Learning to Recommend

Hao Ma

Supervisors: Prof. Irwin King and Prof. Michael R. Lyu

Dept. of Computer Science & Engineering The Chinese University of Hong Kong

26-Nov-09

How much information is on the web?

Information Overload

We Need Recommender Systems

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

Invincible 🖂 ~ Michael Jackson

In Search of Sunrise, Vol. 7: Asia C ~ DJ Tiesto (53) \$15.99

AMAR ES COMBATIR Amar Es Combatir 🗸 ~ Maná

1400

Page 1 of 25

My Movies: gabe_ma Edit Profile

Recommendations For You

Movies in Theaters: 94089

Burn After Reading (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B- 4794 ratings The Critics: B 14 reviews.

🔞 Don't Recommend Again 😳 Seen It? Rate It!

Fight Club (R) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B+ 52392 ratings B 12 reviews The Critics:

The Critics:

🔞 Don't Recommend Again 🕥 Seen It? Rate It!

DUCH

🔞 Don't Recommend Again 🜑 Seen It? Rate It!

B+ 13 reviews

Yahoo! Users: A- 59 ratings The Critics: C+ 6 reviews

🔞 Don't Recommend Again 🕥 Seen It? Rate It!

Lakeview Terrace (PG-13) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B 3229 ratings C 12 reviews The Critics:

🔞 Don't Recommend Again 🕥 Seen It? Rate It!

The Duchess (PG-13) Showtimes & Tickets | Add to My Lists

Yahoo! Users: B+ 953 ratings The Critics: B- 10 reviews

🔞 Don't Recommend Again 🕄 Seen It? Rate It!

See All Recommendations

Receive Recommendations by Email

Showtimes & Tickets | Add to My Lists

Pride and Glory (R)

iLike..

Songs from friends and similar people

🕨 Play All 🔁 | Buy all 🖸

Victims by The Oppressed
 New! Traditional Byrd69

Skinhead Girl by The Oppressed New! Traditional Byrd69

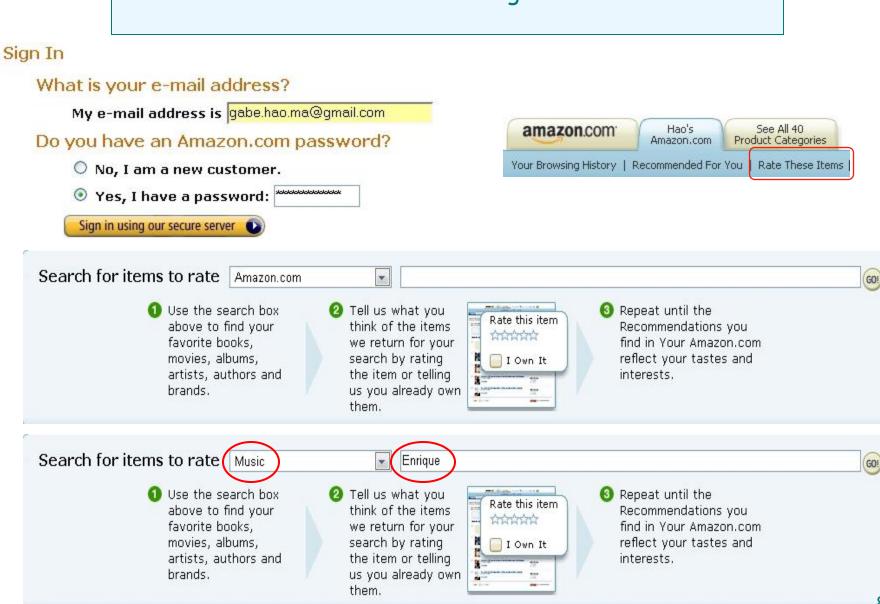
King Of The Jungle by Last Resort New! Traditional Byrd69

Violence In Our Minds by Last Resort New! Traditional Byrd69

Violence by The Templars
 New! Traditional Byrd69

View all | invite more friends

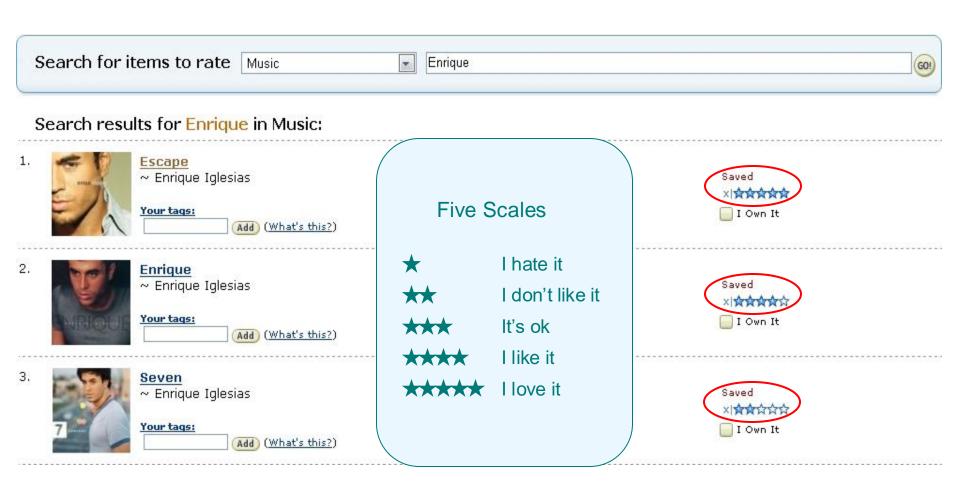
5-scale Ratings



5-scale Ratings

	Search for i	tems to rate Music Enrique	60)
5	Search resu	Ilts for <mark>Enrique</mark> in Music:	
1.		Escape ~ Enrique Iglesias Your tags: Add (What's this?)	Rate it শার্হার্কার্কার্ক I Own It
2.	WRICH	Enrique ~ Enrique Iglesias Your tags: Add (What's this?)	Rate it >រជាជាជាជាដ I Own It
3.	7	Seven ~ Enrique Iglesias Your tags: Add (What's this?)	Rate it শার্মের্ক্লের্ক [] I Own It

5-scale Ratings

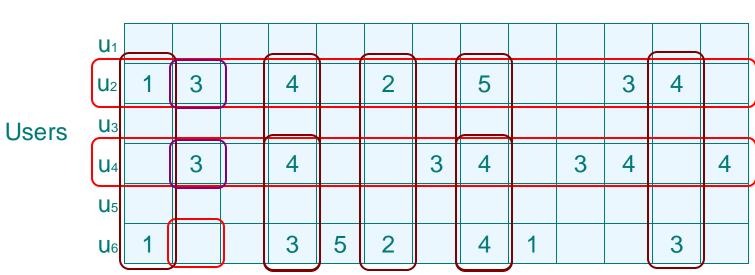


Traditional Methods

- Memory-based Methods (Neighborhoodbased Method)
 - Pearson Correlation Coefficient
 - ∝ User-based, Item-based
 - œ Etc.
- Model-based Method
 Matrix Factorizations
 Bayesian Models
 Etc.

	v_1	v_2	<i>V</i> ₃	v_4	v_5	v_6
u_1		5	2		3	
u_2	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3

User-based Method



Items

Matrix Factorization

 i_1

5

4

4

4.8

5

4

 i_2

2

3

1.7

2.1

1

3

i₃

2.5

2

2.7

2

2.9

2.4 2.9

i4

3

3.2

2.6

3.4

2

i_s

4.8

5

3.9

4.7

4

4

	i_1	i_2	i ₃	i4	i5	i ₆	<i>i</i> 7	i ₈	
u_1	5	2		3		4			
u_2	4	3			5				
u ₃	4		2				2	4	
u_4									
u_5	5	1	2		4	3			
u_6	4	3		2	4		3	5	

0.62	-0.01		1.00	-0.05	-0.24	0.26	1.28	0.54	-0.31	0.52
1.10	0.25		0.19	-0.86	-0.72	0.05	0.68	0.02	-0.61	0.70
0.27	1.51	V =	0.49	0.09	-0.05	-0.62	0.12	0.08	0.02	1.60
-0.90	0.68		-0.40	0.70	0.27	-0.27	0.99	0.44	0.39	0.74
1.81	0.40		1.49	-1.00	0.06	0.05	0.23	0.01	-0.36	0.80

i₆

4

4.1

3.0

3.8

3

3.4

 i_7

2.2

2.6

2

2.4

1.5

3

i₈

4.8

4.7

4

4.9

4.6

5

$$U = \begin{bmatrix} 1.55 \ 1.22 \ 0.37 \ 0.81 \ 0.62 \ -0.01 \\ 0.36 \ 0.91 \ 1.21 \ 0.39 \ 1.10 \ 0.25 \\ 0.59 \ 0.20 \ 0.14 \ 0.83 \ 0.27 \ 1.51 \\ 0.39 \ 1.33 \ -0.43 \ 0.70 \ -0.90 \ 0.68 \\ 1.05 \ 0.11 \ 0.17 \ 1.18 \ 1.81 \ 0.40 \end{bmatrix}$$

Challenges * Data sparsity problem

YAHOO! MOVIES

My Movies: gabe_ma Edit Profile

Challenges

Data sparsity problem

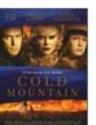
My Movie Ratings

The Pursuit of Happyness (PG-13, 1 hr. 57 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 38992 ratings B- 13 reviews The Critics:

🖸 My Rating: A+

🖸 My Rating: A+



Finding Nemo (G, 1 hr. 40 min.) Buy DVD | Add to My Lists

Yahoo! Users:	B+	137394 ratings
The Critics:	A-	14 reviews

🖸 My Rating: A

Cold Mountain (R, 2 hrs. 35 min.) Buy DVD | Add to My Lists

Yahoo! Users: B The Critics:

38986 ratings B+ 10 reviews

My Rating: B+

Shrek 2 (PG, 1 hr. 32 min.) Buy DVD | Add to My Lists Yahoo! Users: B+ 150368 ratings The Critics: 15 reviews B

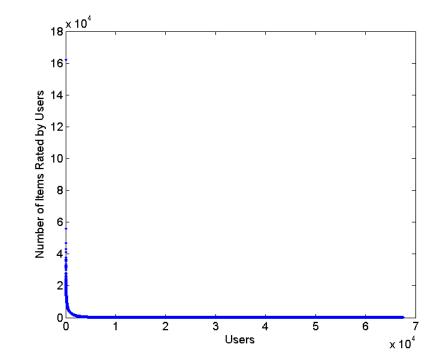
The Lord of the Rings: The Fellowship of the Ring Buy DVD | Add to My Lists Yahoo! Users: A- 110957 ratings The Critics: 15 reviews

🖸 My Rating: B

15

🖸 My Rating: A

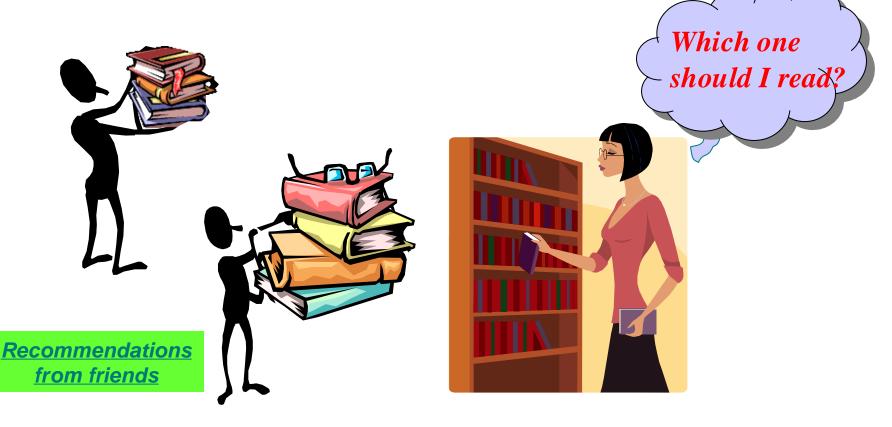
Number of Ratings per User



Data Extracted From Epinions.com

Challenges

 Traditional recommender systems ignore the social connections between users



Contents

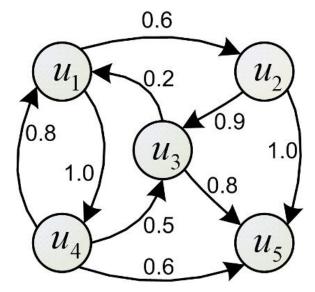
Chapter 3: Effective Missing Data Prediction

- Chapter 4: Recommend with Global Consistency
- * Chapter 5: Social Recommendation
- * Chapter 6: Recommend with Social Trust Ensemble

* Chapter 7: Recommend with Social Distrust

Social Recommendation

Problem Definition

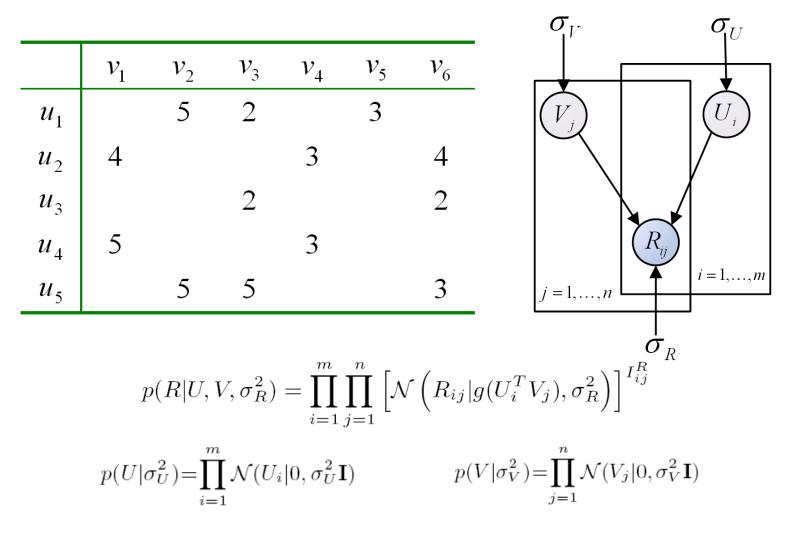


Social Trust Graph

	v_1	v_2	<i>v</i> ₃	v_4	V_5	V ₆
u_1		5	2		3	
u_2	4			3		4
u_3			2			2
u_2 u_3 u_4	5			3		
u_5		5	5			3

User-Item Rating Matrix

User-Item Matrix Factorization

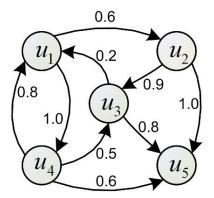


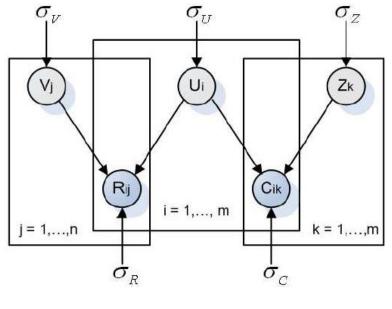
R. Salakhutdinov and A. Mnih (NIPS'08)

SoRec

Social Recommendation (SoRec)

	v_1	v_2	v_3	v_4	v_5	v_6
u_1		5	2		3	
u_2 u_3 u_4	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3

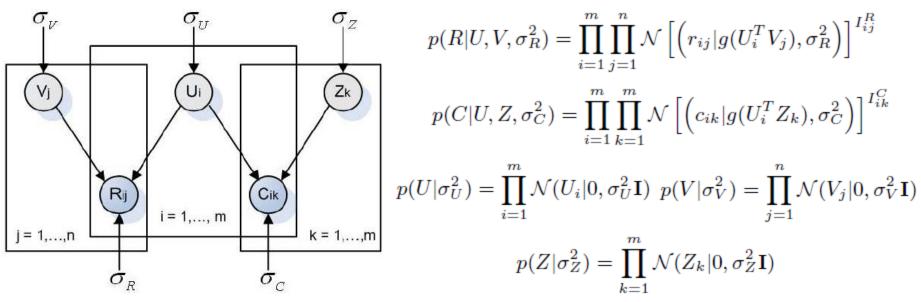




SoRec

SoRec

Social Recommendation (SoRec)



$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2} + \frac{\lambda_{Z}}{2} \|Z\|_{F}^{2},$$

SoRec

$$\frac{\partial \mathcal{L}}{\partial U_i} = \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j$$

+
$$\lambda_C \sum_{j=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i,$$

$$\frac{\partial \mathcal{L}}{\partial V_j} = \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j,$$

 $\frac{\partial \mathcal{L}}{\partial Z_k} = \lambda_C \sum_{i=1}^m I_{ik}^C g' (U_i^T Z_k) (g (U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k,$

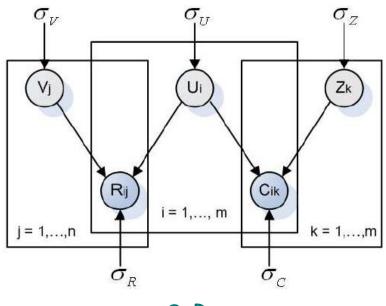
Complexity Analysis

- For the Objective Function $O(\rho_R l + \rho_C l)$
- \clubsuit For $\frac{\partial \mathcal{L}}{\partial U}$, the complexity is $O(\rho_R l + \rho_C l)$
- \clubsuit For $\frac{\partial \mathcal{L}}{\partial V}$, the complexity is $\mathit{O}(\rho_R l)$
- \clubsuit For $\frac{\partial \mathcal{L}}{\partial Z}$, the complexity is $\mathit{O}(\rho_{C} \mathit{l})$

 In general, the complexity of our method is linear with the observations in these two matrices

Disadvantages of SoRec

- Lack of interpretability
- Does not reflect the real-world recommendation process

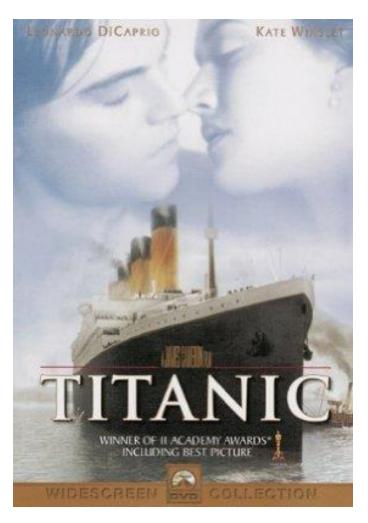


SoRec

Chapter 6

Recommend with Social Trust Ensemble

1st Motivation



Leonardo DiCaprio Kate Winslet

Revolutionary Road

manager and Fighterd Volker

Unterritivitie's Patrones un accuse BCCEImi Essence Cruzitement DEC Films Neis Street une Sam Meridan - Lancento CKCanvest Facel Meridal Sharron Kathryn Hahn David Hendou - Kathr, Street Tieber Laws-, Dixo, Zhreu, "Thomas Navnen - Miller del Poste Merida Sharron Kathryn Hahn David Hendou - Kathr, Street Tieber Laws-, Dixo, Zhreu, "Thomas Navnen - Miller del Poste Merida Sharron Kathryn Hahn David Hendou - Kathr, Street Merida Sharron Kathryn Hahn David Hendou - Kathr, Street Merida Sharron Merida Sharron - Street - Miller del Poste Merida Merida Merida David Kathr, Street Merida Sharron - Merida Sharron Merida Merida Merida Sharron - Kathr, Street Merida Sharron Merida Merida Merida Sharron - Miller Merida Sharron - Miller Merida Merida Sharron - Miller Merida Sharron - Miller Hauth Merida Sharron - Miller Sharron - Miller Merida Sharron - Miller Hauth Merida Sharron - Miller Merida Sharron - Miller Hauth Street Merida Sharron - Miller - M

------ Kalling and the set of the

1st Motivation

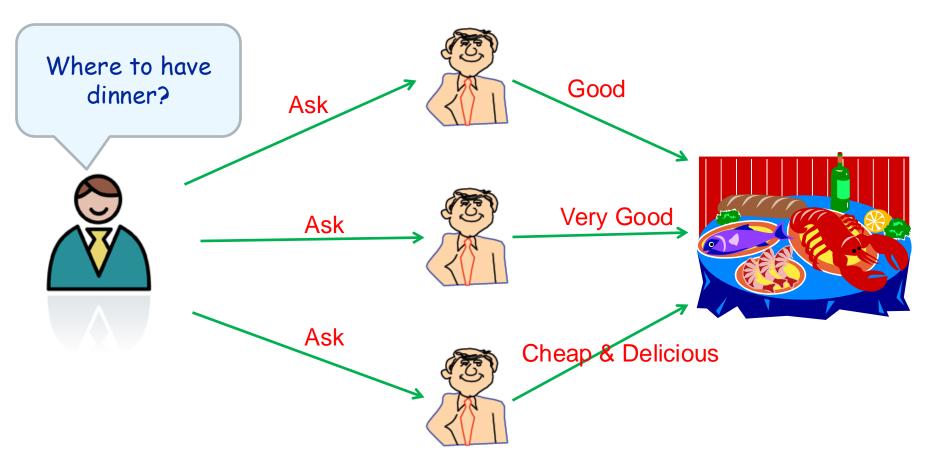
1st Motivation

Sers have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

Leonardo DiCaprio Kate Winslet

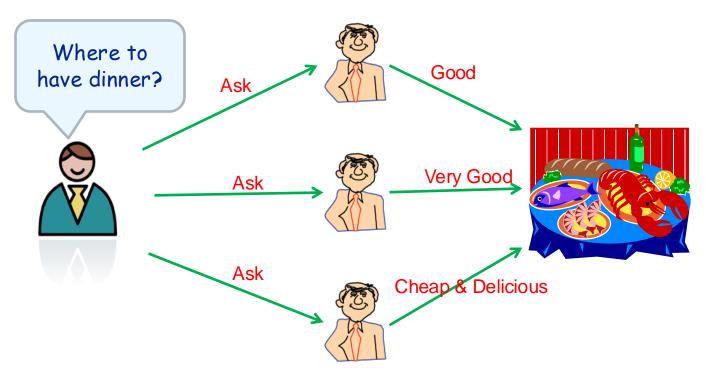
Therefore for the service of the design of the service of the design of the service of the design of the service of the servic

2nd Motivation



2nd Motivation

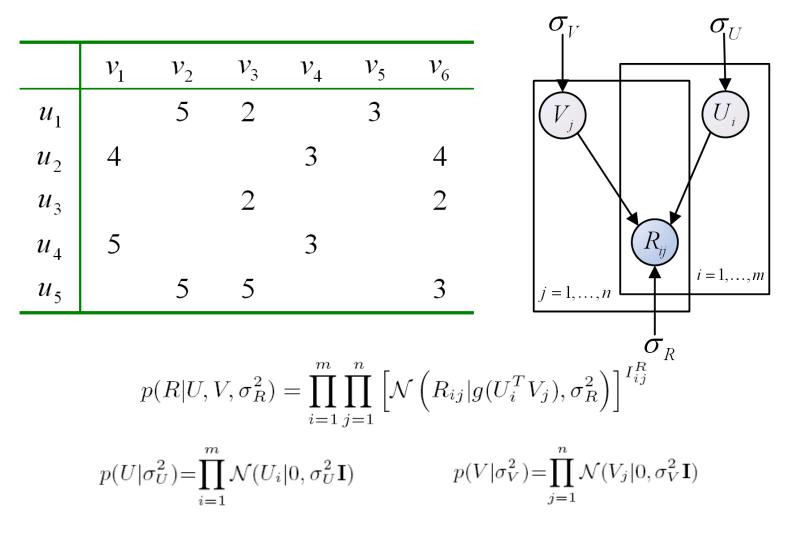
 Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.



Motivations

- Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.
- Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.
- * One user's final decision is the balance between his/her own taste and his/her trusted friends' favors.

User-Item Matrix Factorization



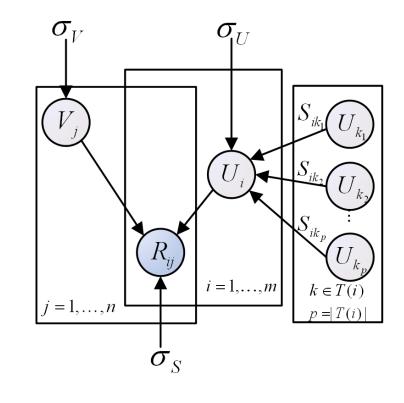
R. Salakhutdinov and A. Mnih (NIPS'08)

Recommendations by Trusted Friends

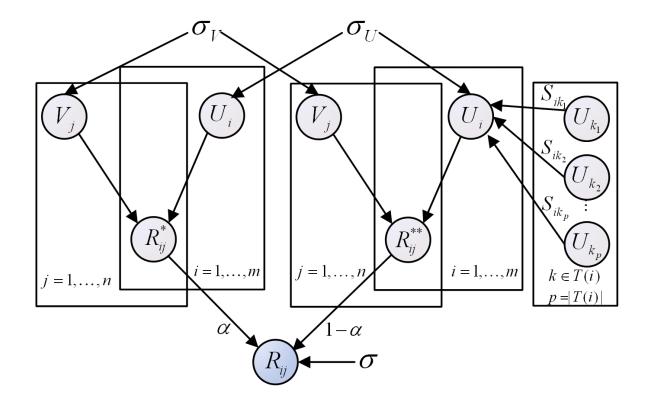
$$\widehat{R}_{ik} = \frac{\sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}}{|\mathcal{T}(i)|}$$

$$\widehat{R}_{ik} = \sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}$$

 $p(R|S, U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ij} | g(\sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma_S^2 \right) \right]^{I_{ij}^R}$



Recommendation with Social Trust Ensemble



$$\prod_{i=1}^{m} \prod_{j=1}^{n} \left[\mathcal{N}\left(R_{ij} | g(\alpha U_i^T V_j + (1-\alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma^2 \right) \right]^{I_{ij}^R}$$

Recommendation with Social Trust Ensemble

$$\mathcal{L}(R, S, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}))^{2} + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2},$$
(15)

Complexity

 In general, the complexity of this method is linear with the observations the useritem matrix

Epinions Dataset

- \$51,670 users who rated 83,509 items with totally 631,064 ratings
- Rating Density 0.015%
- The total number of issued trust statements is 511,799

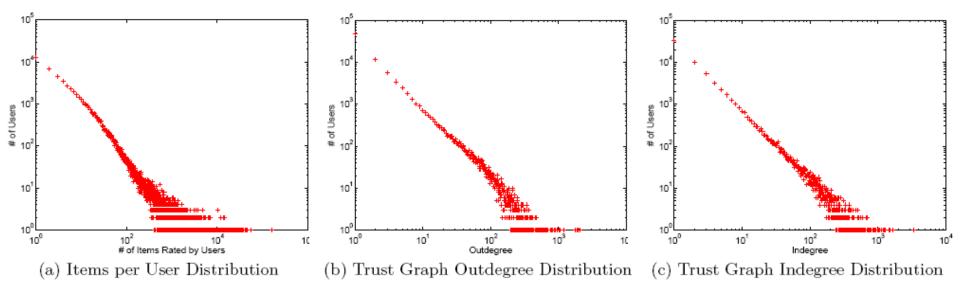


Figure 3: Power-Law Distributions of the Epinions Dataset

Metrics

Mean Absolute Error and Root Mean Square Error

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \hat{r}_{i,j}|}{N}$$

$$RMSE = \sqrt{\frac{\sum_{i,j} (r_{i,j} - \hat{r}_{i,j})^2}{N}}$$

Comparisons

Table 3: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

Training Data	Metrics	Dimensionality $= 5$			Dimensionality $= 10$				
		Trust	\mathbf{PMF}	SoRec	RSTE	Trust	PMF	SoRec	RSTE
90%	MAE	0.9054	0.8676	0.8484	0.8377	0.9039	0.8651	0.8426	0.8367
	RMSE	1.1959	1.1575	1.1418	1.1109	1.1917	1.1544	1.1365	1.1094
80%	MAE	0.9221	0.8951	0.8654	0.8594	0.9215	0.8886	0.8605	0.8537
	RMSE	1.2140	1.1826	1.1517	1.1346	1.2132	1.1760	1.1586	1.1256

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)

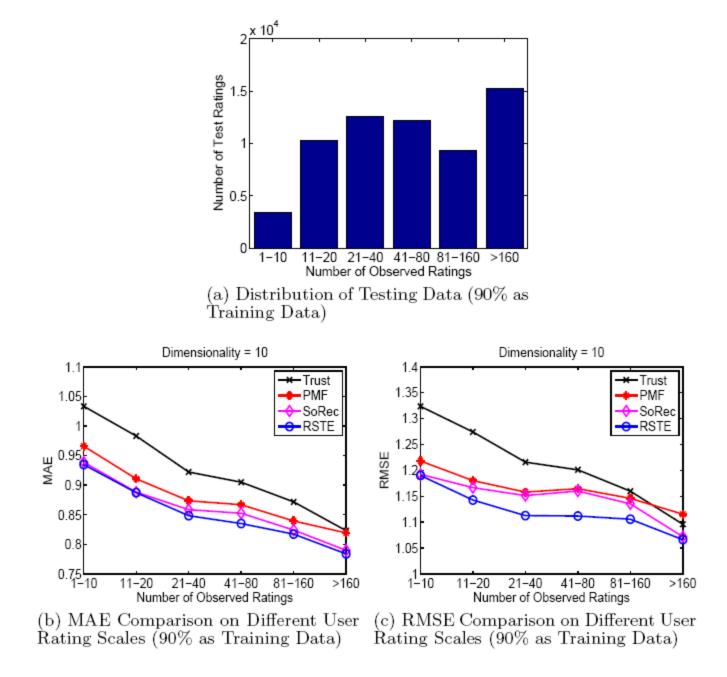
SoRec --- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008)

Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)

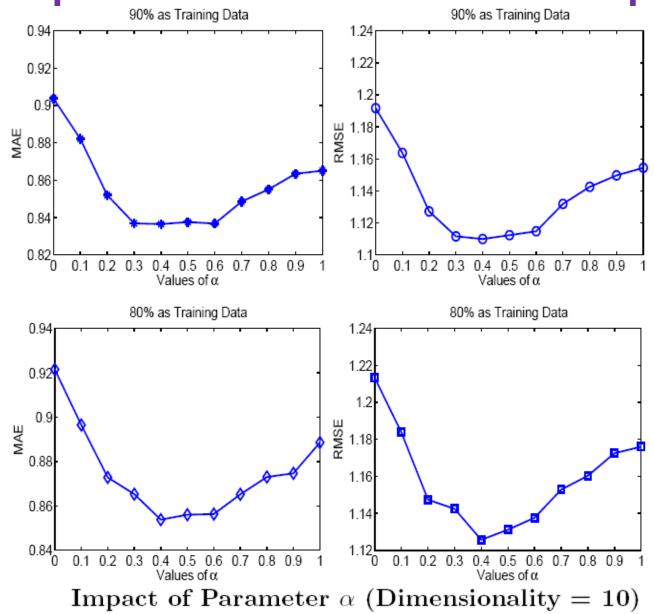
Performance on Different Users

 Group all the users based on the number of observed ratings in the training data

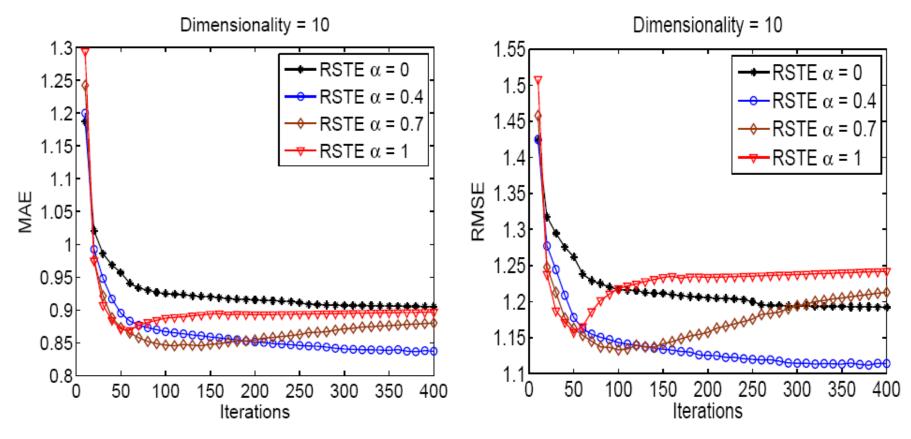
♦ 6 classes: "1 - 10", "11 - 20", "21 - 40", "41 - 80", "81 - 160", "> 160",



Impact of Parameter Alpha



MAE and RMSE Changes with Iterations



90% as Training Data

Conclusions of SoRec and RSTE

Propose two novel Social Trust-based
 Recommendation methods

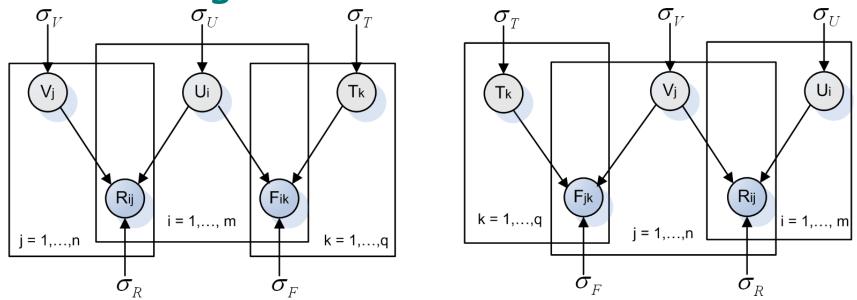
Perform well

Scalable to very large datasets

 Show the promising future of socialbased techniques

Further Discussion of SoRec

 Improving Recommender Systems Using Social Tags



MovieLens Dataset 71,567 users, 10,681 movies, 10,000,054 ratings, 95,580 tags

Further Discussion of SoRec

♦ MAE

Table V: MAE comparison with other approaches on MovieLens dataset (A smaller MAE value means a better performance)

Methods		80% Training	50% Training	30% Training	10% Training
User Mean		0.7686	0.7710	0.7742	0.8234
Item Mean		0.7379	0.7389	0.7399	0.7484
SVD		0.6390	0.6547	0.6707	0.7448
5D	PMF	0.6325	0.6542	0.6698	0.7430
	SoRecUser	0.6209	0.6419	0.6607	0.7040
	SoRecItem	0.6199	0.6407	0.6395	0.7026
10D	SVD	0.6386	0.6534	0.6693	0.7431
	PMF	0.6312	0.6530	0.6683	0.7417
	SoRecUser	0.6197	0.6408	0.6595	0.7028
	SoRecItem	0.6187	0.6395	0.6584	0.7016

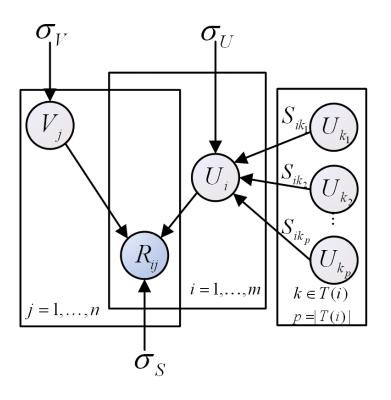
Further Discussion of SoRec

RMSE

Table VI: RMSE comparison with other approaches on MovieLens dataset (A smaller RMSE value means a better performance)

Methods		80% Training	50% Training	30% Training	10% Training
User Mean		0.9779 0.9816		0.9869	1.1587
Item Mean		0.9440	0.9440 0.9463		0.9851
	SVD	0.8327	0.8524	0.8743	0.9892
5D	PMF	0.8310	0.8582	0.8758	0.9698
5D	SoRecUser	0.8121	0.8384	0.8604	0.9042
	SoRecItem	0.8112	0.8370	0.8591	0.9033
10D	SVD	0.8312	0.8509	0.8728	0.9878
	PMF	0.8295	0.8569	0.8743	0.9681
	SoRecUser	0.8110	0.8372	0.8593	0.9034
	SoRecItem	0.8097	0.8359	0.8578	0.9019

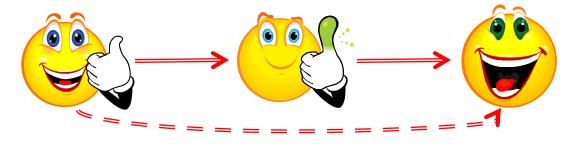
 Further Discussion of RSTE
 Relationship with Neighborhood-based methods

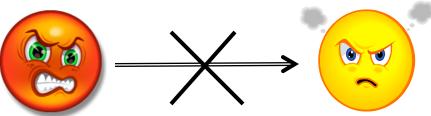


- The trusted friends are actually the explicit neighbors
- We can easily apply this method to include implicit neighbors
- Using PCC to calculate similar users for every user

What We Cannot Model Using SoRec and RSTE?

Propagation of trust





Chapter 7

Recommend with Social Distrust

Distrust

 Users' distrust relations can be interpreted as the "dissimilar" relations
 On the web, user Ui distrusts user Ud indicates that user Ui disagrees with most of the opinions issued by user Ud.

Distrust

$$\max_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} S_{id}^{\mathcal{D}} \| U_{i} - U_{d} \|_{F}^{2}$$

$$\min_{U,V} \mathcal{L}_{\mathcal{D}}(R, S^{\mathcal{D}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T}V_{j}))^{2} \\ + \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} (-S_{id}^{\mathcal{D}} \|U_{i} - U_{d}\|_{F}^{2}) \\ + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2}.$$

Trust

Sers' trust relations can be interpreted as the "similar" relations

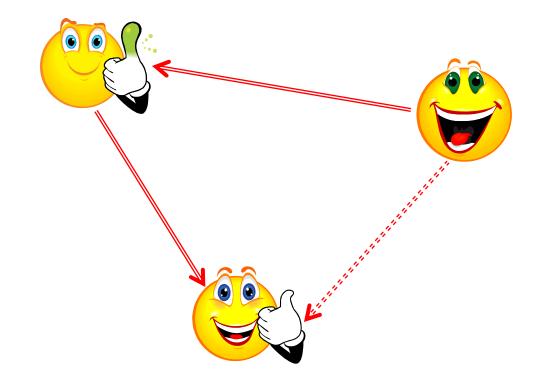
On the web, user Ui trusts user Ut indicates that user Ui agrees with most of the opinions issued by user Ut.

Trust

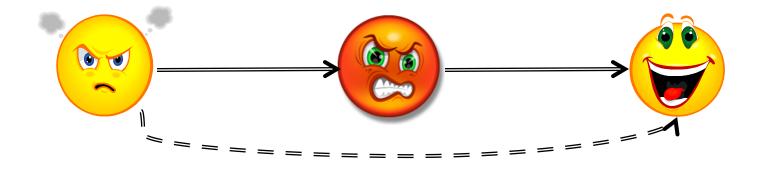
$$\min_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^+(i)} S_{it}^{\mathcal{T}} \| U_i - U_t \|_F^2$$

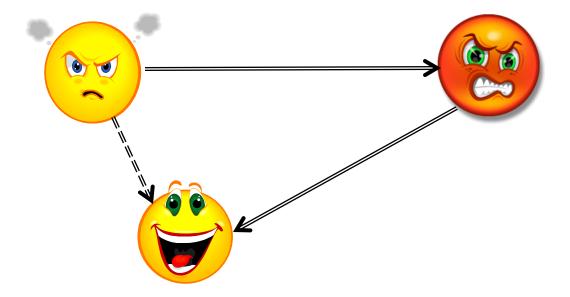
$$\min_{U,V} \mathcal{L}_{\mathcal{T}}(R, S^{\mathcal{T}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^{+}(i)} (S_{it}^{\mathcal{T}} \| U_{i} - U_{t} \|_{F}^{2}) + \frac{\lambda_{U}}{2} \| U \|_{F}^{2} + \frac{\lambda_{V}}{2} \| V \|_{F}^{2}.$$

Trust Propagation



Distrust Propagation?





Experiments

- Dataset Epinions
- \$ 131,580 users, 755,137 items, 13,430,209 ratings
- 717,129 trust relations, 123,670 distrust relations

Data Statistics

Table 1: Statistics of User-Item Rating Matrix of Epinions

Statistics	User	Item	
Min. Num. of Ratings	1	1	
Max. Num. of Ratings	162169	1179	
Avg. Num. of Ratings	102.07	17.79	

Table 2: Statistics of Trust Network of Epinions

Statistics	Trust per User	Be Trusted per User
Max. Num.	2070	3338
Avg. Num.	5.45	5.45

Table 3: Statistics of Distrust Network of Epinions

Statistics	Distrust per User	Be Distrusted per User
Max. Num.	1562	540
Avg. Num.	0.94	0.94

Experiments

RMSE

Dataset	Traning Data	Dimensionality	PMF	SoRec	RWD	RWT
Epinions	5%	5D	1.228	1.199	1.186	1.177
	570	10D	1.214	1.198	1.185	1.176
	10%	$5\mathrm{D}$	0.990	0.944	0.932	0.924
	1070	10D	0.977	0.941	0.931	0.923
	20%	$5\mathrm{D}$	0.819	0.788	0.723	0.721
	2070	10D	0.818	0.787	0.723	0.720

131,580 users, 755,137 items, 13,430,209 ratings 717,129 trust relations, 123,670 distrust relations

Impact of Parameters

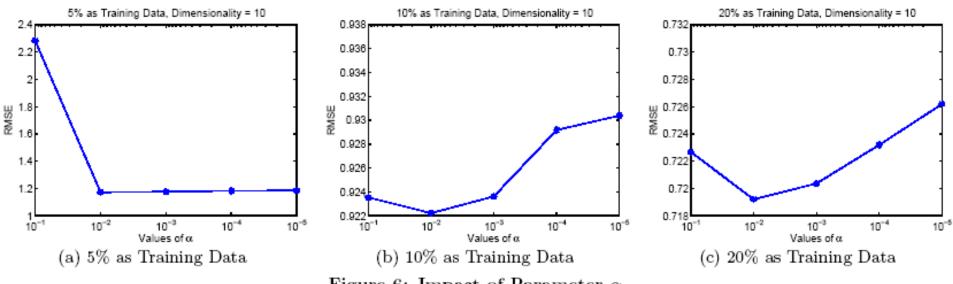


Figure 6: Impact of Parameter α

Alpha = 0.01 will get the best performance! Parameter beta basically shares the same trend!

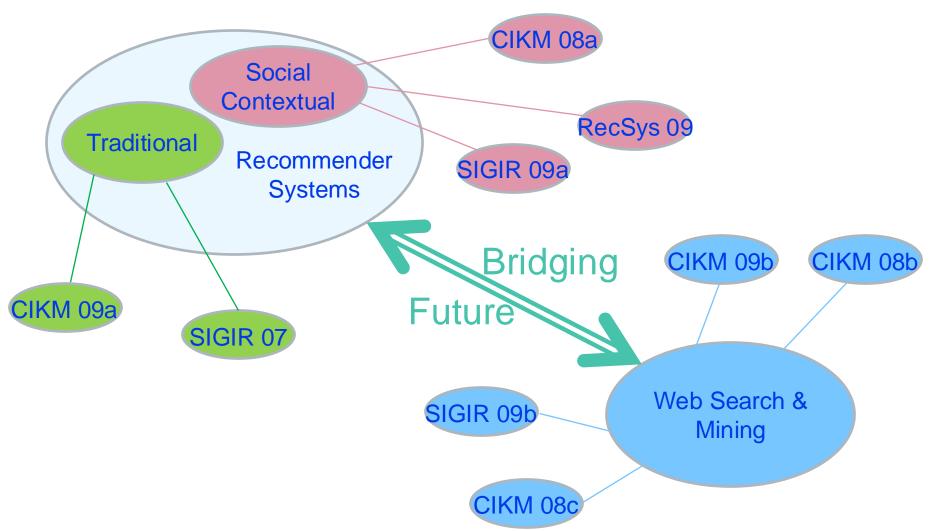
Summary

5 methods for Improving Recommender
 2 traditional recommendation methods
 3 social recommendation approaches

Set of the set of t

 Very general, and can be applied to different applications, including searchrelated problems

A Roadmap of My Work



michael jackson

Google Search I'm Feeling Lucky

Advanced Search Language Tools

News results for michael jackson

Propofol dosage reported in Michael Jackson case is low, experts say - 1 hour ago By Kimi Yoshino If Michael Jackson died from lethal levels of the powerful anesthetic propofol, then he must have been injected with much more of the drug ... Los Angeles Times - <u>4334 related articles »</u> The continuing fantasy of Michael Jackson's future in Vegas -Los Angeles Times - <u>164 related articles »</u> People:A&E channel sets reality show starring Michael Jackson's ... -San Jose Mercury News - <u>38 related articles »</u>

Michael Jackson | Michael Jackson This Is It | Michael Jackson ...

The Official Michael Jackson site including info on This Is It, the Michael Jackson Movie, Michael Jackson Music, Videos and Lyrics from hits like; ... www.michaeljackson.com/ - <u>Cached</u> - <u>Similar</u> - (>) The Michael Jackson Movie,

Michael Jackson - Wikipedia, the free encyclopedia

Michael Joseph Jackson (August 29, 1958 – June 25, 2009), known as the "King of Pop", was an American musician and one of the most commercially successful ... en.wikipedia.org/wiki/Michael_Jackson - Cached - Similar - (P) A

Michael Jackson (I)

American superstar Michael Jackson was born in Gary, Indiana, on August 29... Visit IMDb for Photos, Filmography, Discussions, Bio, News, Awards, Agent, ... www.imdb.com/name/nm0001391/ - Cached - Similar - Provide American Science - Scie

Image results for michael jackson - Report images

Passive Recommender System

 We need a more active and intelligent search engine to understand users' interests

Recommendation technology represents the new paradigm of search

The Web

Is leaving the era of search
Is entering one of discovery

What's the difference?

- Search is what you do when you're looking for something.
- Discovery is when something wonderful that you didn't know existed, or didn't know how to ask for, finds you. Recommendation!!!

Jeffrey M. O'Brien

- By mining user browsing graph or clickthrough data using the proposed methods in this thesis, we can:
 - Ruild personalized web site recommendations

 - CR Learn more accurate features of URLs or Queries
 - *cR*

Publications

- Hao Ma, Haixuan Yang, Irwin King, Michael R. Lyu. Semi-Nonnegative Matrix Factorization with Global Statistical Consistency in Collaborative Filtering. ACM CIKM'09, Hong Kong, China, November 2-6, 2009.
- Hao Ma, Raman Chandrasekar, Chris Quirk, Abhishek Gupta. Improving Search Engines Using Human Computation Games. ACM CIKM'09, Hong Kong, China, November 2-6, 2009.
- 3. Hao Ma, Michael R. Lyu, Irwin King. Learning to Recommend with Trust and Distrust Relationships. ACM RecSys'09, New York City, NY, USA, October 22-25, 2009.
- 4. Hao Ma, Irwin King, Michael R. Lyu. Learning to Recommend with Social Trust Ensemble. ACM SIGIR'09, Boston, MA, USA, July 19-23, 2009.
- Hao Ma, Raman Chandrasekar, Chris Quirk, Abhishek Gupta. Page Hunt: Improving Search Engines Using Human Computation Games. ACM SIGIR'09, Boston, MA, USA, July 19-23, 2009.

Publications

- 6. Hao Ma, Haixuan Yang, Michael R. Lyu, Irwin King. SoRec: Social Recommendation Using Probabilistic Matrix Factorization. *ACM CIKM'08*, pages 931-940, Napa Valley, California USA, October 26-30, 2008.
- Hao Ma, Haixuan Yang, Irwin King, Michael R. Lyu. Learning Latent Semantic Relations from Clickthrough Data for Query Suggestion. ACM CIKM'08, pages 709-718, Napa Valley, California USA, October 26-30, 2008.
- Hao Ma, Haixuan Yang, Michael R. Lyu, Irwin King. Mining Social Networks Using Heat Diffusion Processes for Marketing Candidates Selection. ACM CIKM'08, pages 233-242, Napa Valley, California USA, October 26-30, 2008.
- Hao Ma, Irwin King, Michael R. Lyu. Effective Missing Data Prediction for Collaborative Filtering. ACM SIGIR'07, pages 39-46, Amsterdam, the Netherlands, July 23-27, 2007.

Thank You!

Q&A

Hao Ma hma@cse.cuhk.edu.hk