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How much information is on the web?
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Information Overload
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We Need Recommender Systems
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5-scale Ratings
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5-scale Ratings
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5-scale Ratings

I hate it

I don’t like it

It’s ok

I like it

I love it

Five Scales
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Traditional Methods

❖Memory-based Methods (Neighborhood-
based Method)
 Pearson Correlation Coefficient

 User-based, Item-based

 Etc.

❖Model-based Method
 Matrix Factorizations

 Bayesian Models 

 Etc.
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User-based Method

Items
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Matrix Factorization
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Challenges
❖Data sparsity problem
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My Blueberry Nights (2008)



Challenges
❖Data sparsity problem
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My Movie Ratings



Number of Ratings per User
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Data Extracted From Epinions.com



Challenges
❖Traditional recommender systems ignore 

the social connections between users
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Which one 

should I read?

Recommendations 

from friends



Contents
❖ Chapter 3: Effective Missing Data Prediction

❖ Chapter 4: Recommend with Global Consistency

❖ Chapter 5: Social Recommendation

❖ Chapter 6: Recommend with Social Trust Ensemble

❖ Chapter 7: Recommend with Social Distrust
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Chapter 5

Social Recommendation



Problem Definition
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Social Trust Graph User-Item Rating Matrix



User-Item Matrix Factorization

21
R. Salakhutdinov and A. Mnih (NIPS’08)



SoRec

❖Social Recommendation (SoRec)
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SoRec



SoRec
❖Social Recommendation (SoRec)

23



SoRec
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Complexity Analysis

❖For the Objective Function

❖For     , the complexity is 

❖For     , the complexity is

❖For     , the complexity is  

❖ In general, the complexity of our method 
is linear with the observations in these 
two matrices
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Disadvantages of SoRec
❖ Lack of interpretability

❖Does not reflect the real-world 
recommendation process
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SoRec



Chapter 6

Recommend with Social Trust Ensemble



1st Motivation
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1st Motivation
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1st Motivation

❖ Users have their own characteristics, and they 
have different tastes on different items, such 
as movies, books, music, articles, food, etc.
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2nd Motivation

31

Where to have 
dinner? Ask

Ask

Ask

Good

Very Good

Cheap & Delicious 



2nd Motivation
❖ Users can be easily influenced by the friends 

they trust, and prefer their friends’ 
recommendations.

32

Where to 
have dinner? Ask

Ask

Ask

Good

Very Good

Cheap & Delicious 



Motivations
❖ Users have their own characteristics, and they 

have different tastes on different items, such 
as movies, books, music, articles, food, etc.

❖ Users can be easily influenced by the friends 
they trust, and prefer their friends’ 
recommendations.

❖ One user’s final decision is the balance between 
his/her own taste and his/her trusted friends’ 
favors.
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User-Item Matrix Factorization

34
R. Salakhutdinov and A. Mnih (NIPS’08)



Recommendations by Trusted Friends
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Recommendation with Social Trust Ensemble
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Recommendation with Social Trust Ensemble
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Complexity

❖ In general, the complexity of this method 
is linear with the observations the user-
item matrix
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Epinions Dataset

❖51,670 users who rated 83,509 items 
with totally 631,064 ratings

❖Rating Density 0.015%

❖The total number of issued trust 
statements is 511,799
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Metrics

❖Mean Absolute Error and Root Mean 
Square Error
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Comparisons

42

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)

SoRec --- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008)

Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)



Performance on Different Users

❖Group all the users based on the number 
of observed ratings in the training data

❖6 classes: “1 − 10”, “11 − 20”, “21 − 40”, “41 
− 80”, “81 − 160”, “> 160”,

43



44



Impact of Parameter Alpha 
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MAE and RMSE Changes with Iterations

90% as Training Data
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Conclusions of SoRec and RSTE
❖ Propose two novel Social Trust-based 

Recommendation methods

❖ Perform well

❖Scalable to very large datasets

❖Show the promising future of social-
based techniques
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Further Discussion of SoRec
❖ Improving Recommender Systems Using 

Social Tags
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MovieLens Dataset

71,567 users,  10,681 movies,  

10,000,054 ratings, 95,580 tags



Further Discussion of SoRec

❖MAE
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Further Discussion of SoRec

❖RMSE
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Further Discussion of RSTE
❖Relationship with Neighborhood-based 

methods
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❖ The trusted friends are actually 
the explicit neighbors

❖ We can easily apply this method 
to include implicit neighbors

❖ Using PCC to calculate similar 
users for every user



What We Cannot Model Using
SoRec and RSTE?

❖ Propagation of trust

❖Distrust
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Chapter 7

Recommend with Social Distrust



Distrust

❖Users’ distrust relations can be 
interpreted as the “dissimilar” relations
On the web, user Ui distrusts user Ud 

indicates that user Ui disagrees with most of 
the opinions issued by user Ud.
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Distrust
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Trust

❖Users’ trust relations can be interpreted 
as the “similar” relations
On the web, user Ui trusts user Ut indicates 

that user Ui agrees with most of the opinions 
issued by user Ut.
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Trust
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Trust Propagation
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Distrust Propagation?
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Experiments

❖Dataset - Epinions

❖ 131,580 users, 755,137 items, 13,430,209 
ratings

❖717,129 trust relations, 123,670 distrust 
relations
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Data Statistics
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Experiments
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RMSE

131,580 users, 755,137 items, 13,430,209 ratings

717,129 trust relations, 123,670 distrust relations



Impact of Parameters

63

Alpha = 0.01 will get the best performance!
Parameter beta basically shares the same trend!



Summary

❖5 methods for Improving Recommender 
 2 traditional recommendation methods

 3 social recommendation approaches

❖Effective and efficient

❖Very general, and can be applied to 
different applications, including search-
related problems
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A Roadmap of My Work
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Recommender 

Systems

Traditional

Social 

Contextual

SIGIR 07
CIKM 09a

CIKM 08a

SIGIR 09a

RecSys 09

Web Search & 

Mining

CIKM 09b

SIGIR 09b

CIKM 08c

CIKM 08bBridging

Future



Search and Recommendation

66Passive Recommender System



Search and Recommendation
❖We need a more active and intelligent

search engine to understand users’ 
interests

❖Recommendation technology represents 
the new paradigm of search
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Search and Recommendation

❖The Web
 Is leaving the era of search

 Is entering one of discovery

❖What's the difference? 
 Search is what you do when you're looking 

for something. 

 Discovery is when something wonderful that 
you didn't know existed, or didn't know how 
to ask for, finds you. 
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Jeffrey M. O'Brien

Recommendation!!!



Search and Recommendation

❖ By mining user browsing graph or clickthrough 
data using the proposed methods in this thesis, 
we can:
 Build personalized web site recommendations

 Improve the ranking

 Learn more accurate features of URLs or Queries

 ……
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Thank You!

Q & A

Hao Ma
hma@cse.cuhk.edu.hk
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