performance in the online setting.

Evaluation

• RQ3: Impact of query numbers

Observation 3: Only limited queries are forwarded to LLM.

• RQ4: Time and Memory Efficiency

Observation 4: SeaLog demonstrates high efficiency in both time and memory consumption.

Industry deployment

• Deployment in Huawei Cloud

Summary of ① Sealog

• Log-based anomaly is essential, which requires an anomaly detector accurate, lightweight and adaptive.

 We propose Sealog, a synergistic approach integrating both the advantages of ML-based and LLM-based methods.

• Sealog fulfills these three requirements and has been deployed in real-world production environment.
Our goal: Intelligent reliability management

Thesis Contribution

(1) Sealog

Scalable and adaptive log-based anomaly detection

2 Prism

Improving observability across different layers of cloud hierarchy

(3) iPACK

Correlating tickets and alerts for more comprehensive ticket deduplication

Black-box view of cloud vendors facing millions of instances

A Motivating Example

A Motivating Example

Clustered Instances (Serving the same functionalities)

Our Problem

Functional Clusters

Massive **Black-box** Instances (typically millions of) **Clustered** Instances (Serving the same functionalities)

Problem: How do we find **functional clusters** in massive instances with ONLY data visible to cloud vendors (with customers' consent)?

Data visible to cloud vendors

• Two types of typical monitoring data

Trace: (srcIp, dstIp, srcPort, dstPort)

Communication Traces

Monitoring Metrics

A Pilot Study

• 3,062 internal instances covering 397 types of functionalities

Method

Problem: How do we find **functional clusters** in massive instances with ONLY data visible to cloud vendors (with customers' consent)?

Challenges:

- Massive instances (typically millions in cloud systems)
- Limited noisy monitoring data for cloud vendors

Our Solution: **Prism**

Method

Problem: How do we find **functional clusters** in massive instances with ONLY data visible to cloud vendors (with customers' consent)?

Challenges:

- Massive instances (typically millions in cloud systems)
- Limited noisy monitoring data for cloud vendors

Our Solution: **Prism**

Method

Trace-based Partitioning

Input:

- All instances
- Communication traces

Output:

• Coarse-grained chunks

Metric-based Clustering

Input:

- Coarse-grained chunks
- Monitoring metrics (cpu, mem, disk, etc.)

Output:

• Functional clusters

Dynamic Time Warping (DTW) Distance

Apply independently for each small chunk (<=50 instances)

• Datasets

Datasets	# Functionalities	# Instances	# Traces	# Metrics
Dataset \mathcal{A}	292	2,035	100.2 M	7.25 M
Dataset \mathcal{B}	105	1,027	121.6 M	3.71 M
Total	397	3,062	212.6 M	10.96 M

- Research Questions
 - RQ1: What is the **effectiveness** of Prism?
 - RQ2: What is the **contribution of each component**?
 - RQ3: What is the **impact of parameter settings**?
 - RQ4: What is the **efficiency** of Prism?

 Real-world data from Huawei Cloud

- Manually labeled internal instances
- Metrics
 - Homogeneity: how precise?
 - Completeness: how complete?
 - V-measure: a balanced metric

• RQ1: Effectiveness

Methods		Dataset .	4		Dataset <i>L</i>	3
	Homo.	Comp.	V Meas.	Homo.	Comp.	V Meas.
OSImage	0.238	0.894	0.376	0.258	0.889	0.400
CloudCluster	0.346	0.748	0.473	0.369	0.753	0.495
ROCKA	0.831	0.882	0.856	0.875	0.900	0.887
OmniCluster	0.932	0.862	<u>0.896</u>	0.944	0.877	<u>0.909</u>
Prism	0.976	0.916	0.945	0.979	0.922	0.950

Observation 1: Prism outperforms all state-of-the-art comparative methods.

• RQ2: Ablation

Mathada		Dataset .	4		Dataset 1	B
Methous	Homo.	Comp.	V Meas.	Homo.	Comp.	V Meas.
Prism	0.976	0.916	0.945	0.979	0.922	0.950
Prism w/o Metrics	0.462	0.920	0.615	0.463	0.949	0.622
Prism w/o Traces	0.949	0.869	<u>0.907</u>	0.915	0.893	<u>0.904</u>

• RQ3: Parameter Sensitivity

Observation 3: Prism is robust to threshold settings for both LSH and HAC.

• RQ4: Efficiency

Methods	1,000	5,000	# Instan 10,000	ces 50,000	100,000
CloudCluster	0.9	23.87	78.65	1768.7	5585.7
ROCKA	80.7	1981.8	7850.3	-	-
OmniCluster	31.7	264.6	1048.6	26531.8	-
Prism w/o Metrics	3.9	19.1	40.2	195.1	392.4
Prism w/o Traces	80.3	2066.1	8232.3	-	
Prism	18.2	89.4	183.9	929.2	1912.7

Observation 4: Prism can efficiently handle massive instances in cloud systems.

Industrial Experience

• Use case 1: vulnerable deployment identification

Industrial Experience

• Use case 2: latent issue discovery

Summary of 2 Prism

• Virtualization technologies improve resource utilization but lead to limited observability in the cloud.

 The proposed **Prism** reveals functional clusters by leveraging communication patterns and resource patterns among instances.

• Prism is effective and efficienct, which provides additional insights for enhanced cloud reliability.

Our goal: Intelligent reliability management

Customers submit tickets to cloud vendors for help

Customers submit tickets to cloud vendors for help

Customers submit tickets to cloud vendors for help

Limitations of text similarity-based solutions

• Intuition: duplicate tickets have similar semantics

[ICSE18] Lwe: Lda refined word embeddings for duplicate bug report detection

[ASE19] iFeedback: exploiting user feedback for real-time issue detection in large-scale online service systems.

[ICSE21] Automatically matching bug reports with related app reviews

Limitations of text similarity-based solutions

• However, duplicate tickets in cloud may have distinct semantics

Service			
Service	Category	Summary	
VM VM/Scale Update		t_1 : Virtual machine scale sets resize issue.	
V IVI	VM/VM Start	t_2 : Server did not start on time.	divorco
Databricks	Databricks/Job Issue	t_3 : Unable to open cluster of Databricks.	uiverse .
DataDITCKS	Databricks/Cluster Launch	t_4 : Unable to provision clusters.	symptoms!
K82	K8S/Cluster Update	t_5 : Unable to autoscale.	
Кор	K8S/Cluster Update	t_6 : Cannot upgrade node pool, stuck.	

58

Limitations of text similarity-based solutions

• Reason: dependency between different services

Service			
Service	Category	Summary	
VM	VM/Scale Update	t_1 : Virtual machine scale sets resize issue.	
VIVI	VM/VM Start	t_2 : Server did not start on time.	divorco
Databricks	Databricks/Job Issue	t_3 : Unable to open cluster of Databricks.	alverse .
DataDricks	Databricks/Cluster Launch	t_4 : Unable to provision clusters.	symptoms!
KSC	K8S/Cluster Update	t_5 : Unable to autoscale.	
601	K8S/Cluster Update	t_6 : Cannot upgrade node pool, stuck.	

59

Our solution: two-stage linking

• Leverage cloud runtime information: Alerts

			1			
Service		Tickets	Alerts			
Service	Category Summary		Component	Title		
VM	VM VM/Scale Update t_1 : Virtual machine scale		Resource	a. · VMStart Failures exceed 300 times		
V IVI	VM/VM Start	t_2 : Server did not start on time.	Provider	a_1 . Whistart Fandres exceed 500 times.		
Databricks	Databricks/Job Issue	t_3 : Unable to open cluster of Databricks.	Control	as · Databricks cluster creation fails		
Dataoners	Databricks/Cluster Launch	t_4 : Unable to provision clusters.	Plane	a_2 . Datablicks cluster creation fails.		
K8C	K8S/Cluster Update	t_5 : Unable to autoscale.	Resource	a_3 : The PUT operation success rate <80%.		
KOS -	K8S/Cluster Update	t_6 : Cannot upgrade node pool, stuck.	Scheduler	a_4 : CPU utilization exceeds 90%.		

\bigcirc alert — alert

Challenge 1

Alerts are massive and noisy

- Indicative alerts: $a_1 a_2 a_3$
- Regular alerts: a_4

Challenge 2 High feature cardinality

Large Combinations!

- Alerts : free text, 2000+ components, 10000+ IDs, etc
- Tickets: free text, 3000+ categories, etc

1 Reduce redundant alerts

1 Reduce redundant alerts

MStart Failures exceed 100 times
 VMStart Failures exceed 150 times
 VMStart Failures exceed 200 times
 VMStart Failures exceed 250 times

Events (b) VMStart Failures exceed <*> times

 $(\mathbf{1})$

Reduce redundant alerts **(2) Incident Profiling** (2) Link alert - alert (4) (4) (4) (4) PMI \bigcirc **Static Event** Monitors **Relation Learning** . B PMI ি ি **Dynamic Event** Support Team **Graph Construction** 4)

1 Reduce redundant alerts

2 Link alert - alert

Graph-based Incident Profiling (GIP)

(1) Reduce redundant alerts

(2) Link alert - alert

③ Link ticket - alert

AIN: Attentive Interaction Network

Alert: 21456282	Status: Active						
Title: Synthetics-API-Latency [PUT_WestUS] is degraded in last 20 mins.							
Creation Time: 2022/7/25 12:14:26	Region: West US						
Owning Service: Kubernetes	Severity: Medium						
Owning Component: Kubernetes\Scheduler	Monitor ID:						

Ticket: 2022072505	Status: Open				
Summary: Error deploying the container.	Region: West US				
Creation Time: 2022/7/25 15:34:42	Product Name: Kubernetes				
Category: Kubernetes\container creation\c	annot create				

Decomposition:

embedding1 embedding2 interaction

N

feature combinations

 $(\mathbf{1})$

Reduce redundant alerts Impact Assessment (2) Link alert - alert হি (3) Link ticket - alert On-call QQQEngineers Monitors Alerts <u>6</u>–6 Track 良良良良 \bigcirc فر 6 | (4) Cloud Aggregated Support Team Services Tickets 4) 民 **4** Customers Tickets Batched Processing

• Dataset

Dataset	$\mid \mathcal{A}$	B	<i>C</i>	Total
# Services# Incidents# Tickets/Incident# Alerts	49	57	51	81
	462	579	642	1,575
	23~275	36~292	25~95	23~292
	398,735	409,590	445,089	1,253,414

• Metrics

• How well a method can cluster duplicate tickets together?

• Overall effectiveness of iPACK

Methods		Dataset \mathcal{A}	L.	Dataset \mathcal{B}			Dataset C		
	Precision	Recall	F1 score	Precision	Recall	F1 score	Precision	Recall	F1 score
Categorization	0.930	0.205	0.336	0.943	0.373	0.535	0.925	0.207	0.338
iFeedback	0.901	0.590	<u>0.713</u>	0.876	0.473	0.614	0.886	0.626	0.733
LWE	0.862	0.453	0.594	0.824	0.515	0.634	0.861	0.672	<u>0.755</u>
BERT	0.884	0.587	0.705	0.854	0.710	<u>0.775</u>	0.843	0.629	0.720
LinkCM	0.931	0.507	0.657	0.892	0.538	0.671	0.901	0.628	0.740
LinkCM w/ GIP	0.900	0.685	0.778	0.886	0.756	0.816	0.899	0.809	0.852
iPACK	0.912	0.960	0.935	0.882	0.861	0.871	0.899	0.888	0.894

Observation 1: SOTA semantic-based baselines achieve high precision but low recall

• Overall effectiveness of iPACK

Methods	Dataset A			Dataset \mathcal{B}			Dataset C		
	Precision	Recall	F1 score	Precision	Recall	F1 score	Precision	Recall	F1 score
Categorization	0.930	0.205	0.336	0.943	0.373	0.535	0.925	0.207	0.338
iFeedback	0.901	0.590	<u>0.713</u>	0.876	0.473	0.614	0.886	0.626	0.733
LWE	0.862	0.453	0.594	0.824	0.515	0.634	0.861	0.672	<u>0.755</u>
BERT	0.884	0.587	0.705	0.854	0.710	<u>0.775</u>	0.843	0.629	0.720
LinkCM	0.931	0.507	0.657	0.892	0.538	0.671	0.901	0.628	0.740
LinkCM w/ GIP	0.900	0.685	0.778	0.886	0.756	0.816	0.899	0.809	0.852
iPACK	0.912	0.960	0.935	0.882	0.861	0.871	0.899	0.888	0.894

Observation 1: SOTA semantic-based baselines achieve high precision but low recall

Observation 2: iPACK slightly sacrifices precision and achieves best overall performance

Summary of ③ iPACK

- Duplicate ticket in cloud systems can poccess semantically different content caused by inter-dependent services, making existing work ineffective.
- We propose iPACK to **introduce alerts** to facilitate grouping duplicate tickets.
 - Incident Profiling: alert alert linking
 - Attentive Intraction Network: alert ticket linking
- iPACK outperforms existing state-of-the-art solutions by 12.4% ~
 31.2% across three industial datasets collected from Azure.
Thesis Conclusion

Correlating tickets and alerts for more comprehensive ticket deduplication

Future work: Towards Autonomous Cloud Systems

	High-quality data		ed abstraction	Intelligent	solutions	
	Goal: comprehensively and precisely captur system runtime information		Goal	Goal: Unify and leverage cloud knowledge to automate various Ops tasks.		
	Where/What to Monitor	How to Monitor	Но	w to Analyse	How to Deci	ide
	Postmortem Analysis	Monitor Rules Generation	n Intera	active ChatOps	Automatic Mitigation	
	KPI Design (aggregation)	Monitor Recommendation	on C (inter	loud Q&A nal & external)	Root Cause Analysis	
	Full Link Topology	Monitor Optimization	Int Multi-	terpretable modal Analysis	Impact Scoping	
LLM-powered Operation Agent Domain knowledge adaption Tool Learning Prompt Optimization S					gging Feedbac	n ck

Publication list

- Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Jieming Zhu and Michael R. Lyu. "LILAC: Log Parsing using LLMs with Adaptive Parsing Cache." In Proceedings of the 32rd International Conference on Software Engineering (FSE 2024).
- Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Jieming Zhu and Michael R. Lyu. "A Large-scale Evaluation for Log Parsing Techniques: How Far are We?." In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2024).
- Junjie Huang, Jinyang Liu, Zhuangbin Chen, Zhihan Jiang, Yichen Li, Jiazhen Gu, Cong Feng, Zengyin Yang, Yongqiang Yang, and Michael R. Lyu. "FaultProfIT: Hierarchical Fault Profiling of Incident Tickets in Large-scale Cloud Systems." In Proceedings of the 46th International Conference on Software Engineering, Software Engineering in Practice track (ICSE-SEIP 2024).
- Jinxi Kuang, Jinyang Liu, Junjie Huang, Renyi Zhong, Jiazhen Gu, Lan Yu, Rui Tan, Zengyin Yang, Michael R. Lyu. "Knowledge-aware Alert Aggregation in Largescale Cloud Systems: a Hybrid Approach." In Proceedings of the 46th International Conference on Software Engineering, Software Engineering in Practice track (ICSE-SEIP 2024).
- Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin Chen, Cong Feng, Minzhi Yan, Michael R Lyu. "Scalable and Adaptive Log-based Anomaly Detection with Expert in the Loop." (under review, ICSE 2025).
- Jinyang Liu, Shilin He, Zhuangbin Chen, Liqun Li, Yu Kang, Xu Zhang, Pinjia He, Hongyu Zhang, Qingwei Lin, Zhangwei Xu, Saravan Rajmohan, Dongmei Zhang, Michael Lyu. "Incident-aware Duplicate Ticket Aggregation for Cloud Systems." In Proceedings of the 45h International Conference on Software and Engineering (ICSE 2023).
- Jinyang Liu, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Cong Feng, Zengyin Yang, Michael R. Lyu. "Practical Anomaly Detection over Multivariate Monitoring Metrics for Online Services." In Proceedings of the 34th IEEE International Symposium on Software Reliability Engineering (ISSRE 2023).
- Jinyang Liu*, Zhihan Jiang*, Jiazhen Gu, Junjie Huang, Zhuangbin Chen, Cong Feng, Zengyin Yang, Yongqiang Yang, Michael R. Lyu. "Prism: Revealing Hidden Functional Clusters from Massive Instances in Cloud Systems." In Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023).

Publication list

- Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, Michael R. Lyu. "Loghub: A Large Collection of System Log Datasets for AI-driven Log Analytics." In Proceedings of the 34th IEEE International Symposium on Software Reliability Engineering (ISSRE 2023).
- Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Michael R. Lyu. "Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching." In Proceedings of the 44th International Conference on Software and Engineering (ICSE 2022).
- Yichen Li, Xu Zhang, Shilin He, Zhuangbin Chen, Yu Kang, Jinyang Liu, Liqun Li, Yingnong Dang, Feng Gao, Zhangwei Xu, Saravan Rajmohan, Qingwei Lin, Dongmei Zhang, Michael R. Lyu. "An Intelligent Framework for Timely, Accurate, and Comprehensive Cloud Incident Detection." ACM SIGOPS Operating Systems Review, 2022.
- Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xuemin Wen, et al. Graph-based Incident Aggregation for Large-Scale Online Service Systems." In Proceedings of The 36th IEEE/ACM International Conference on Automated Software Engineering (ASE 2021).
- Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R. Lyu. "Logzip: Extracting Hidden Structures via Iterative Clustering for Log Compression." In Proceedings of the 34th IEEE/ACM International Conference on Au- tomated Software Engineering (ASE 2019).
- Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, Michael R. Lyu. Tools and Benchmarks for Auto- mated Log Parsing." In Proceedings of the 41st International Conference on Software Engineering, Software Engineering in Practice track (ICSE-SEIP 2019).

香港中文大學 The Chinese University of Hong Kong

Thank you! Q & A

Backbone analyzer of Sealog

• Utilizing confirmed cases as feedback

• Ablation study of Sealog

Industry deployment

• Deployment in Huawei Cloud

Analysis case of Sealog

Please determine if the given log messages indicate a system run-time anomaly or not. In the following, some similar examples are provided for reference, you should compare the given log messages with them and make your own decision.

Query:

"User login attempt took longer than expected, <*> seconds."

Examples:

Input: "Unable to reach the authentication server. Timeout occurred after <*> seconds." Label: Anomaly

The output MUST be in standard JSON format and MUST consist of TWO keys: 'prediction' and 'analysis' . "Prediction": <you should choose one of from 'normal' or 'anomaly' according to your analysis, do not use other words.> "Analysis": <your analysis for the given log messages based on its semantics>

Output of backbone analyzer:

• • • •

{

...

"Prediction": "anomaly",

"Analysis": "The log message 'User login attempt took longer than expected, <*> seconds.' indicates that the login process is experiencing delays beyond the expected duration. This is similar to the example where a timeout occurs after a certain number of seconds, which is labeled as an anomaly. Therefore, the prolonged login attempt time suggests a potential issue in the system's performance."

Cloud Infrastructure

Virtualization reduces cloud observability for cloud vendors during maintenance tasks.

Our solution: two-stage linking

• Intuition: first identify impacted services, then associated tickets

2 service | tickets

Our solution: two-stage linking

• How to know what services are affected by an incident?

Methodology

Redundant

Alert

• Alert Parsing (reduce redundancy)

VMStart Failures exceed 100 times VMStart Failures exceed 150 times VMStart Failures exceed 200 times VMStart Failures exceed 250 times

(f) VMStart Failures exceed <*> times **Events**

• Incident Profiling (reduce regular events & link indicative events)

² PMI: Pointwise mutual information

Methodology

• Ticket-Event Correlation (link tickets to events)

Research Questions

RQ1: How effective is <u>iPACK</u> in aggregating duplicate tickets?

RQ2: How effective is AIN in correlating tickets and events?

RQ3: How does incident profiling impact the effectiveness of iPACK?

• RQ2: The Effectiveness of ticket-event correlation

Models	Acc@1	Acc@2	Acc@3	Average
LR	0.519	0.657	0.733	0.636
SVM	0.332	0.409	0.493	0.411
RF	0.563	0.684	0.761	0.669
LightGBM	0.658	0.723	0.832	0.712
LinkCM	0.743	0.769	0.882	0.798
AIN w/o atten.	0.673	0.762	0.824	0.753
AIN	0.817	0.907	0.936	0.887
$\Delta(\%)$	+21.4%	+19.0%	+13.6%	+17.8%

Observation 1: AIN outperforms existing SOTA solutions

Observation 2: The attention module improves AIN by 13.6% ~ 21.4%

• RQ3: The Effectiveness of incident profiling

Observation 1: Only 2% of events are reserved after applying pruning

Observation 2: Incident Profiling mainly contributes to the Recall with an improvement from 0.632 to 0.743