
Data-Driven Quality Management
of Online Service Systems

ZHU, Jieming
Supervisor: Prof. Michael R. Lyu

2015/12/14

Online services are serving many
aspects of our daily life

2

Web search

Social network

Online chatting

Online shopping

Popular online services

And many others…
3

7 x 24 availability
Responsiveness

User satisfaction Revenue increase

Quality of service

4

is critical to success

Quality degradation causes revenue loss

5

Quality management of online
service systems is important,

but challenging

6

[Image from: http://www.lifehack.org/articles/technology/you-may-never-know-these-google-search-tips-and-tricks-you-miss-this.html] 7

Online service systems are becoming
large-scale in size and complex in structure

A prototype of Google search service

[Image adapted based on Jeff Dean’s slides: http://www.slideshare.net/yarapavan/achieving-rapid-response-times-in-large-online-services] 8
A prototype of Google’s system

Online service systems are built on
service-oriented architectures

[Image from: http://www.slideshare.net/yarapavan/achieving-rapid-response-times-in-large-online-services]

Online service systems are
highly distributed

Component services are likely
deployed across geographically
distributed datacenters

A single request may go through
thousands of machines

Traditional engineering techniques
are often not sufficient

10

Data-driven service quality
management is in need

Data-driven service quality management

11

Service-generated logs

Data-driven service quality management

12

Service relationship information

Data-driven service quality management

13

User-perceived QoS (Quality of
Service) information

Data-driven service quality management

14

Thesis contributions

Learning to log for runtime service monitoring
[ICSE’15, ICSE’14] (Chapter 6)

15

Response time prediction [ICWS’12, iVCE’12] (Chapter 3)

Online QoS prediction [ICDCS’14] (Chapter 4)

Privacy-preserving QoS prediction [ICWS’15] (Chapter 5)

Dynamic service deployment [iVCE’13] (Chapter 3.5)

Dynamic request routing [CLOUD’13] (Chapter 4.5)

Outline

• Topic 1: Learning to log for runtime service monitoring

• Topic 2: Online QoS prediction of Web services

• Conclusion and future work

16

Outline

• Topic 1: Learning to log for runtime service monitoring

• Topic 2: Online QoS prediction of Web services

• Conclusion and future work

17

Outline

• Topic 1: Learning to log for runtime service monitoring
– Motivation
– Framework of learning to Log
– Implementation details
– Evaluation
– Summary

18

What is logging?
Logging is a common programming practice to record
runtime system information

Logging methods
– Basic utilities: printf, cout, writeline
– Sophisticated tools: log4j, Unified Logging System (Microsoft)

19

Logging format:

Log example:

The importance of logging
Logs are used as a principal tool for runtime service
monitoring

– Usage analysis
– Anomaly detection
– Failure diagnosis

• The only data available for diagnosing production failures

Commercial acceptance
– Vendors actively collect logs: Microsoft, Google, VMware

20

Logging is significantly important!

Challenges of logging
Logging too little

– Miss valuable runtime information
– Increase the difficulty for problem diagnosis

Logging too much
– Additional cost of code development & maintenance
– Runtime overhead (CPU, I/O)
– Too much redundant/useless logs

21

[Yuan et al., OSDI’12]

Challenges of logging
Logging too little

– Miss valuable runtime information
– Increase the difficulty for problem diagnosis

Logging too much
– Additional cost of code development & maintenance
– Runtime overhead (CPU, I/O)
– Too much redundant/useless logs

22

[Yuan et al., OSDI’12]

Developers need to make informed
logging decisions on where to log!

Current practice of logging
An empirical study on logging practice [ICSE’14]

– Developer survey
• 37 developers participated (~4.9 years of programming experience)

– Source code analysis
• 4 large software systems from both Microsoft and Github

How do developers make logging decisions in
industry?

– Lack of rigorous specifications on logging
– Mostly based on domain knowledge of developers

23

Contributions of this work

Learning to log for runtime service monitoring
– Automatically learn logging practice from existing logging

instances via machine learning

– Provide logging suggestions during development

– Implemented as a prototype tool “LogAdvisor”

24

The work was collaborated with Microsoft Research Asia

Outline

• Topic 1: Learning to log for runtime service monitoring
– Motivation
– Framework of learning to Log
– Implementation details
– Evaluation
– Summary

25

Framework of learning to log
A general learning framework similar to other machine
learning applications

26

Framework of learning to log
A general learning framework similar to other machine
learning applications

27

Framework of learning to log
A general learning framework similar to other machine
learning applications

28

Framework of learning to log
A general learning framework similar to other machine
learning applications

29

Framework of learning to log
A general learning framework similar to other machine
learning applications

30

(5)

Framework of learning to log
A general learning framework similar to other machine
learning applications

31

(5)

Outline

• Topic 1: Learning to log for runtime service monitoring
– Motivation
– Framework of learning to Log
– Implementation details
– Evaluation
– Summary

32

Focused snippets: indicate potential error sites
– Exception snippets: try-catch blocks
– Return-value-check snippets: function-return errors

33

try {
method(…);

}
catch (IOException) {

log(…);
…

}

var res = method(…);
if (res == null) {

log(…);
…

}

Exception snippet example Return-value-check snippet example

All the code analysis is conducted based on an open-source
C# code analysis tool, Roslyn

Label identification
– “logged” if a focused code snippet contains a logging statement
– “unlogged”, otherwise.

34

try {
method(…);

}
catch (IOException) {

log(…);
…

}

var res = method(…);
if (res == null) {

log(…);
…

}

logged logged

Contextual feature extraction
– Structural features
– Textual features
– Syntactic features

35

Feature extraction (1)
Structural features: structural info of code

36

private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

... }
}

Exception Type:
System.IO.FileNotFoundException

Containing method:
Gendarme.Settings.LoadRulesFromAssembly

Invoked methods:
System.IO.Path.GetFullPath,
System.Reflection.AssemblyName.GetAssemblyName,
System.Reflection.Assembly.Load

/* A code example taken from MonoDevelop (v.4.3.3), at file: * main\external\mono-tools\gendarme\console\Settings.cs,
* line: 116. Some lines are omitted for ease of presentation. */

Feature extraction (2)
Textual features: code as text

37

private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

... }
}

Textual features:
load(2), rules(1), assembly(7),
setting(1), name(2), aname(2),
get(2), path(1), full(1), file(1),
not(1), found(1), exception(1)

Feature extraction (3)
Syntactic features: syntactic info of code

38

private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

... }
}

Feature selection
High-dimensional feature vectors (~72K features in System-B)

– Remove infrequence features (e.g., less than 5)
– Leverage information gain for further elimination

Data imbalance handling
– Unlogged vs logged instances (ratio up to 50 : 1)
– Unlogged instances dominate the neighborhood
– Use SMOTE [Chawla et al., 2002] to balance data

39

• Classification models
– Naive Bayes
– Bayes Net
– Logistic Regression
– SVM
– Decision Tree

• Providing logging suggestions by using constructed
models: whether or not to log a code snippet

40

Outline

• Topic 1: Learning to log for runtime service monitoring
– Motivation
– Framework of learning to Log
– Implementation details
– Evaluation
– Summary

41

Systems under study
Four large-scale software systems

– System-A and System-B (anonymized)
• Production online service systems from Microsoft

– SharpDevelop and MonoDevelop
• Open-source projects from Github
• Popular C# projects
• 10000+ commits
• 10+ years of history

42

C# software systems, 19.1M LOC, 100.6K logging instances in total

Evaluation setup
Ground truth: logging labels made by code owners

Metric: balanced accuracy (BA)

Within-project evaluation: 10-fold cross evaluation
Across-project evaluation: one source project for training,
one target project for testing

43

Accuracy of unlogged instancesAccuracy of logged instances

Evaluation (1)
Within-project evaluation

– Random: randomly logging (as a new developer)
– ErrLog [Yuan et al., OSDI’12]: logging all exception snippets
– LogAdvisor: BA results 0.846 ~ 0.934

44

0
0.2
0.4
0.6
0.8

1

Random

ErrLog

LogAdvisor
0

0.2
0.4
0.6
0.8

1
Exception snippets Return-value-check snippets

Evaluation (2)
Across-project evaluation

– Enrich the training data from other projects
– Extract common features among these projects
– BA results: above 0.8

45

• A “learning to log” framework aimed for automatic
logging suggestion

• Evaluation on four large-scale software systems
– Industrial systems and open-source systems
– Within-project and across-project evaluation

• Release of code and data for future research:
http://cuhk-cse.github.io/LogAdvisor

• Potential impact in industry (Microsoft)

46

Summary of Topic 1

Outline

• Topic 1: Learning to log for runtime service monitoring

• Topic2: Online QoS prediction of Web services

• Conclusion and future work

47

Outline

• Topic2: Online QoS prediction of Web services
– Motivation
– Adaptive matrix factorization
– Experiments
– Summary

48

Motivation
Web service: a component to build online services

– Black-box (third-party) Web APIs
– Accessed over a network
– Executed on remote systems

Motivation

Service Service Service Service

[Image from http://www.singaporeair.com]

Motivation

51

Failure

Motivation

52

Runtime service adaptation:
[Moser et al. WWW’08][Cardellini et al., TSE’12]
switching a working service to a candidate service at runtime (e.g., B1  B2, C2  B1)

Decisions for service adaptation:

Motivation

53

When to trigger an adaptation action?

Which working services to be replaced?

Which candidate services to employ?

Need real-time QoS
information of services

Motivation
Quality-of-Service (QoS)

including response time, throughput, failure probability, etc.

– Time-varying
• Dynamic network
• Varying workload

54

– User-specific
• Users distributed worldwide
• Different networks

85% users

Motivation
Exhaustive measurement is infeasible

– Resource-consuming (large measurement overhead)
– Time-consuming (thousands of services)

QoS prediction
by leveraging partial measurements to predict the remaining ones

– Existing work: e.g., monitoring or time-series based prediction for
QoS of working services [Amin et al., ASE’12]

– Unsolved problem: QoS prediction of candidate services

55

Problem
The problem of Online QoS prediction

56

(c) Dynamic QoS matrix

How to predict the
unknown values
at runtime?

Contributions of this work

AMF: adaptive matrix factorization
– An approach to enable online, accurate, and scalable QoS predictions

Key techniques
– Data transformation
– Online learning
– Adaptive weights

57

Outline

• Topic2: Online QoS prediction of Web services
– Motivation
– Adaptive matrix factorization
– Experiments
– Summary

58

Key observation
The measured QoS data matrix has an approximate low rank
in nature

59

90% variance

Low-rank matrix approximation
Matrix factorization (MF):

Problem formulation:

60

Squared sum of error Regularization termsGradient descent updates

Challenges in applying MF to QoS prediction

• Challenge 1: skewed QoS value distributions

• Challenge 2: time varying QoS values

• Challenge 3: scalability on new users and services

61

Dealing with challenge 1
(skewed QoS distributions)

Box-Cox transformation
– Stabilize data variance
– Rank-preserving

62

Response Time Throughput

Response Time Throughput

Dealing with challenge 2
(time varying QoS values)

Online learning
– Stochastic gradient descent (SGD) algorithm
– Adapt to each newly observed data sample

63

૟,ଶݎ૛࢚ ૜,૞ݎ૜࢚ଵ,૜ݎ૝࢚ ଵ,ଶݎଵ࢚૜,ଶݎ૞࢚ ૛,૝ݎ૟࢚ ଵ,ଶݎૠ࢚……
Updating in online mode:

SGD updating rules:

Gradient descent works in
batch mode

Adaptive weights
– Weighted learning rate for each user/service: Large for new vectors,

small for converged vectors

– Become robust
• Existing users and services keep stable
• New users and services converge fast

64

1.0

1.5

Updating rules:

Dealing with challenge 3
(scalability on new users and services)

Outline

• Topic2: Online QoS prediction of Web services
– Motivation
– Adaptive matrix factorization
– Experiments
– Summary

65

Experiments
Data collection

– Response time (RT): user-perceived delay of a service invocation
– Throughput (TP): data transmission rate
– 142 * 4500 * 64 QoS matrix

• 142 users (Planetlab nodes)
• 4,500 real-world Web services
• 64 time slices, at 15min time interval

66

Experiments
Evaluation metrics

– MRE (median relative error): 50% of the relative errors are below MRE
– NPRE takes the 90th percentile of all the pairwise relative errors

Baseline approaches to compare
– UPCC, IPCC, UIPCC: conventional collaborative filtering baselines

[Shao et al., ICWS’07] [Zheng et al., ICWS’09][Zheng et al., TSC’11]

– PMF: convectional matrix factorization approach
[Salakhutdinov et al, NIPS’07][Lo et al., SCC’12]

– These approaches cannot perform online

67

68

Response time results

MRE NPRE

AMF achieves 41%~46% improvement in MRE,
65%~70% improvement in NPRE

69

Throughput results

AMF achieves 24%~29% improvement in MRE,
37%~56% improvement in NPRE

MRE NPRE

Compared approaches
– UIPCC
– PMF

70

Efficiency analysis

AMF: continuously and
incremental updating

Re-train the entire model at each time slice

Online QoS prediction of Web services
– AMF: adaptive matrix factorization
– Techniques of data transformation, online learning, and

adaptive weights
– Online, accurate, and scalable predictions

Release of code and datasets
– WS-DREAM dataset: http://www.wsdream.net

– Code at Github: http://wsdream.github.io/AMF
71

Summary of Topic 2

100+ downloads from 15 countries

Outline

• Learning to log for runtime service monitoring

• Online QoS prediction of Web services

• Conclusion and future work

72

Conclusion
Contributions

– Learning to log for runtime service monitoring
• A framework to provide informative logging suggestions to developers

– Online QoS prediction of Web services
• An online, accurate, and scalable QoS prediction approach

73

Conclusion
Contributions

– Learning to log for runtime service monitoring
• A framework to provide informative logging suggestions to developers

– Online QoS prediction of Web services
• An online, accurate, and scalable QoS prediction approach

– Response time prediction of Web services
• A Web service positioning framework based on network coordinates

– Privacy-preserving QoS prediction of Web services
• A privacy-preserving QoS prediction framework based on data

randomization
74

Future work
Automatic logging

– Where to log vs what to log
– Tool support for developers

Massive log analysis
– To automate log analysis for failure diagnosis by using machine

learning techniques

75

Publications (1)
1. Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang. Learning to

Log: Helping Developers Make Informed Logging Decisions. In Proc. Of the International Conference
on Software Engineering (ICSE), pages 415-425, 2015.

2. Jieming Zhu, Pinjia He, Zibin Zheng, and Michael R. Lyu. A Privacy-Preserving QoS Prediction
Framework for Web Service Recommendation. In Proc. of the IEEE International Conference on Web
Services (ICWS), pages 241-248, 2015.

3. Cuiyun Gao, Baoxiang Wang, Pinjia He, Jieming Zhu, Yangfan Zhou, and Michael R. Lyu. PAID:
Prioritizing App Issues for Developers by Tracking User Reviews Over Versions. In Proc. of the IEEE
International Symposium on Software Reliability Engineering (ISSRE), 2015.

4. Jieming Zhu, Pinjia He, Zibin Zheng, and Michael R. Lyu. Towards Online, Accurate, and Scalable QoS
Prediction for Runtime Service Adaptation. In Proc. of the IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 318-327, 2014.

5. Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dongmei Zhang, and Tao
Xie. Where Do Developers Log? An Empirical Study on Logging Practices in Industry. In Proc. of the
International Conference on Software Engineering (ICSE), pages 24-33, 2015.

6. Pinjia He, Jieming Zhu, Zibin Zheng, Jianlong Xu, and Michael R. Lyu. Location-based Hierarchical
Matrix Factorization for Web Service Recommendation. In Proc. of the IEEE International Conference on
Web Services (ICWS), pages 297-304, 2014.

76

Publications (2)
7. Pinjia He, Jieming Zhu, Jianlong Xu, and Michael R. Lyu. A Hierarchical Matrix Factorization Approach

for Locationbased Web Service QoS Prediction. In Proc. of the International Workshop on Internet-
based Virtual Computing Environment (iVCE), pages 290-295, 2014.

8. Jieming Zhu, Zibin Zheng, and Michael R. Lyu. DR2: Dynamic Request Routing for Tolerating Latency
Variability in Online Cloud Applications. In Proc. of the IEEE International Conference on Cloud
Computing (CLOUD), pages 589-596,2013.

9. Zibin Zheng, Jieming Zhu, and Michael R. Lyu. Service-generated Big Data and Big Data-as-a-Service:
An Overview. In Proc. of the IEEE International Congress on Big Data, pages 403-410, 2013.

10. Jieming Zhu, Zibin Zheng, Yangfan Zhou, and Michael R. Lyu. Scaling Service-oriented Applications
into Geo-distributed Clouds. In Proc. of the International Workshop on Internetbased Virtual Computing
Environment (iVCE), pages 335-340, 2013.

11. Jieming Zhu, Yu Kang, Zibin Zheng, and Michael R. Lyu. WSP: A Network Coordinate based Web
Service Positioning Framework for Response Time Prediction. In Proc. of the IEEE International
Conference on Web Services (ICWS), pages 90-97, 2012.

12. Jieming Zhu, Yu Kang, Zibin Zheng and Michael R. Lyu. A Clustering-based QoS Prediction Approach
for Web Services Recommendation. In Proc. of the International Workshop on Internet-based Virtual
Computing Environment (iVCE), pages 93-98, 2012.

77

Thank you!
Q&A

FAQ1: Learning to log

79

1. How many logging statements are there in your studied systems ? And
what’s the logging ratio in the code?

2. What is the effect of different machine learning models?

3. What is the effect of imbalance handling?

4. Why do you use Balanced Accuracy for evaluation? Why not precision and
recall?

5. Why not evaluate your LogAdvisor tool with real developers?

6. What are the factors to determine whether to log or not in practice?

FAQ2: Learning to log

80

7. You said logging is pervasive. Why did I not write logging code at all?

8. Exceptions occur occasionally. Why not log them all? What will happen?

9. Why did you only study systems written in C# ? Can LogAdvisor be applied to
systems in other languages?

10. LogAdvisor learns from existing code. What if the project has bad logging
practice?

11. Sounds good. Are there any limitations?

12. Is this work industry-driven? Or is it a one off paper?

13. I totally don’t get why you are doing this!?

FAQ3: Online QoS prediction

81

1. What is the impact of data transformation on accuracy?

2. How did you evaluate the scalability of AMF?

3. What is the impact of matrix density on accuracy?

4. What is the main difference between AMF and MF?

5. Why is MRE (relative error) better than MAE (absolute error) in evaluation?

6. What is the main purpose of adaptive weights? How to assign them?

7. What is the approach of UIPCC?

8. How can we use AMF prediction results for runtime service adaptation?

