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Online services are serving many 
aspects of our daily life
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Web search

Social network

Online chatting

Online shopping

Popular online services

And many others…
3



7 x 24 availability
Responsiveness

User satisfaction Revenue increase

Quality of service
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is critical to success



Quality degradation causes revenue loss
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Quality management of online 
service systems is important,

but challenging
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[Image from: http://www.lifehack.org/articles/technology/you-may-never-know-these-google-search-tips-and-tricks-you-miss-this.html] 7

Online service systems are becoming
large-scale in size  and complex in structure



A prototype of Google search service

[Image adapted based on Jeff Dean’s slides: http://www.slideshare.net/yarapavan/achieving-rapid-response-times-in-large-online-services] 8
A prototype of Google’s system

Online service systems are built on 
service-oriented architectures



[Image from: http://www.slideshare.net/yarapavan/achieving-rapid-response-times-in-large-online-services]

Online service systems are 
highly distributed

Component services are likely 
deployed across geographically 
distributed datacenters

A single request may go through 
thousands of machines



Traditional engineering techniques 
are often not sufficient
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Data-driven service quality 
management is in need



Data-driven service quality management
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Service-generated logs



Data-driven service quality management
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Service relationship information



Data-driven service quality management
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User-perceived QoS (Quality of 
Service) information



Data-driven service quality management
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Thesis contributions

Learning to log for runtime service monitoring
[ICSE’15, ICSE’14] (Chapter 6)
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Response time prediction [ICWS’12, iVCE’12] (Chapter 3)

Online QoS prediction [ICDCS’14] (Chapter 4)

Privacy-preserving QoS prediction [ICWS’15] (Chapter 5) 

Dynamic service deployment [iVCE’13] (Chapter 3.5) 

Dynamic request routing [CLOUD’13] (Chapter 4.5) 



Outline

• Topic 1: Learning to log for runtime service monitoring

• Topic 2: Online QoS prediction of Web services

• Conclusion and future work
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Outline

• Topic 1: Learning to log for runtime service monitoring
– Motivation
– Framework of learning to Log
– Implementation details
– Evaluation
– Summary
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What is logging?
Logging is a common programming practice to record 
runtime system information

Logging methods
– Basic utilities: printf, cout, writeline
– Sophisticated tools: log4j, Unified Logging System (Microsoft)
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Logging format: 

Log example: 



The importance of logging
Logs are used as a principal tool for runtime service 
monitoring

– Usage analysis
– Anomaly detection
– Failure diagnosis

• The only data available for diagnosing production failures

Commercial acceptance
– Vendors actively collect logs: Microsoft, Google, VMware
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Logging is significantly important!



Challenges of logging
Logging too little

– Miss valuable runtime information
– Increase the difficulty for problem diagnosis

Logging too much
– Additional cost of code development & maintenance
– Runtime overhead (CPU, I/O)
– Too much redundant/useless logs

21

[Yuan et al., OSDI’12]



Challenges of logging
Logging too little

– Miss valuable runtime information
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– Runtime overhead (CPU, I/O)
– Too much redundant/useless logs
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[Yuan et al., OSDI’12]

Developers need to make informed 
logging decisions on where to log!



Current practice of logging
An empirical study on logging practice [ICSE’14]

– Developer survey
• 37 developers participated (~4.9 years of programming experience)

– Source code analysis
• 4 large software systems from both Microsoft and Github

How do developers make logging decisions in 
industry? 

– Lack of rigorous specifications on logging
– Mostly based on domain knowledge of developers
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Contributions of this work

Learning to log for runtime service monitoring
– Automatically learn logging practice from existing logging 

instances via machine learning

– Provide logging suggestions during development

– Implemented as a prototype tool “LogAdvisor”
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The work was collaborated with Microsoft Research Asia
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Framework of learning to log
A general learning framework similar to other machine 
learning applications
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(5) 



Framework of learning to log
A general learning framework similar to other machine 
learning applications
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(5) 
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Focused snippets: indicate potential error sites
– Exception snippets: try-catch blocks
– Return-value-check snippets: function-return errors

33

try {
method(…);

}
catch (IOException) {

log(…);
…

}

var res = method(…);
if (res == null) {

log(…);
…

}

Exception snippet example Return-value-check snippet example



All the code analysis is conducted based on an open-source 
C# code analysis tool, Roslyn

Label identification
– “logged” if a focused code snippet contains a logging statement
– “unlogged”, otherwise. 
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try {
method(…);

}
catch (IOException) {

log(…);
…

}

var res = method(…);
if (res == null) {

log(…);
…

}

logged logged



Contextual feature extraction
– Structural features
– Textual features
– Syntactic features
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Feature extraction (1)
Structural features: structural info of code
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private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting 
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

... }
}

Exception Type: 
System.IO.FileNotFoundException

Containing method: 
Gendarme.Settings.LoadRulesFromAssembly

Invoked methods: 
System.IO.Path.GetFullPath, 
System.Reflection.AssemblyName.GetAssemblyName, 
System.Reflection.Assembly.Load

/* A code example taken from MonoDevelop (v.4.3.3), at file: * main\external\mono-tools\gendarme\console\Settings.cs, 
* line: 116. Some lines are omitted for ease of presentation. */



Feature extraction (2)
Textual features: code as text
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private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting 
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

... }
}

Textual features:
load(2), rules(1), assembly(7), 
setting(1), name(2), aname(2), 
get(2), path(1), full(1), file(1), 
not(1), found(1), exception(1) 



Feature extraction (3)
Syntactic features: syntactic info of code
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private int LoadRulesFromAssembly (string assembly, ...){
//Code in Setting 
try {

AssemblyName aname = AssemblyName.
GetAssemblyName(Path.GetFullPath (assembly));
Assembly a = Assembly.Load (aname);

}
catch (FileNotFoundException) {

Console.Error.WriteLine ("Could not load rules
From assembly '{0}'.", assembly); return 0; }

... }
}



Feature selection
High-dimensional feature vectors (~72K features in System-B)

– Remove infrequence features  (e.g., less than 5)
– Leverage information gain for further elimination

Data imbalance handling
– Unlogged vs logged instances (ratio up to 50 : 1)
– Unlogged instances dominate the neighborhood 
– Use SMOTE [Chawla et al., 2002] to balance data
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• Classification models
– Naive Bayes 
– Bayes Net 
– Logistic Regression 
– SVM 
– Decision Tree

• Providing logging suggestions by using constructed 
models: whether or not to log a code snippet
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Systems under study
Four large-scale software systems

– System-A and System-B (anonymized)
• Production online service systems from Microsoft

– SharpDevelop and MonoDevelop
• Open-source projects from Github
• Popular C# projects
• 10000+ commits
• 10+ years of history
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C# software systems, 19.1M LOC, 100.6K logging instances in total



Evaluation setup 
Ground truth: logging labels made by code owners

Metric: balanced accuracy (BA)

Within-project evaluation: 10-fold cross evaluation
Across-project evaluation: one source project for training, 
one target project for testing
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Accuracy of unlogged instancesAccuracy of logged instances



Evaluation (1)
Within-project evaluation 

– Random: randomly logging (as a new developer)
– ErrLog [Yuan et al., OSDI’12]: logging all exception snippets
– LogAdvisor: BA results 0.846 ~ 0.934
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Evaluation (2)
Across-project evaluation

– Enrich the training data from other projects
– Extract common features among these projects
– BA results: above 0.8
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• A “learning to log” framework aimed for automatic 
logging suggestion 

• Evaluation on four large-scale software systems
– Industrial systems and open-source systems
– Within-project and across-project evaluation

• Release of code and data for future research:
http://cuhk-cse.github.io/LogAdvisor

• Potential impact in industry (Microsoft)

46

Summary of Topic 1
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Motivation
Web service: a component to build online services

– Black-box (third-party) Web APIs
– Accessed over a network
– Executed on remote systems



Motivation

Service Service Service Service

[Image from http://www.singaporeair.com]



Motivation
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Failure



Motivation

52

Runtime service adaptation: 
[Moser et al. WWW’08][Cardellini et al., TSE’12]
switching a working service to a candidate service at runtime (e.g., B1  B2, C2  B1)



Decisions for service adaptation:

Motivation

53

When to trigger an adaptation action?

Which working services to be replaced?

Which candidate services to employ?

Need real-time QoS
information of services



Motivation
Quality-of-Service (QoS)

including response time, throughput, failure probability, etc. 

– Time-varying
• Dynamic network
• Varying workload

54

– User-specific
• Users distributed worldwide
• Different networks

85% users



Motivation
Exhaustive measurement is infeasible

– Resource-consuming (large measurement overhead)
– Time-consuming (thousands of services)

QoS prediction
by leveraging partial measurements to predict the remaining ones

– Existing work: e.g., monitoring or time-series based prediction for  
QoS of working services [Amin et al., ASE’12]

– Unsolved problem: QoS prediction of candidate services
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Problem
The problem of Online QoS prediction
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(c) Dynamic QoS matrix

How to predict the 
unknown values 
at runtime?



Contributions of this work

AMF: adaptive matrix factorization
– An approach to enable online, accurate, and scalable QoS predictions

Key techniques
– Data transformation
– Online learning
– Adaptive weights
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Key observation
The measured QoS data matrix has an approximate low rank 
in nature
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90% variance



Low-rank matrix approximation
Matrix factorization (MF):

Problem formulation:
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Squared sum of error Regularization termsGradient descent updates 



Challenges in applying MF to QoS prediction

• Challenge 1: skewed QoS value distributions

• Challenge 2: time varying QoS values

• Challenge 3: scalability on new users and services
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Dealing with challenge 1
(skewed QoS distributions)

Box-Cox transformation 
– Stabilize data variance
– Rank-preserving
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Response Time Throughput

Response Time Throughput



Dealing with challenge 2
(time varying QoS values)

Online learning 
– Stochastic gradient descent (SGD) algorithm
– Adapt to each newly observed data sample 
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૟,ଶݎ૛࢚ ૜,૞ݎ૜࢚ଵ,૜ݎ૝࢚ ଵ,ଶݎଵ࢚૜,ଶݎ૞࢚ ૛,૝ݎ૟࢚ ଵ,ଶݎૠ࢚……
Updating in online mode:

SGD updating rules: 

Gradient descent works in 
batch mode



Adaptive weights 
– Weighted learning rate for each user/service: Large for new vectors, 

small for converged vectors

– Become robust 
• Existing users and services keep stable
• New users and services converge fast
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1.0

1.5

Updating rules:

Dealing with challenge 3
(scalability on new users and services)
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Experiments
Data collection

– Response time (RT): user-perceived delay of a service invocation 
– Throughput (TP): data transmission rate
– 142 * 4500 * 64 QoS matrix

• 142 users (Planetlab nodes)
• 4,500 real-world Web services
• 64 time slices, at 15min time interval 
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Experiments
Evaluation metrics

– MRE (median relative error): 50% of the relative errors are below MRE
– NPRE takes the 90th percentile of all the pairwise relative errors

Baseline approaches to compare
– UPCC, IPCC, UIPCC: conventional collaborative filtering baselines 

[Shao et al., ICWS’07] [Zheng et al., ICWS’09][Zheng et al., TSC’11]

– PMF: convectional matrix factorization approach 
[Salakhutdinov et al, NIPS’07][Lo et al., SCC’12]

– These approaches cannot perform online

67



68

Response time results

MRE NPRE

AMF achieves 41%~46% improvement in MRE, 
65%~70% improvement in NPRE



69

Throughput results

AMF achieves 24%~29% improvement in MRE, 
37%~56% improvement in NPRE

MRE NPRE



Compared approaches
– UIPCC
– PMF
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Efficiency analysis

AMF: continuously and 
incremental updating

Re-train the entire model at each time slice



Online QoS prediction of Web services
– AMF: adaptive matrix factorization
– Techniques of data transformation, online learning, and 

adaptive weights
– Online, accurate, and scalable predictions

Release of code and datasets
– WS-DREAM dataset: http://www.wsdream.net

– Code at Github: http://wsdream.github.io/AMF
71

Summary of Topic 2

100+ downloads  from 15 countries
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Conclusion
Contributions

– Learning to log for runtime service monitoring 
• A framework to provide informative logging suggestions to developers

– Online QoS prediction of Web services
• An online, accurate, and scalable QoS prediction approach
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Conclusion
Contributions

– Learning to log for runtime service monitoring 
• A framework to provide informative logging suggestions to developers

– Online QoS prediction of Web services
• An online, accurate, and scalable QoS prediction approach

– Response time prediction of Web services
• A Web service positioning framework based on network coordinates

– Privacy-preserving QoS prediction of Web services 
• A privacy-preserving QoS prediction framework based on data 

randomization
74



Future work
Automatic logging

– Where to log vs what to log
– Tool support for developers

Massive log analysis
– To automate log analysis for failure diagnosis by using machine 

learning techniques 
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Thank you!
Q&A



FAQ1: Learning to log

79

1. How many logging statements are there in your studied systems ? And  
what’s the logging ratio in the code?

2. What is the effect of different machine learning models?

3. What is the effect of imbalance handling?

4. Why do you use Balanced Accuracy for evaluation? Why not precision and 
recall?

5. Why not evaluate your LogAdvisor tool with real developers?

6. What  are the factors to determine whether to log or not in practice?



FAQ2: Learning to log
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7. You said logging is pervasive. Why did I not write logging code at all? 

8. Exceptions occur occasionally. Why not log them all? What will happen?

9. Why did you only study systems written in C# ? Can LogAdvisor be applied to 
systems in other languages? 

10. LogAdvisor learns from existing code. What if the project has bad logging 
practice?

11. Sounds good. Are there any limitations?

12. Is this work industry-driven? Or is it a one off paper?

13. I totally don’t get why you are doing this!?



FAQ3: Online QoS prediction

81

1. What is the impact of data transformation on accuracy?

2. How did you evaluate the scalability of AMF?

3. What is the impact of matrix density on accuracy?

4. What is the main difference between AMF and MF?

5. Why is MRE (relative error) better than MAE (absolute error) in evaluation?

6. What is the main purpose of adaptive weights? How to assign them?

7. What is the approach of UIPCC?

8. How can we use AMF prediction results for runtime service adaptation?


