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Part 1. Introduction & Background
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Introduction

Large Multimodal Models (LMMs) combine the linguistic capabilities
of Large Language Models (LLMs) with advanced models that take
other modal inputs.

LMMs can process and generate multimodal content, including:

Text
Images
Audio and Video (potentially)

Recent advancements show strong performance in reasoning tasks,
even in 0-shot or 1-shot scenarios.

Limited application of LMMs in software systems so far:

Focused on text enhancement, artwork creation, summarization, etc.
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Potential in Software Systems

Software systems tasks require multimodal understanding:

Code analysis and software testing
User experience evaluation
Cybersecurity threat detection

LMMs could enhance these tasks significantly.

Challenges and opportunities need to be explored:

What kind of tasks are suitable for LMMs.
How LMMs can be effectively deployed
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Contributions of the Paper

Task Taxonomy for LMMs in Software Systems
Categorizes tasks across software engineering, system security, HCI, etc.
Provides a roadmap for researchers and practitioners.

Evaluation Framework for LMMs
Proposes methods to assess LMM performance on real-world tasks.
Includes representative tasks like user experience assessment and
software testing.

Cross-Model Performance Analysis
Comparative analysis of different LMMs (e.g., GPT-4 Vision, llama).
Investigates the role of prompt engineering.
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Part 2. Methodology
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Overview of Task Taxonomy Construction

Stage 1: Build the prototype of task taxonomy

Goal: Build a comprehensive taxonomy for multimodal tasks in
software engineering.

Sources:

135 papers from four conferences (ICSE, FSE, ASE, ISSTA) and two
journals (TSE, TOSEM) (2018–2024).

Methodology:

Open coding procedures for qualitative data analysis.
Iterative manual analysis by three analysts with cross-validation.

Outcome:
Initial task tree prototype based on five software-building processes:

Design, Development, Testing, Maintenance, and Repair (extended
from the Waterfall Model).
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Task Tree Structure

Hierarchical structure:

Level 1: Software processes (e.g., Design, Testing, etc.).
Level 2: Functional vs. Non-functional aspects (ISO/IEC 25002:2024
standards).
Level 3: Modal information (e.g., Vision, Vision with Audio).
Levels 4–5: Detailed technical descriptions.

Result: 95 papers used to finalize the initial taxonomy prototype.

Figure: Stage 1: Building Task Taxonomy Prototype
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Extending the Paper List

Stage 2: Extending the task taxonomy

Expanded to 37 A-level conferences/journals (CCF classification,
2018–2024).

Domains covered:

Computer Networks, Graphics/Multimedia, AI, HCI,
Cross-cutting/Emerging topics.

Steps for paper selection:

Updated keyword list to broaden coverage.
Removed redundant keywords (e.g., ”visual” in vision-related fields).
Result: Filtered 8,208 papers.

Automation:

Used Gemini-1.5 for a 5-round majority vote to identify multimodal
focus.
Reduced to 1,102 papers.
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Automating Taxonomy Expansion

Leveraged LLMs (e.g., GPT-4o) to predict task categories:

Input: Paper title, abstract, and task tree structure.
Output: JSON format indicating matches or new nodes.

Two-stage LLM process:

Stage 1: Identify related software processes.
Stage 2: Match with existing task tree nodes or add new nodes.

Manual validation:

Pruned and merged misclassified results.

Final taxonomy:

471 multimodal papers.
Total task taxonomy built using 564 papers.

Chen & Zhu (CUHK) LYU 2407 December 8, 2024 11 / 49



Automating Taxonomy Expansion

Figure: Stage 2: Guiding LLMs to Extend the Taxonomy
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Consolidated Task Tree

Hierarchical task tree built up to the 3rd level.

Examples:
Functional Testing Task Tree

Figure: Overview of the Testing sub-Task Tree (up to 3rd Level)
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Overview of Testing Framework

Framework built for high scalability and modularity.
Key features:

Separation of task-related code to reduce coupling.
Easy modification and extension of tasks, models, datasets, and
evaluation methods.

Workflow components:
Model Config: Basic model information
Task Config: Task configuration for customized task.
Data Loader: Load data from specific dataset.
Model Loader: Supports model initialization and request handling.
Result Evaluation: Task-specific evaluation functions for accuracy.
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Using the Framework

Designed for simplicity and ease of use.
Key steps for users:

Fill the task configuration file:
Specify task name, dataset list, model list, and evaluation parameters.

Add new models:
Write a Python file for the model and update the model configuration
file.

Add new datasets or evaluation methods:
Write documentation and corresponding Python scripts.

Framework automates task execution based on configuration.

Figure: Framework’s Workflow
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Example of Task Configuration

Example Task Configuration

task name=YourTaskName

call method=TheModality

system prompt="..."

max token length=MaxToken

dataset name=’["listOfDataLoaderPythonFile"]’

dataset class=’["className ofDataloader"]’

dataset path=("../path/to/dataset")

batch size=EvaluationBatchSize

eval method=’["evaluationPythonFileList"]’

eval class=("EvaluationClassName")

middleDoc=true/false

middle extension=txt/html....

model list=("listOfUsedModel")

device=cuda

output dir=/path/to/output
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Example Model Configuration

Users can configure new models for local or API-based execution.
Key steps in model configuration:

Specify whether the model is accessed via API or locally.
Provide necessary details:

API: API key, base URL, and model name.
Local: Conda environment name and path to pretrained model.

Add model file name and class name.

Example Model Configuration

[SectionName]="name that will be used in the task config"

call type = "api" or "local"

base url = "your base url here"

model name = "your model name here"

conda env name = "your conda environment name"

pretrained path = "path to pretrained model"

model file name = "your python file name to run model here"

model class = "your model class name in the python file here"
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Part 3. Experiment
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Experiment Setting – Models

We selected 12 different LMMs as our experimental subjects and
tested 6 this semester.

Each model can accept specific non-textual modalities as inputs and
quiz the corresponding multi-modal tasks.

Table: An overview of our tested model list

Models Parameters Open Source? Support Modalities
GPT-4o-2024-05-13 Not published No Text, Vision(image),Vision(Video)

GPT-4o-audio-preview Not published No Text, Audio
Llama-3.2-90B 90B Yes Text, Vision(image)
Llama-3.2-11B 11B Yes Text, Vision(image)
InternVL2-8B 8B Yes Text, Vision(image), Vision(video)

LLaVA-NeXT-7B 7B Yes Text, Vision(image)
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Experiment Setting – Datasets

We extracted 53 usable datasets from our collection of 564 papers as
our benchmarks.

For each dataset, we summarize the modality involved, which stage of
the WaterFall model is of concern, and what type of software is
targeted.

We picked a subset of 5 datasets from our test benchmarks to
experiment with, each subset containing about 100 inputs.

Table: An overview of our sub-dataset list

Dataset Name Size Component
Design2Code dataset [1] 100 Image, HTML

OwlEye dataset [2] 102 Image
Annotated RICO dataset [3] 100 Image, Text
PSC2CODE dataset [4] 74 Text,Video

VITAS dataset [5] 100 Text
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Experiment Setting – Tasks List

We summarized 11 tasks based on previous work, each involving
multimodal inputs.

We selected five representative sub-tasks from the total task list to
present our findings. Each of them contains two different input
modalities. These five tasks cover four input modalities: text, single
image, multiple images (video), and audio.

Table: An overview of our sub-task list

Task Name Input Modalities Output Modalities
UI to Code Text, Visioin Text

Display Bug/Glitch Detection Text, Visioin Text
Interactable UI Element Detection Text, Visioin Text
Voice Based Agent / Interaction Text, Audio Text

Video Display Detection Text, Video Text
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Experiment Setting – Evaluation Metrics

We followed the evaluation metrics set in the original paper to
evaluate our experimental results.

Table: An overview of our evaluation metric list

Task Name Eval Metics
UI to Code Design2Code Metric [1]

Display Bug/Glitch Detection OwlEye Metric [2]
Interactable UI Element Detection IoU (threshold 0.6) [3]
Voice Based Agent / Interaction SeMaScore [6]

Video Display Detection video display detect Metric [4]
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Part 4. Evaluation & Discussion
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Evaluation – RQs

We empirically explored the following two main research questions
(RQs).

RQ1: Where can software system development process and research
benefit from large multimodal models?
RQ2: To what extent do the LMMs have sufficient capabilities to help
the multimodal software system development process and research?

RQ2-1: At Text, Image level, do the LMMs have sufficient capabilities
to help the multimodal software system development process and
research?
RQ2-2: At Text, Video level, do the LMMs have sufficient capabilities
to help the multimodal software system development process and
research?
RQ2-3: At Text, Audio level, do the LMMs have sufficient capabilities
to help the multimodal software system development process and
research?
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Evaluation – RQ1

RQ1: Where can software system development process and research
benefit from large multimodal models?

Software system processes and research often involve analyzing
multimodal information, and LMM is undoubtedly quite capable of
optimizing this process.

To answer RQ1, we examine what research directions and processes
might benefit from utilizing the capabilities of LMM.
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Evaluation – RQ1

Through our Task Taxonomy!

We predicted whether the studies in the corresponding paper could
benefit from the LMM’s capabilities by guiding the LLM with a
prototype of our taxonomy and received a task tree covering 176
secondary classifications.

Our task tree covers four modalities (text, visual, audio, tactile) and
five software processes (Design, Develop, Test, Maintain, and Repair).

Answer to RQ1: Our task tree demonstrates the software system
development processes and research that can benefit from LMMs.
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Evaluation – RQ2

RQ2: To what extent do the LMMs have sufficient capabilities to help
the multimodal software system development process and research?

To answer RQ2, we evaluate the LMM in three different modality
combinations: the primary text modality plus a specific modality:
single image, multiple images (video), and audio.

We will show each combination’s results in the following slides.
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Evaluation – RQ2.1: Text, Image

To test LMM’s ability in Text and Image, we conducted experiments on
five LMMs that accept text and image input through the following three
tasks:

UI2Code

Display Bug/Glitch Detection

Interactable UI Element Detection
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Evaluation – RQ2.1: Text, Image

UI2Code Task Overview:

Task: Convert a given UI image into working HTML code.

Source: Based on the task presented by Si et al. [1].

Challenge: It is Hard to generate the same code view of a UI image.

Evaluation metrics: Block-Match, Text-Match, Position-Match,
Color-Match, and CLIP high-level Match

Application: Help the developer to build their prototype of UI design
faster.
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Evaluation – RQ2.1: Text, Image

Table: Experiment Results

Models Final Score Block-Match Text Position Color CLIP
GPT-4o-2024-05-13 0.887 0.907 0.972 0.855 0.822 0.879

Llama3.2-11b ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Llava-Next-7b 0.735 0.665 0.846 0.69 0.641 0.834
Llama3.2-90b 0.54 0.357 0.61 0.486 0.437 0.812

Baseline 0.848 0.858 0.974 0.805 0.733 0.869

Key Insights:

Llama3.2-11b:
Lack of task understanding ability usually generates meaningless
output.

GPT-4o:
Better performance than baseline across almost all metrics.

General Observation:
LMMs can help with such pretrained tasks.
Still some gaps from the baseline setting.
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Evaluation – RQ2.1: Text, Image

Sample Output from Llama3.2 11b
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Evaluation – RQ2.1: Text, Image

Display Bug/Glitch Detection Task Overview:

Task: Detect potential display issues in given UI screenshots, such as
texture loading failures, text rendering errors, or overlapping elements.

Source: Based on the task presented by Liu et al. [2].

Challenge: Requires precise visual recognition and contextual
understanding of UI screenshots.

Evaluation metrics:Precision, Recall, F1-score, True Positives, False
Positives, False Negative

Application:
Improving software quality assurance for user interfaces.
Automating detection of visual bugs in large-scale UI testing pipelines.
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Evaluation – RQ2.1: Text, Image

Table: Experiment Results

Models Percision Recall F1 TP FP FN
GPT-4o-2024-05-13 0.92 0.597 0.724 46 4 31

Llama3.2-11b ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Llava-Next-7b 0.02 1 0.039 1 49 0
InternVL-8b 0 0 0 0 50 0
Llama3.2-90b 0.18 0.45 0.257 9 41 11

Baseline 0.850 0.848 0.849 - - -

Key Insights:
GPT-4o:

Best Precision score, showing strong detection for true positives.
Recall still needs improvement; potential for more balanced predictions.

Baseline:
Most balanced performance across all metrics.
Remains a strong benchmark for this task.

Other LMMs:
Poor performance for models like InternVL-8b and Llama3.2-11b.
Llava-Next-7b over-predicts positive cases, leading to poor Precision.
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Evaluation – RQ2.1: Text, Image

Interactable UI Element Detection Task Overview:

Task: Detect small elements inside a UI image and generate several
bounding boxes to indicate them.

Source: Based on the task presented by Chen et al. [3].

Challenge: Difficult to generate very accurate small object detection
results.

Evaluation metrics: Intersection of Union (IoU) with threshold 0.6,
and TP, FP, FN to calculate precision, recall, and F1.

Application: Helping detect the small objects inside UI image.
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Evaluation – RQ2.1: Text, Image

Table: Experiment Results

Models Percision Recall F1 TP FP FN
GPT-4o-2024-05-13 0.014 0.017 0.016 13 918 730

Llama3.2-11b ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Llava-Next-7b 0.0009 0.004 0.001 3 3411 740
InternVL-8b 0.002 0.009 0.003 7 3288 736
Llama3.2-90b 0 0 0 0 2373 743

Baseline 0.490 0.557 0.524 - - -

Key Insights:

GPT-4o:
Lack of identification accuracy.
Far from the baseline performance.

General Observation:
Most LMMs can not handle such difficult tasks.
Perhaps preprocessing through another small model will improve the
performance.
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Evaluation – RQ2.1 Text, Image

Answer to RQ2-1: At the Text and Image level, LMMs can be ex-
perts on some specialized pre-trained tasks but are inferior to baseline
methods for other tasks.
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Evaluation – RQ2.2: Text, Video

Task Overview:

Task: Detect whether video frames are valid (contain useful code
content) or invalid.
Source: Based on the task presented by Bao et al. [4].
Challenge: Video understanding differs from image analysis:

Strong correlation and continuity between frames.
Requires contextual comprehension of frame sequences.

Evaluation metrics: Precision, Recall, F1-score, True Positives (TP),
False Positives (FP), False Negatives (FN).
Application: Sub-task in extracting code from videos for multimodal
software system development.

Figure: Example of an invalid frame
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Evaluation – RQ2.2 Text, Video

Table: Experiment Results

Model Precision Recall F1
GPT-4o 0.891 0.891 0.891

InternVL-8B 0.938 0.857 0.895
Baseline 0.910 0.850 0.880

Key Insights:

InternVL-8B:
Appears to perform best but exhibits issues due to dataset imbalance.
Predicts most frames as valid, leading to inflated performance metrics.

GPT-4o:
Performs consistently well across all metrics.
Demonstrates strong zero-shot video understanding capabilities.

General Observation:
Multimodal large models (LMMs) perform very well without additional
training.
Dataset imbalance affects real-world testing reliability.
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Evaluation – RQ2.2 Text, Video

Answer to RQ2-2:

At the text and video level, LMMs show strong potential for
assisting in multimodal software system development and
research.

Achieve performance comparable to baselines while requiring no
additional training.
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Evaluation – RQ2.3: Text, Audio

Automatic Speech Recognition (ASR) Task Overview:

Task: Recognize text information in speech.

Source: Based on the task presented by Li et al. [5].

Challenge: Difficult to analyze the difference between oral and
written expression.

Evaluation metrics: SemaScore [6] based on token-level text
analysis.

Application: Automated voice user interface (VUI) testing as an
automated smart terminal.
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Evaluation – RQ2.3: Text, Audio

Table: Experiment Results

Models SemaScore
GPT-4o-audio-preview 0.9583

Key Insights:

GPT-4o:
good speech recognition capabilities.
be able to generate audio as output.

General Observation:
LMMs can potentially guide the testing of Virtual personal assistants
(VPA).
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Evaluation – RQ2.3 Text, Audio

Answer to RQ2-3: LMM can understand text information inside au-
dio, so LMM has sufficient capabilities to help the multimodal software
system development process and research.
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Part 5. Conclusion & Future Work
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Conclusion

Key Contributions:

Task Taxonomy and Classification:
Developed a task taxonomy and task tree to address the lack of explicit
specifications for applying LMMs in software engineering.

Flexible Testing Framework:
Constructed a testing framework allowing developers to combine
datasets and evaluation criteria for flexible LMM testing.

Experimental Insights:
LMM performs very well in certain tasks, but we see its shortcomings
as well.
Highlights the need for comprehensive and nuanced assessment of
LMM capabilities.

Encouraging Findings:
LMMs demonstrate promising multimodal task understanding and
execution.
Potential to expand LMMs into complex environments (e.g., XR
software with simultaneous multimodal inputs).
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Future Work

Refining the taxonomy:
Address misclassifications caused by errors or random factors.
Ensure no potential research directions are overlooked.

Proposing New Tasks:
Generalize and expand tasks from existing datasets and task trees.
Cover more modalities for broader applicability.

Expand Experiment Size:
Tested models Size
Benchmark Size
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Part 6. Q & A
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