Delay-Oriented Reliable Communication and Coordination in Wireless Sensor–Actuator Networks

Ph.D. Thesis Defense 13 Jun 2007

Presented by Edith C.-H. Ngai

Supervisor: Michael R. Lyu

CSE Dept., The Chinese University of Hong Kong

Outline

- Introduction
- Related Work
- Part 1: Real-Time Communication Framework in WSAN
- Part 2: Delay-Oriented Reliable Communication
 - 2.1 Delay-Aware Reliable Event Reporting
 - 2.2 Latency-Oriented Fault Tolerant Transport Protocol (LOFT)
 - 2.3 Power-Controlled Real-Time Transport Protocol (POWER-SPEED)
- Part 3: Delay-Oriented Reliable Actuator Coordination
 - 3.1 The Route Design Problem (RDP)
 - 3.2 Adaptive Delay-Minimized Route Design (PROUD)
- Part 4: Intruder Detection Against Sinkhole Attack
- Conclusion and Future Direction

WSN

- Distributed and large-scale like the Internet
- A group of static sensors
 - resource constrained
 - wireless communications

- Collection of sensors and actuators
- Sensors
 - numerous resource-limited and static devices
 - monitor the physical world
- Actuators
 - resource-rich devices equipped with more energy, stronger computation power, longer transmission range, and usually mobile
 - make decisions and actuate adaptively in response to the sensor measurements

Applications

Operations in WSAN

(1) Event Happens

(2) Data Aggregation

(3) Event Reporting

(4) Response to the Event

Event-driven applications Self-organized, distributed, fast response

Thesis Focus

Contribution

- We studied real-time communication and coordination in WSAN
- We proposed a general reliability-centric framework for delay-aware event reporting for WSAN
- We considered delay, reliability, fault-tolerant, and energy efficiency in data transport
- We presented the Route Design Problem and proposed effective schemes to coordinate the actuators and minimize the data collection time
- We proposed an adaptive delay-minimized route design algorithm which can handle network dynamics
- We studied the security issues in sensor networks and proposed an efficient intruder identification algorithm against Sinkhole attacks

Real-time Communication Protocol in WSN

SPEED [Hu et al. 2003]

 Combines feedback control and non-deterministic QoS-aware geographic forwarding

• Velocity Monotonic Scheduling [Lu et al. 2002]

- Packet scheduling policy that accounts for both time and distance constraints
- MMSPEED [Felemban et al. 2005]
 - Multi-path and multi-speed routing protocol for probabilistic QoS guarantee in WSN

Related Work

Reliable Transmission with Error-prone Sensors

- Node-level fault tolerance (NLFT) [Aidemark et al. 2005]
 - Masks transient faults locally by using time-redundant task scheduling in nodes
- Bi-criteria scheduling heuristic [Assayad et al. 2004]
 - Uses heuristic in data-flow graph to maximize reliability and minimize runtime
- Routing in DTN [Jain et al. 2005]
 - Applies erasure code and data replication

```
Related Work
```

Heterogeneous Sensor Networks

- Anycast communication paradigm [Hu et al. 2004]
 - Constructs an anycast tree rooted at each event source and updates the tree dynamically
- Power-aware many-to-many routing [Cayirci et al. 2005]
 - Actuator broadcasts registration messages, while sensors build their own routing tables
- Distributed coordination framework [Melodia et al. 2005]
 - Sensors forward readings to the appropriate actuators by the data aggregation trees

Mobile Elements

- Architecture using moving entities (Data Mules) to collect sensor data [Shah et. al. SNPA'03]
- Mobile sinks with predictable and controllable moving pattern [Chakrabarti et al. IPSN'03, Kansal et al. Mobisys'04]
- Mobile sinks can find the optimal time schedule to stay at appropriate sojourn points [Wang et al. HICC'05]
- Message ferry (MF) approach to address the network partition problem in sparse ad hoc network [Zhao et al. Mobihoc'04]

Mobile Elements (cont.)

- Joint mobility and routing algorithm with mobile relays to prolong the network lifetime [Luo et al. Infocom'05]
- Partitioning-based algorithm to schedule the movement of mobile element (ME) to avoid buffer overflow and reduce min. required ME speed [Gu et al. Secon'05]
- Vehicle routing problem (VRP)
 - Considers scheduling vehicles stationed at a central facility to support customers with known demands
 - Minimize the total distance traveled

Rel	ated	Work

Intrusion Detection in WSN

- Mechanism for detecting and mapping jammed regions [Wood et al. RTSS'03]
- Algorithm for the identification of faulty sensors and detection of the reach of events [Ding et al.]
- Trace the identities of the failed nodes with the topology conveyed to the base station [Staddon et al. WSNA'02]
- A Statistical En-route Filtering (SEF) mechanism that can detect and drop false reports [Ye et al. Quality and Reliability Engineering Int.'01]
- A packet leash mechanism for detecting and defending against wormhole attacks [Hu et al. Infocom'05]

A Real-Time Communication Framework for Wireless Sensor-Actuator Networks

Part 1

CSE Dept., The Chinese University of Hong Kong

A Real-time Communication Framework for WSN

Event reporting

- Detection of an event
- Formation of map and data aggregation
- Data transmission
- Actuator coordination
 - Combination of maps
 - Location update

Formation of Maps

- To reduce the network traffic, the sensor will aggregate event reports and perform data fusion from the neighboring nodes
- The sensors r, which detected an event the earliest, start the formation of maps

Data Aggregation

- When a node receives the replies from its descendent nodes, it concatenates its own reply and forwards them to the previous hop
- Nodes with even number of depth *h* concatenate the reply with its own coordinates and sensed data
- Nodes with odd number of depth *h* aggregate the data from their immediate descendents before forwarding them

Combination of Maps

Algorithm Combination of Maps

Location Update

- Update the location of actuator to sensors
- Plan the optimal location of the actuators for efficient reactions

Summary of Part 1

- A real-time communication framework for WSAN is presented
- It provides an efficient data aggregation algorithm that reduces network traffic
- It considers layered data transmission to minimize the delay
- It provides an actuator coordination algorithm with combination of maps for effective reaction
- It offers a distributed, self-organized, and comprehensive solution for real-time event reporting and reaction for WSAN

Delay-Oriented Reliable Communication in Wireless Sensor-Actuator Networks

Part 2

CSE Dept., The Chinese University of Hong Kong

Network Model

- Compose of sensors and actuators
- Nodes aware of their locations
- Divide the network into a number of grid cells for data aggregation
- A subset of nodes, referred as reporting nodes, send data to the actuators
- Anycast routing

Objective

Reliability index

 Measures the probability that event data are aggregated and received accurately within pre-defined latency bounds

System Parameters

e: Event

 q_e : Data report of event e

 Q_e : Set of data reports of event e that satisfy the end-to-end latency constraint

Imp(e): Importance of event e

 B_e : Latency bound for sensor-actuator reporting of event e

 D_{q_e} : End-to-end delay of data report q_e

- N_e : Number of data reports for event e
- f: Probability of failures in data aggregation

Objective Maximize

$$\mathbb{R} = \sum_{\forall e} Imp(e) * r_e, \tag{1}$$

where $r_e = \frac{|Q_e|(1-f)}{N_e}$.

Subject to

 $D_{q_e} \le B_e$ (2)

Workflow of Framework

- 1. A multi-level data aggregation scheme, which is fault-tolerant with error-prone sensors
- 2. A priority-based transmission protocol, which accounts for both the importance and delay requirements of the events
- 3. An actuator allocation algorithm, which smartly distributes the (1 actuators to match the demands Age from the sensors.

Grid-Based Data Aggregation

Algorithm 1 Data Aggregation
Define: $\overline{x_g}$ as aggregated data mean of grid g;
for each sensor s receive data x_i do
if multiple $x_i \in g$ and s is the aggregating node then
find the median med among data $\langle x_1, x_2,, x_n \rangle$;
for each data $x_i \in g$ do
if x_i - $med > \Delta d$ then
blacklist node <i>i</i>
end if
end for
$\overline{x_q}$ = mean of the un-blacklisted data $x_i \in q$
end if
end for

Priority-Based Event Reporting

Priority queues

- prioritized scheduling to speed up important event data transmission
- queue utilization as an index for route selection to meet the latency bounds
- first-in-first-out (FIFO) discipline

Queueing Delay

• The queueing delay of the highest priority queue: $\overline{d_{q_1}} = \overline{R} + \overline{S}\overline{N_q^1}$, where $\overline{a_{q_1}} = \overline{R} + \overline{S}\overline{N_q^1}$, where

 $\overline{R} = \frac{1}{2} \sum_{k=0}^{K} \lambda_k \overline{S^2}$ is the mean residual service time in the node, $\overline{N_q^1}$ is the mean number of packets in

first queue, K is the number of priority queues, λ_k is the arrival rates of the packets in priority queue k, \overline{S} and $\overline{S^2}$ are the expectation and second moment of the service time of the sensor.

• The queueing delay of kth priority queue:

$$\overline{d_{q_k}} = \frac{\overline{R}}{(1-\rho_1-\ldots-\rho_{k-1})(1-\rho_1-\ldots-\rho_k)}$$

Next Hop Selection

- Consider node *i* receives new type of event data data_e
- It broadcasts a control message to its immediate neighbors
- Every neighbors *j* replies with the message: $\langle a, \overline{S}, \lambda_{high}, \lambda_{low} \rangle$,

where a is the target actuator, \overline{S} is the expected service time of node j,

 $\lambda high = \sum_{\forall k, imp(datak) \ge imp(datak)} \lambda k$ is the sum of all λk with data equal or more important than $data_e$,

 $\lambda low = \sum_{\forall k, imp(datak) < imp(datak)} \lambda k$ is the sum of all λk with data less important than $data_e$.

Next Hop Selection

- The end-to-end delay to actuator should be less than the latency bound B_e
- Node *i* first estimates the advancement *h_{i,j}* towards the actuator *a* from *i* to *j*, and then the maximum delay from *i* to *j*, *delay_{i,j}*.

$$h_{i,j} = \frac{\parallel a, i \parallel - \parallel a, j \parallel}{\parallel a, i \parallel}$$

So,

$$delay_{i,j} \le B_e * h_{i,j}$$

Since $delay_{i,j} = d_q + d_{tran} + d_{prop} + d_{proc}$, the maximum queueing delay $d_{q_{max}}$ is:

 $d_{q_{max}} = B_e * h_{i,j} - (d_{tran} + d_{prop} + d_{proc})$

Next Hop Selection

- Only neighbors with $dq_{max} > 0$ will be considered as next hop
- Node *i* starts inspecting the neighbors with $\lambda_{high}=0$ and $\lambda_{low}=0$
 - $\lambda_{low} = 0$ means it will not affect the transmission time for the existing packets in that node
 - $\lambda_{high} = 0$ means it can be served with the highest priority
- Node *i* calculates the maximum data rate $\lambda_{i,j}$ that it can forward while satisfying the latency bound:

$$\rho_{i,j} < 1 - \lambda_{high}\overline{S} - \frac{\overline{R}}{(1 - \lambda_{high}\overline{S})d_{q_{max}}},$$

where $\rho_{i,j} = \lambda_{i,j}\overline{S}$ is the maximum affordable load of j for handling data from i on event e.

• Data packets are forwarded to the neighbor with the highest $h_{i,j}$ and $\lambda_{i,j}$

Actuator Allocation

 The actuators may record the event frequency and re-arrange their standby positions periodically

Fig. 5. Actuator Allocation with 10 Actuators.

Simulations

Simulator: NS-2

Metrics

- On-time Reachability
- Average Delay
- Overall Reliability
- 4 events
 - 2 with high importance
 - 2 with low importance
 - Located at left bottom corner

200m x 200m Network size No. of sensors 100Node placement Uniform Radio range 40m IEEE 802.11 layer 2Mbps 32 bytes Packet size 1-6 No. of actuators 3 - 10No. of concurrent events 2sec B_e

SIMULATION PARAMETERS

Reliability of Event Reporting

On-Time Reachability

Average Delay

Overall Reliability

Actuator Allocation

- Divide whole field into three, with event occurrence probability 0.6, 0.333, and 0.067
- Data rate = 60pkt/s

Latency-Oriented Fault Tolerant Transport Protocol (LOFT)

- Transmission errors, buffer overflow, node failures along the path
- Different levels of reliability can be obtained based on the requirements of various event data
- LOFT adopts adaptive packet replication to handle link failures and provide reliability on the success arrival of packets
Coping with Transmission Failures

- Consider node *i* and its potential next hops j_1 , j_2 , and j_3
- The allocation of packets from *i* to its neighbors is proportional to their maximum affordable arrival rates $\lambda_{i,j1}$, $\lambda_{i,j2}$, and $\lambda_{i,j3}$ to balance the load
- Node *i* may check if the estimated path success rate can meet the event reliability requirement R_{req}
- If not, it decides the replication factor r_f to meet the requirement and forwards the replicated packets to the next hops

Coping with Transmission Failures

- Node *i* selects the top *k* neighbors with the highest $h_{i,j}$ and satisfactory $\lambda_{i,j}$ and estimates their link loss rates $L_{i,j}$
- Each neighbor *j* periodically reports the number of packets it received from node *i*, so that *i* can calculate the loss rate *L_{i,j}* with the number of packets it sent to *j* in a particular time interval
- Then, it can obtain the link loss rate by an EWMA (Exponentially Weighted Moving Average) approach with its previous and current estimations of the link loss rate
- Then, *i* estimates the path success rate P_j from *i* to *a* via *j* as follow:

$$P_j = (1 - L_{i,j})^{1/h_{i,j}}$$

Coping with Transmission Failures

- Sensor *i* will allocate packets to its neighbors according to their $\lambda_{i,j}$
- The neighbors with higher $\lambda_{i,j}$ will be allocated with more code blocks. The proportion $prop_j$ of packets to neighbor *j* is:

$$prop_j = \frac{\lambda_{i,j}}{\sum_{n=1}^k \lambda_{i,n}}$$

The probability that the packet can be delivered successfully from *i* to *a* by these *k* neighbors, *P_i*, can then be estimated as:

$$P_i = \sum_{j=1}^k \left(\frac{\lambda_{i,j}}{\sum_{n=1}^k \lambda_{i,n}} * P_j \right)$$

• Then, node *i* determines the replication factor r_f with the following equation:

$$r_f = ceil(R_{req}/P_i)$$

Coping with Transmission Failures

- Each node *j*, which received the packets, selects the next hop *m*' with the highest $h_{i,m}$ and satisfactory $\lambda_{i,m}$
- Similarly, the path success rate obtained must be greater than R_{req} :

$$(1 - L_{j,m'})^{1/h_{j,m'}} \ge R_{req}$$

 If the link loss rate from j to m' satisfies the above equation, packet will be forwarded to m'. Since the reliability of a path is composed by a series of links on it:

$$(1-\overline{L}_1)(1-\overline{L}_2)(1-\overline{L}_3)...(1-\overline{L}_n) > R_{req},$$

and

$$(1-\overline{L}_2)(1-\overline{L}_3)...(1-\overline{L}_n) > R_{req}/(1-\overline{L}_1)$$

 Node j updates the reliability R_{req} and forwards it with the packets to the selected neighbor m':

$$R_{req}' = R_{req}/(1 - L_{j,m'})$$

Varying Failure Rate (Data Rate = 15pkt/s)

Reliability

Average Delay

Overall Reliability

Varying Data Rate (Failure Rate = 0.3)

Reliability

Average Delay

Overall Reliability

POWER-SPEED

- A real-time and energy-efficient data transport protocol for WSAN
- Sensor nodes select the next-hop neighbor to actuators according to the spatio-temporal historic data of the upstream QoS condition,
- An adaptive transmitter power control scheme conveys packets in an energy-efficient manner
- Reduce energy consumption of data transport while ensuring the QoS requirement in timeliness domain

Select Next-hop Neighbor

- Node s_n should minimize the total energy consumption required for a packet to reach an actuator
- Since energy consumption for receiving and processing a packet is constant, we consider the energy required for sending a packet
- $E(s_n, w)$ denotes the energy for a packet to travel from s_n to w:

$$E(s_n, w) = \gamma Pr(s_n) = \gamma c \cdot (Dis(s_n, w))^n$$

 Node s_n estimates the total energy consumption for the packet to reach actuator a_i via node w by:

$$total_e(s_n, w) = hops \cdot E(s_n, w)$$

 Node s_n selects the node that achieves the minimum value of total energy consumption, while satisfying the delay bound

Energy Consumption

Summary of Part 2

- We presented a distributed and comprehensive solution for reliable event reporting and actuator coordination in WSAN
 - We provided a distributed data aggregation mechanism
 - We proposed a reliable priority-based event reporting scheme
 - We proposed an actuator allocation algorithm
- We proposed LOFT for handling node/link failures
- We proposed POWER-SPEED for real-time energy efficient data transport
- Simulation results are provided to demonstrate the effectiveness of our solutions

Delay-Oriented Reliable Actuator Coordination for Wireless Sensor-Actuator Networks

Part 3

CSE Dept., The Chinese University of Hong Kong

Motivation

• Given

- Each static sensor has a limited buffer
- Non-uniform data generation rates among the sensors
- Sensor stores locally sensed data and uploads the data until some actuator approaches

Strategy

Actuator visits locations with higher importance (i.e. higher data rate) more frequently

Question

• How to minimize the inter-arrival time from the actuator to the static sensors???

=> Route Design Problem (RDP)

System Parameter

s	Sensor node
R_s	Communication range of sensor node
c_{ij}	Cost from sensor location i to j
x_{ijk}	Boolean indicating whether link (i, j) is on route k
W_j	Weight of sensor location j (a value between 0.0
	and 1.0)
N_{j}	Number of sensors with weight W_j
A_j	Average actuator inter-arrival time for sensor loca-
	tion j
T_k	Period of route k
N	Number of sensor locations
M	Number of actuators

Route Design Problem (RDP)

Route Design Problem (RDP):

$$Minimize \sum_{\forall j} A_j * W_j * N_j, \tag{1}$$

where $T_k = \sum_{i=1}^N \sum_{j=1}^N x_{ijk} * c_{ij}$, $A_j = \mathbb{F}(T_1, T_2, ..., T_{M'})$ is the function of all T_k that pass through the sensor location j.

Subject to:

$$\sum_{k=1}^{M} \sum_{i=1}^{N} x_{ijk} \ge 1, \forall j = 1, ..., N$$
(2)

$$||s,j|| \le R_s, \forall s, \exists j \tag{3}$$

$$\sum_{i=1}^{N} x_{ipk} - \sum_{j=1}^{N} x_{pjk} = 0, \forall k = 1, ..., M, p = 1, ..., N$$
(4)

$$y_j - y_i + N \sum_{k=1}^{M} x_{ijk} \le N - 1, i \ne j = 1, ..., N$$
(5)

$$x_{ijk} \in \{1, 0\}, \forall i, j, k; y_i \text{ arbitrary}, \tag{6}$$

Definition and Property

Definition 1. A route is a tour walked through repeatly by an actuator.

Property 1. Route with a Hamiltonian cycle achieves shorter maximum inter-arrival time A_{max} than that without.

Property 2. The average actuator inter-arrival time A_j of a sensor j on multiple routes can be calculated as $\mathbb{F}(T_1, T_2, ..., T_{M'}) = \frac{\prod_{k=1}^{M'} T_k}{\sum_{k=1}^{M'} (\prod_{i=1, i \neq k}^{M'} T_i)}$.

Theorem 1. The route design problem (RDP) is NP-hard.

Route Design Algorithm by Varying Number of Visits (RDNV)

- Design independent routes for multiple actuators
- Utilize multiple minimum spanning trees (MSTs)
- Construct *M* routes with equal period where highly weighted sensors will be visited more frequently
 - A sensor location with weight W_i will be visited by W_i *M actuators (routes)
 - E.g. $W_i = 0.75$, $M=4 => N_i = 3$
 - If all routes have the same period T, from property (2), the average inter-arrival time A_{avg} will be T/3

(1) Clustering with MSTs

- $N_i = \operatorname{ceil}(W_i * M)$
- Locations with the same N_i belong to the set S_i
- Our algorithm builds *M* spanning trees T_k , where k = 1, ..., M
 - Locations with highest N_i = M will be included in all trees
 - Then, the locations with the next highest N_i will be assigned to N_i trees with lowest costs
 - The process repeats until there is no remaining locations

(2) Form a TSP Solution

- The M spanning trees result in M groups of nodes to be walked through by distinct actuators
- The route design problem can be reduced to traveling salesman problem (TSP) for each group of nodes
- We adopt the Approx-TSP-Tour algorithm here, which use MST to create a tour and perform a preorder traversal on the tree to obtain a Hamiltonian cycle

Part 3.1 The Route Design Problem

Route Design Algorithm by Varying Path Length (RDPL)

- Sensors with similar weights will be assigned to the same route with a particular length
- Sensors with higher W_i will be put on shorter routes, and vice versa

Part 3.1 The Route Design Problem

(1) Clustering MSTs with Different *W_i*

- We divide the weight $W_i \in [0,1]$ into *w* ranges
- Sensors are grouped into the appropriate sets of sensors, S_1 , S_2 , ..., S_w , according to their weight ranges
- The number of actuators assigned to the corresponding set of sensors are *a*₁,*a*₂, ...,*a*_w
- The ideal inter-arrival time for sensors S₁, S₂, ..., S_w, could be w*T, (w-1)*T, ..., 2*T, T
- The cost $C(T_k)$ represents the length of the route
- $C(T_k)/a_k$ is proportional to the inter-arrival time $(w+1-k)^*T$
- A minimum spanning tree T_k is then constructed for each set of sensors and its corresponding cost $C(T_k)$ is calculated.
- The cost $C(T_k)$ is a good approximation to the length of route k

Part 3.1 The Route Design Problem

(2) Estimate Number of Actuators for each T_k

$$\begin{array}{rcl} C(T_1)/a_1 &=& w * T * v \\ C(T_2)/a_2 &=& (w-1) * T * v \\ & & \\ & & \\ & & \\ C(T_w)/a_w &=& T * v, \end{array} \qquad \text{and} \qquad a_1 + a_2 + \dots + a_w = M \end{array}$$

From the above equations, we achieve

$$\frac{C(T_1)}{w * T * v} + \frac{C(T_2)}{(w-1) * T * v} + \dots + \frac{C(T_w)}{T * v} = M,$$

hence,

$$T * v = \{\sum_{k=1}^{w} C(T_k) / (w + 1 - k)\} / M$$

and

$$a_k = C(T_k)/(T * v * (w + 1 - k))$$

=
$$\frac{C(T_k) * M}{(w + 1 - k) \{\sum_{k=1}^{w} C(T_k)/(w + 1 - k)\}}$$

(3) Allocate the Actuators

- The a_k achieved above is an ideal value, so we need to determine the practical number of actuators n_k
- If a_k is smaller than 1, the sensors in S_k will be accumulated in $accum_s$ with other sensors in the following weight ranges, until $accum_s$ is greater than 1.
- A new route R_q is then formed with n_q = round($accum_s$), including all the sensors in $accum_s$
- Similar to RDNV, the route design problem can then be reduced to the Travelling Salesman Problem (TSP) for each route.
- Distributed implementation on RDPL (D-RDPL)

Performance Evaluation

- Algorithms:
 - Baseline Algorithm: provides one actuator to each route for a sensor group with the same weight
 - RDNV

Network size	200m x 200m
Sensor distribution	Uniform random or Cluster-
	based uniform or Cluster-based
	non-uniform
No. of sensors (N)	100
Weight of sensors (W_j)	0.0-1.0
No. of actuators (M)	5 or 8
Speed of actuators	v
Radio range	40m
MAC layer	IEEE 802.11

• D-RDPL

RDPL

•

Average Inter-arrival Distance

N = 100, M =5

Uniform random

Cluster-based Uniform Cluster-based non-uniform

D-RDPL

N = 100, M =5

Message Overhead

Convergence Time

Adaptive Delay-Minimized Route Design

- To minimize the data collection time in a stochastic and dynamically changing sensing environment
- We propose a probabilistic route design algorithm (PROUD) for wireless sensor-actuator networks
- This is a departure from the previous static and deterministic mobile element scheduling problems
- PROUD offers delay-minimized routes for actuators and adapts well to network dynamics and sensors with nonuniform weights
- This is achieved through a probabilistic visiting scheme along pre-calculated routes

Example on RDP

$$Minimize\sum_{\forall i} A_i * w_i * N_i$$

$$A_w = \frac{2|TSP(S_b)| + |TSP(S_w)| + 2 * ||S_w, S_b||}{v}$$

Small-scale Network

• (1) Form a Priori Route

- A priori route is formed by constructing a TSP path which contains all locations to be visited
- We adopt the well-known Approx-TSP-Tour algorithm here for its low cost and bounded performance

• (2) Visit sensors probabilistically

- Actuators visit the sensors on the priori route in sequence probabilistically
- We set the visiting probability p_i of a location i to be w_i, where w_i is the (normalized) weight of the sensors
- Sensors with higher weights should be assigned with a higher probability

Small-scale Network

• (3) Allocate the actuators

 The expected route length with probabilistic visiting can be calculated as

$$E[R] = \sum_{r=0}^{n-2} \sum_{i=1}^{n} ||i, i+r|| * p_i * p_{i+r+1} \prod_{k=1}^{r} (1-p_{i+k})$$

For a sensor *i* with a visiting probability *p_i*, its average actuator inter-arrival time *A_i* is thus

$$A_i = \frac{E[R]}{p_i * v * M}$$

Analysis

• Time complexity analysis:

 $O(N^2 + M)$

Bound analysis:

$$\frac{A_i}{A_i^*} \le \frac{E[R]}{p_i * |TSP(S_i)|}$$

Large-scale Network

- (1) Form clusters
 - It divides an MST into two sub-trees by removing its longest edge e
- (2) Form priori routes and visit sensors probabilistically
- (3) Allocate actuators
 - Routes with longer expected lengths should be allocated with more actuators

Load Balancing

- Multi-route improvement algorithm
 - Consider two routes R_1 and R_2 involved in multi-route improvement.
 - Their new expected route lengths become ideal if E[R'₁] = E[R'₂] = (E[R₁] + E[R₂])/2.
 - We provide an approximation method to transfer a proportion of sensor locations from MST₁ to MST₂

$$\frac{cost(\xi)}{cost(MST_1)} = \frac{(E[R_1] - E[R_2])/2}{E[R_1]}$$

Task exchange algorithm

Algorithm 13 Task exchanges among actuatorsif $(Energy_{A1} << Energy_{A2})and(v1 >> v2)$ then
A1 moves to R2;
A2 moves to R1;
end if

Actuator Inter-arrival Time

N = 100, M =5

Uniform random

Cluster-based uniform

Actuator Inter-arrival Time

Cluster-based non-uniform

Eye Topology

Minimum Actuator Speed

N = 100, M = 5

Uniform random

Cluster-based uniform Cluster-based non-uniform

Load Balancing

Multi-route improvement

Task exchange
Summary of Part 3

- We focused on WSN with multiple actuators and their route design
- We demonstrated the problem is NP-hard and proposed an effective MST-based approximation algorithm
- It aims at minimizing the overall inter-arrival time of the actuators
- It differentiates the visiting frequency to sensor locations with different weights
- We further proposed an adaptive route design algorithm (PROUND)
- Simulation results suggested that the algorithm remarkably reduces the average inter-arrival time

Intruder Detection Against Sinkhole Attack in Wireless Sensor Networks

Part 4

CSE Dept., The Chinese University of Hong Kong

Sinkhole Attack

Many-to-one communication

- Vulnerable to the sinkhole attack
- Prevent the base station from obtaining complete and correct sensing data
- Particularly severe for wireless sensor networks
- Some secure or geographic based routing protocols resist to the sinkhole attacks in certain level
- Many current routing protocols in sensor networks are susceptible to the sinkhole attack

Sinkhole Attack

- Left: using an artificial high quality route
- Right: using a wormhole

Our Work

- Propose an algorithm for detecting sinkhole attacks and identifying the intruder in an attack
 - Base station collects the network flow information with a distributed fashion in the attack area
 - An efficient identification algorithm that analyzes the collected network flow information and locate the intruder
- Consider the scenario that a set of colluding nodes cheat the base station about the location of the intruder

Identifying the Intruder

- Network flow information can be represented by a directed edge
- Realizes the routing pattern by constructing a tree using the next hop information collected
- An invaded area possesses special routing pattern
 - All network traffic flows toward the same destination, which is compromised by the intruder SH

Multiple Malicious Nodes

Drop some of the reply packets

Provide incorrect flow information

Their objective is to hide the real intruder SH and blame on a victim node SH'

Dealing with Malicious Nodes

- Maintain an array Count[]
 - Entry Count[i] stores the total number of nodes having hop count difference i
 - Index *i* can be negative (The node distance is smaller than its actual distance from the current root)
- If Count[0] is not the dominated one in the array, it means the current root is unlikely the real intruder

Root Correction Example

Eventually, node SH becomes the new root:

Performance Evaluation

- Accuracy of Intruder Identification
 - Success Rate
 - False-positive Rate
 - False-negative Rate
- Communication Cost
- Energy Consumption

No. of nodes in network	400
Size of network	200m x 200m
Transmission range	10m
Location of <i>BS</i>	(100,100)
Location of sinkhole	(50, 50)
Percentage of colluding codes (<i>m</i>)	0-50%
Message drop rate (<i>d</i>)	0-80%
No. of neighbors which a message is forwarded to (k)	1-2
Packet size	100bytes
Max. number of reply messages per packet	5

Intruder Identification

Success rate

False-positive rate

False-negative rate

Communication Cost and Energy Consumption

Summary of Part 4

- We proposed an effective method for identifying sinkhole attack in wireless sensor networks
- It locates a list of suspected nodes by checking data consistency, and then identifies the intruder in the list through analyzing the network flow information
- A series of enhancements is proposed to deal with cooperative malicious nodes which attempt to hide the real intruder
- Numerical analysis and simulation results are provided to demonstrate the effectiveness and accuracy of the algorithm
- We are interested in more effective statistical algorithms for identifying data inconsistency

Conclusions

- We investigated real-time communication and coordination in WSAN
- We proposed a general delay-aware reliability-centric framework for event reporting in WSAN
- We provided fault-tolerant and energy efficient data transport protocol for real-time data collection
- We studied the route design problem and proposed delay-minimized and cooperative solution to coordinate actuators and collect data efficiently
- We investigated the security issues in sensor networks and proposed an effective algorithm for intruder identification against Sinkhole attack

Selected Publications

Journal Paper

- Edith C.-H. Ngai, Jiangchuan Liu, and Michael R. Lyu, "An Efficient Intruder Detection Algorithm Against Sinkhole Attacks in Wireless Sensor Networks," to appear in Computer Communications, 2007.
- Edith C.H. Ngai and Michael R. Lyu, "Trust- and Clustering-Based Authentication Services in Mobile Ad Hoc Networks," to appear in International Journal of Wireless and Mobile Computing.

Conference Paper

- Edith C.-H. Ngai, Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu, "LOFT: A Latency-Oriented Fault Tolerant Transport Protocol for Wireless Sensor-Actuator Networks," IEEE Global Telecommunications Conference (Globecom'07), Washington, DC, USA, November 26-30, 2007.
- Edith C.-H. Ngai, Jiangchuan Liu, and Michael R. Lyu, "An Adaptive Delay-Minimized Route Design for Wireless Sensor-Actuator Networks," The 4th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS'07), , Pisa, Italy, October 8-11, 2007.
- Edith C.H. Ngai, Jiangchuan Liu, and Michael R. Lyu, "Delay-Minimized Route Design for Wireless Sensor-Actuator Networks," IEEE Wireless Communications & Networking Conference (WCNC'07), Hong Kong, March 11-15, 2007.
- Yangfan Zhou, Edith C.H. Ngai, Michael R. Lyu, and Jiangchuan Liu, "POWER-SPEED: A Power-Controlled Real-Time Data Transport Protocol for Wireless Sensor-Actuator Networks," IEEE Wireless Communications & Networking Conference (WCNC'07), Hong Kong, March 11-15, 2007.
- Edith C.H. Ngai, Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu, "Reliable Reporting of Delay-Sensitive Events in Wireless Sensor-Actuator Networks," *The Third IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS'06)*, Vancouver, Canada, October 9-12, 2006.
- Yangfan Zhou, Haixuan Yang, Michael R. Lyu, and Edith C.H. Ngai, "A Point-Distribution Index And Its Application to Sensor Grouping in Wireless Sensor Networks," International Wireless Communications and Mobile Computing Conference (IWCMC'06), Vancouver, Canada, July 3 - 6, 2006.
- Edith C.H. Ngai, Jiangchuan Liu, and Michael R. Lyu, "On the Intruder Detection for Sinkhole Attack in Wireless Sensor Networks," IEEE International Conference on Communications (ICC'06), Istanbul, Turkey, June 11-15, 2006.
- Edith C.H. Ngai and Michael R. Lyu, "An Authentication Service Based on Trust and Clustering in Wireless Ad Hoc Networks: Description and Security Evaluation," IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC'06), Taichung, Taiwan, June 5-7, 2006.
- Edith C.H. Ngai, Michael R. Lyu, and Jiangchuan Liu, "A Real-Time Communication Framework for Wireless Sensor-Actuator Networks," IEEE Aerospace Conference 2006, Big Sky, Montana, USA, March 4-11, 2006.

Future Directions

- More advanced actuator communication schemes can be explored
- Communication/storage points can be investigated to enhance data collection
- Different hardware facilities and MAC layer protocols of sensors can be studied and experimented
- More security mechanisms can be explored to protect the network

Thank You!