

Evaluation of Multimodal Models: Assessing Performance and Finding Improvements

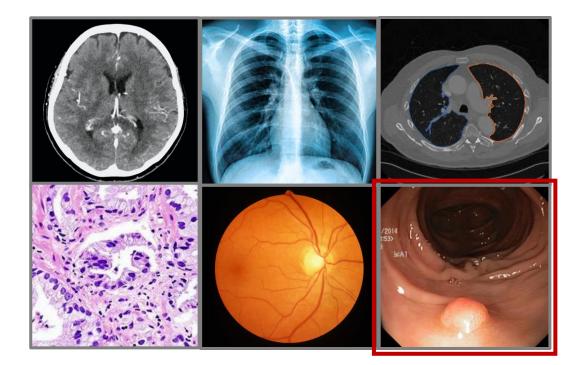
Metamorphic Testing for Medical Image Analysis

WU, Haoran WU, Yushan

AI in Medical Imaging

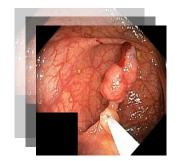
• Medical errors are a critical issue.

- A leading cause is diagnostic errors.
- Al can enhance the accuracy of medical diagnosis tools.

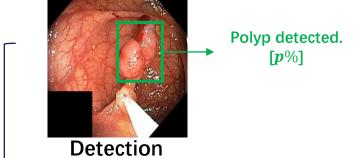


Output

Common Tasks







Segmentation

Anomalies Class? Yes + Polyp.

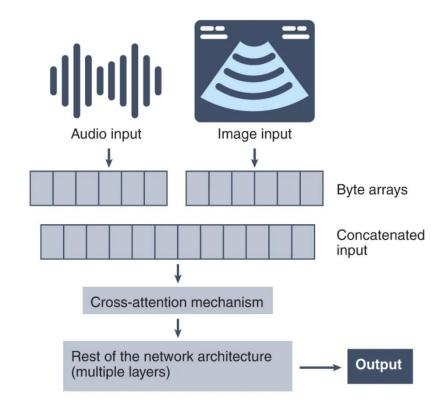
Classification

Multimodality and Healthcare

• Multimodal: integration of multiple modes of communication and interaction.

• Application fields: healthcare, education, finance, etc.

• Further improvement in the use of AI in healthcare.



Motivation

- Fallibility: AI misalignment with clinicians' assessments.
- Need for reliable and robust testing frameworks.

• The methodologies for generating test cases in general computer vision software cannot be directly applied due to the complex nature of medical diagnosis.

Introducing MedTest

• **MedTest**: A novel metamorphic testing paradigm targeting models on medical imaging tasks.

• Conducted a pilot study, revealing **9 metamorphic relations**, across four artifact categories: **lightness, motion, object artifacts, and non-object artifacts**.

• Testing in both commercial software and state-of-the-art algorithms.

• Further training on those algorithms to improve the model performance.

Metamorphic Testing

- Key idea: Automatically generate test cases to solve the test oracle problem via Metamorphic Relations (MR).
- MRs delineate the expected relationship between different sets of input-output pairs of a software application.
- Let p be a representation mapping program inputs into program outputs, and f_I and f_o are two functions for transforming the input and output domain, respectively.
- MR formulation:

$$\forall i, p[[f_I(i)]] = f_O(p[[i]])$$

Metamorphic Testing on AI models

- In our testing scenarios, let *Model* be the model or software we target, that continuously maps each image into predicted output (e.g. segmentation mask).
- Given the original image stream I, we can define various image perturbations \mathbb{P} that simply add some artifacts and do not impact the clinical diagnosis for each image $i \in I$.
- In this way, we use the following MR to test the models with additional perturbations:

 $\forall i \in \mathbb{I} \land \forall p \in \mathbb{P}, Model[[p(i)]] \approx Model[[i]]$ $|Model[[p(i)]] - Model[[i]]| < \varepsilon$

where ε denotes a certain degree of error-tolerant rate.

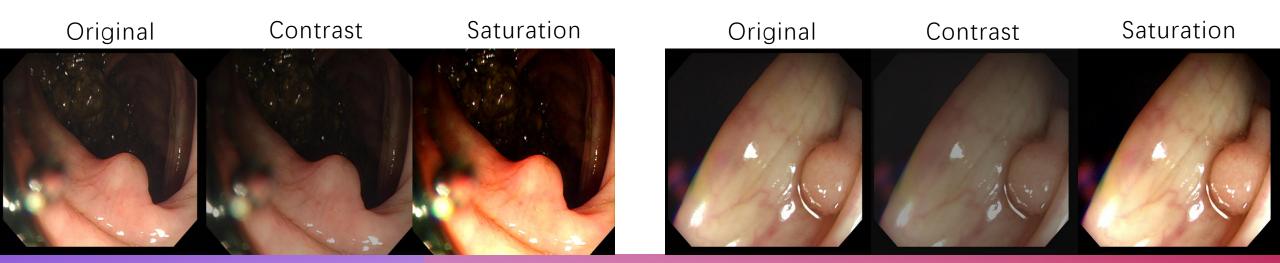
Perturbation Types

- Goal: The "seed" image and "perturbed" counterparts should yield consistent prediction results (e.g. classification label, segmentation masks).
- Perturbation criteria: clinical-semantic-preserving, realistic, unambiguous.

Perturbation Group	Type	Description
Lighting	Saturation Contrast White Balance Specularity	Over-saturation caused by excessive lighting Resulting from underexposure or obstructions in the field of view Color distortions due to presence of white objects Reflections resembling a mirror-like surface
Motion	Blur	Blurring from hand movements or rapid camera motion
Objects	Instrument Feces Blood	Presence of surgical instruments in the image frame Incomplete colon cleansing in patients Visible bleeding from wounds
Non-objects	Text	Embedded clinical information related to patients

Contrast/Saturation

- The light source is too far/close to the tissue.
- Applied torchvision.transforms to adjust contrast/saturation with a random factor.



White Balance

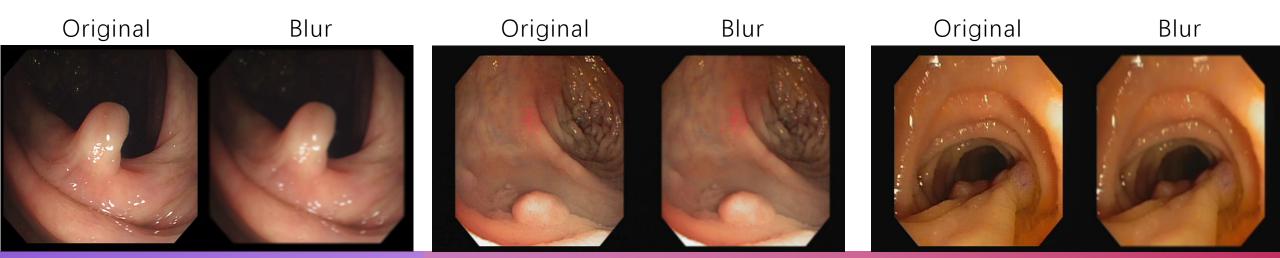
- The white balance settings of the endoscopic camera or the lighting conditions within the endoscopic environment.
- Selectively modified the RGB channels.

Specularity

- Resembles the specular reflection.
- Identifying clusters as potential sites, generating ellipses near the cluster centers.
- Integrated these spots with a gray mask and application of Gaussian blur.

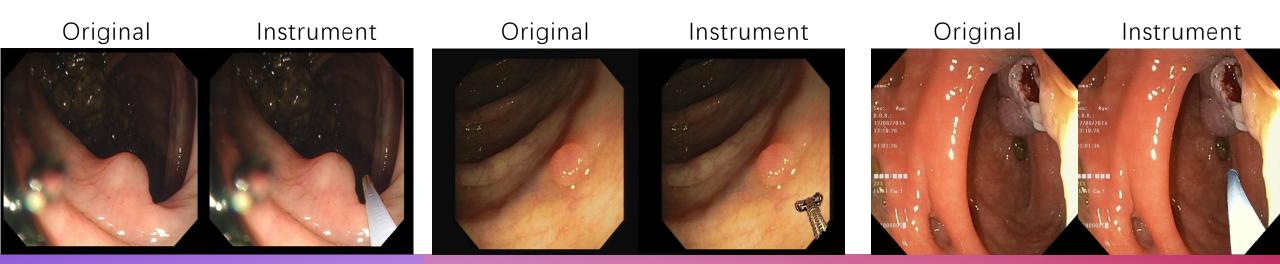
Motion Blur

- Camera movement and tissue movement.
- Employed Gaussian blur with a random factor.



Instrument

- Resembles the medical instruments that appear in operations.
- Segmented the instrument from the Kvasir-Instrument dataset.
- Utilized our algorithm to select the proper location and orientation and blend the edge.

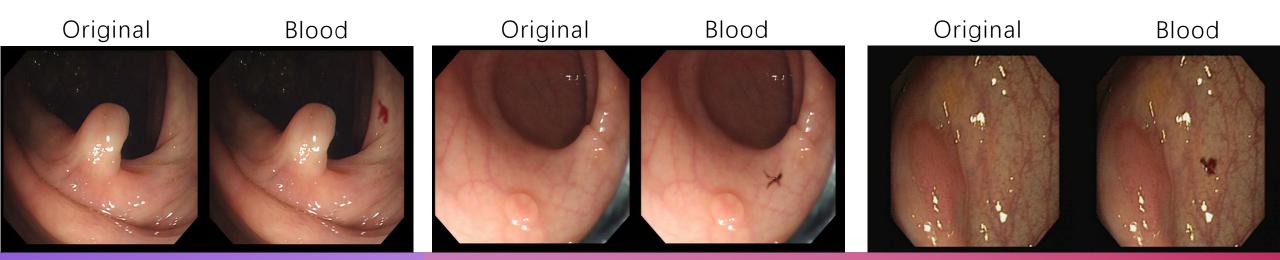


Feces

- Fecal matter appears in operations.
- Segmented with Meta's Segment Anything from Kvasir dataset.
- Utilized our algorithm to select proper location and calculated size and brightness factor to blend in.

Blood

- Tissue bleeding in operations.
- Segmented the blood from EAD2020 dataset.
- Utilized our algorithm to select proper location and calculated size and brightness factor to blend in.

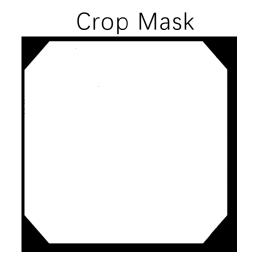


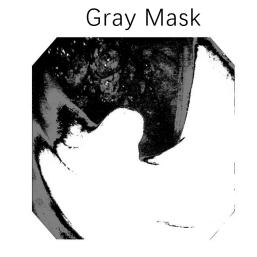
Text

- Pattern in the text displayed on endoscopic images.
- Used ImageDraw method of PIL to generate text.

Data Pre-processing

- Large difference in image sizes -> Resize into 512×512 .
- Extract the black frame of images to avoid possible synthesis on the edge.
- Generate gray masks for images to adjust the brightness condition of synthesized parts.





Evaluation

Evaluate our methodology by answering the following Research Questions (RQ):

- RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?
- RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?
- RQ3: What are the various factors that influence the performance of our method and how do they do so?

Evaluation-RQ1

Evaluate our methodology by answering the following Research Questions (RQ):

- RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?
- RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?
- RQ3: What are the various factors that influence the performance of our method and how do they do so?

Experiment Settings

- Mainly utilize clinical **endoscopy images** to evaluate models.
- Datasets:
 - CVC-300 (60 images), CVC-ColonDB (380 images) mainly for the segmentation task.
 440 seed images in total.
 - Additional ImageCLEF MEDVQA (182 images and 18 questions each) for VQA testing.
 - Wireless capsule endoscopy images from CAD-CAP and KID, with 600 seed images for testing in total.
- Models under testing:
 - Polyp **segmentation** models: PraNet, SANet, TGANet, SSFormer.
 - Multi-modal models for Visual Question-Answering (VQA): GPT-4V.
 - Gastrointestinal disease **classification**: AGDN, DSI-Net.

Evaluation-RQ1

RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?

- Segmentation
- Visual-Question Answering
- Classification

Segmentation

• Segmentation is the task to divide the image into different meaningful regions of interest.

Evaluation Criteria

Measurement for segmentation task:

• Dice Score:

$$Dice(\widehat{Y},Y) = \frac{2 \times |\widehat{Y} \cap Y|}{|\widehat{Y}| + |Y|} = \frac{2 \times TP}{(TP + FP) + (TP + FN)} = \frac{2 X \operatorname{Area of overlap}}{Total \operatorname{area}} = \frac{2 \times TP}{Total \operatorname{area}} =$$

Intersection over Union (IoU) Score:

$$IoU(\widehat{Y}, Y) = \frac{|\widehat{Y} \cap Y|}{|\widehat{Y} \cup Y|} = \frac{TP}{TP + FP + FN} = \frac{Area \ of \ overlap}{Area \ of \ union} = \frac{Frediction}{Frediction}$$

Prediction

Prediction

Fround truth

Evaluation Criteria

Measurement for "Misclassified"/ "Error":

- The difference between model's performance on "seed" image and on perturbations should not exceed an error-tolerant threshold *t*.
- Performance is calculated by Dice/IoU Score.
- The sample counts toward an error if

$$\frac{Original\ Score\ -Artifact\ Score}{Original\ Score} > t$$

Error Finding Rate (EFR):

$$EFR = \frac{\# of \ error \ test \ cases}{\# of \ generated \ test \ cases} \times 100\%$$

• We evaluated four segmentation models (PraNet, SANet, TGANet, SSFormer) respectively.

Artifact	Original Image	Image with Artifact	Ground Truth	Output (Original)	Output (Artifact)	Artifact	Original Image	Image with Artifact	Ground Truth	Output (Original)	Output (Artifact)
Saturation				(Oliginal)		Instrument	image	Arthact	•	(Oliginal)	(Artifiact)
Contrast			7			Feces	3	31	A	•	• 1
White- Balance		(and)		J	r	Blood			\sim		•
Specularity			•	•		Text		nan0 nan3 nan3 nan3			
Blur				•							

Results

- For illustration, we choose the error-tolerant threshold t = 0.25.
- The EFRs are organized by each model, together with separate values for each dataset and perturbations.

PraNet	CVC	-300	CVC-	ColonDB
t = 0.25	Dice	IoU	Dice	IoU
Blood	3.3	6.7	4.0	5.0
Feces	0.0	1.7	7.4	9.2
Instrument	6.7	11.7	12.1	14.0
Spot	1.7	1.7	3.2	4.2
Saturation	8.3	13.3	6.6	8.4
Contrast	1.7	5.0	4.7	6.1
White Balance	8.3	13.3	19.8	22.7
Blur	8.3	8.3	14.2	17.2
Text	0.0	0.0	5.0	5.8

PraNet: Overall EFR = 6.41%

SANet	CVC	-300	CVC-	ColonDB
t=0.25	Dice	IoU	Dice	IoU
Blood	0.0	0.0	2.9	3.4
Feces	1.7	1.7	6.9	7.4
Instrument	1.7	1.7	5.5	5.8
Spot	0.0	0.0	4.2	4.5
Saturation	5.0	6.7	3.4	5.5
Contrast	0.0	0.0	3.4	4.0
White Balance	0.0	0.0	10.8	14.0
Blur	3.3	5.0	6.3	8.7
Text	0.0	0.0	5.5	5.8

SANet: Overall EFR = 3.37%

Results

- For illustration, we choose the error-tolerant threshold t = 0.25.
- The EFRs are organized by each model, together with separate values for each dataset and perturbations.

TGANet	CVC-300		CVC-	ColonDB
t=0.25	Dice	IoU	Dice	IoU
Blood	16.7	20.0	23.9	29.2
Feces	13.3	25.0	13.9	18.2
Instrument	30.0	46.7	18.9	24.2
Spot	3.3	3.3	5.5	6.6
Saturation	16.7	18.3	21.8	24.7
Contrast	0.0	1.7	26.8	29.2
White Balance	31.7	38.3	35.3	40.8
Blur	28.3	31.7	9.7	11.8
Text	8.3	8.3	10.8	13.4

TGANet: Overall EFR = 17.49%

SSFormer	CVC	-300	CVC-	-ColonDB	
t = 0.25	Dice	IoU	Dice	IoU	
Blood	3.3	3.3	5.0	5.3	
Feces	0.0	0.0	7.6	8.2	
Instrument	3.3	6.7	7.1	7.6	
Spot	0.0	0.0	2.4	2.4	
Saturation	6.7	10.0	2.6	4.5	
Contrast	1.7	3.3	3.9	4.7	
White Balance	3.3	5.0	11.8	13.9	
Blur	0.0	1.7	3.4	3.4	
Text	0.0	0.0	2.1	2.6	

SSFormer: Overall EFR = 3.57%

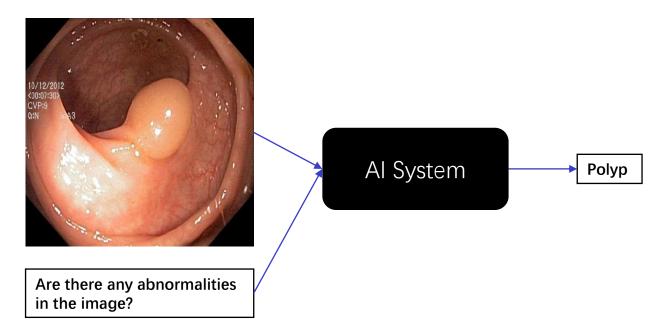
Evaluation-RQ1

RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?

- Segmentation
- Visual-Question Answering
- Classification

Visual Question-Answering (VQA)

- VQA refers to the task of answering open-ended questions based on an image.
- These questions require an understanding of vision, language, and commonsense knowledge to answer.



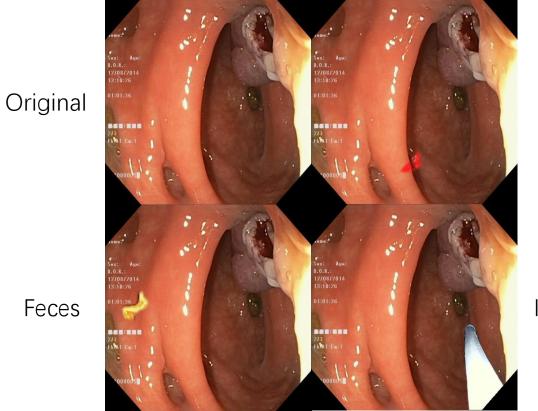
• Used the questions provided in the CLEF2023 MEDVQA Dataset.

 Includes "Yes/No" questions and simple questions regarding objects of interest within the medical images.

• Mainly conducted experiments on GPT-4V.

Question Number	Question
1	Are there any abnormalities in the image?
2	Are there any anatomical landmarks in the image?
3	Are there any instruments in the image?
4	Have all polyps been removed?
5	How many findings are present?
6	How many instruments are in the image?
7	How many polyps are in the image?
8	Is there a green/black box artefact?
9	Is there text?
10	Is this finding easy to detect?
11	What color is the abnormality?
12	What color is the anatomical landmark?
13	What is the size of the polyp?
14	What type of polyp is present?
15	What type of procedure is the image taken from?
16	Where in the image is the abnormality?
17	Where in the image is the anatomical landmark?
18	Where in the image is the instrument?

• Illustration on VQA testing case

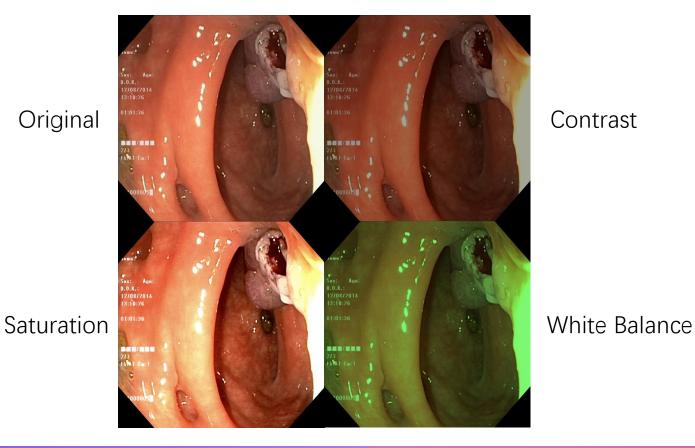


Blood

Instrument

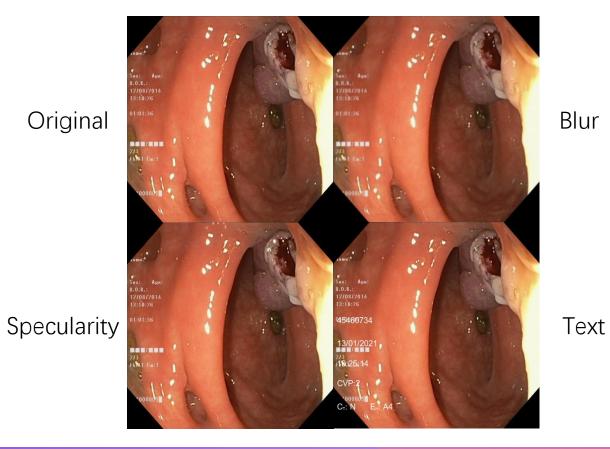
Question	Ground	Original	Blood	Feces	Instrument
Are there any ab-	Truth Polyp	Polyp	Bleeding	Feces	Polyp
normalities in the	гогур	гогур	Dieeding	reces	rotyp
image?					
0	No	No	No	Yes	Yes
Are there any anatomical land-	NO	NO	NO	ies	ies
marks in the					
image?					
Are there any in-	No	No	No	No	Yes
struments in the	NO	NO	NO	NO	165
image?					
Have all polyps	No	No	Not relevant	Not relevant	No
been removed?	NO	NO	Not relevant	Not relevant	NO
How many findings	1	1	1	1	1
are present?	1	1	1	1	1
How many instru-	0	0	0	0	1
ments are in the im-	0	0	0	0	1
age?					
How many polyps	1	1	0	0	1
are in the image?	1	1	Ŭ	U	1
Is there a	No	No	No	No	No
green/black box	110	110	110	110	110
artefact?					
Is there text?	Yes	Yes	Yes	Yes	Yes
Is this finding easy	Yes	Yes	Yes	Yes	Yes
to detect?					
What color is the	Red, Pink,	Red	Red	Brown	Red
abnormality?	Grey				
What color is the	Not relevant	Not relevant	Not relevant	Pink	Pink
anatomical land-					
mark?					
What is the size of	>20mm	>10mm	Not relevant	Not relevant	>10mm
the polyp?					
What type of polyp	Paris is	Paris Ip	Not relevant	Not relevant	Paris Ip
is present?					
What type of pro-	Colonoscopy	Colonoscopy	Colonoscopy	Colonoscopy	Colonoscopy
cedure is the image					
taken from?				_	
Where in the image	Center,	Center-Left	Center-Left	Bottom-	Center-Left
is the abnormality?	Upper-right,			Center	
	Center-right,				
	Upper-				
When in the in	center Natural	Net released	Net release t	Contor	Cartan
Where in the im-	Not relevant	Not relevant	Not relevant	Center	Center
age is the anatom-					
ical landmark? Where in the image	Not relevant	Not relevant	Not relevant	Not relevant	Bottom-
is the instrument?	not relevant	rot relevant	rot relevant	rot relevant	Center
is the monument!					Jenter

• Illustration on VQA testing case



Question	Ground Truth	Original	Contrast	Saturation	White Bal- ance
Are there any ab- normalities in the image?	Polyp	Polyp	Polyp	Polyp	Polyp
Are there any anatomical land- marks in the image?	No	No	Yes	Yes	Yes
Are there any in- struments in the image?	No	No	No	No	No
Have all polyps been removed?	No	No	No	No	No
How many findings are present?	1	1	1	1	1
How many instru- ments are in the im- age?	0	0	0	0	0
How many polyps are in the image?	1	1	1	1	1
Is there a green/black box artefact?	No	No	No	No	No
Is there text?	Yes	Yes	Yes	Yes	Yes
Is this finding easy to detect?	Yes	Yes	Yes	Yes	Difficult due to color al- teration
What color is the abnormality?	Red, Pink, Grey	Red	Red	Red	Not applica- ble due to WB
What color is the anatomical land-mark?	Not relevant	Not relevant	Pink	Pink	Not applica- ble due to WB
What is the size of the polyp?	>20mm	>10mm	>10mm	>10mm	Not applica- ble due to WB
What type of polyp is present?	Paris is	Paris Ip	Paris Ip	Paris Ip	Not applica- ble due to WB
What type of pro- cedure is the image taken from?	Colonoscopy	Colonoscopy	Colonoscopy	Colonoscopy	Colonoscopy
Where in the image is the abnormality?	Center, Upper-right, Center-right, Upper- center	Center-Left	Center-Left	Center-Left	Not applica- ble due to WB
Where in the im- age is the anatom- ical landmark?	Not relevant	Not relevant	Center	Center	Not applica- ble due to WB
Where in the image is the instrument?	Not relevant	Not relevant	Not relevant	Not relevant	Not relevant

• Illustration on VQA testing case



Question	Ground Truth	Original	Blur	Specularity	Text
Are there any ab-	Polyp	Polyp	Polyp	Polyp	Polyp
normalities in the	10.5P	10.5P	1 org p	1 org p	10151
image?					
Are there any	No	No	Yes	Yes	Yes
anatomical land-	110		100	100	100
marks in the					
image?					
Are there any in-	No	No	No	No	No
struments in the	110		110	110	
image?					
Have all polyps	No	No	No	No	No
been removed?	110	NO	110	NO	10
How many findings	1	1	1	1	1
are present?	1	1	1 ¹	1	1
How many instru-	0	0	0	0	0
ments are in the im-	0	0	0	0	0
age?					
How many polyps	1	1	1	1	1
are in the image?	1	1	1	1	1
	No	No	No	No	No
	NO	NO	NO	NO	INO
green/black box artefact?					
	Vec	V	V	V	V
Is there text?	Yes	Yes	Yes	Yes	Yes
Is this finding easy to detect?	Yes	Yes	No	Yes	Yes
What color is the	Red, Pink,	Red	Red	Red	Red
abnormality?	Grey				
What color is the	Not relevant	Not relevant	Pink	Pink	Pink
anatomical land-					
mark?					
What is the size of	>20mm	>10mm	>10mm	>10mm	>10mm
the polyp?					
What type of polyp	Paris is	Paris Ip	Paris Ip	Paris Ip	Paris Ip
is present?					_
What type of pro-	Colonoscopy	Colonoscopy	Colonoscopy	Colonoscopy	Colonoscopy
cedure is the image					
taken from?					
Where in the image	Center,	Center-Left	Center-Left	Center-Left	Center-Left
is the abnormality?	Upper-right,				
	Center-right,				
	Upper-				
	center				
Where in the im-	Not relevant	Not relevant	Center	Center	Center
age is the anatom-					
ical landmark?					
Where in the image	Not relevant	Not relevant	Not relevant	Not relevant	Not relevant
is the instrument?					
is the instrument?					

Results

- The VQA testing result on GPT-4V.
- The model is quite robust.

GPT-4V	Original	Average Perturbation	Difference (Original - Average)
Are there any abnormalities in the image?	0.888	0.861	0.027
Are there any anatomical landmarks in the image?	0.341	0.347	-0.006
Are there any instruments in the image?	0.947	0.873	0.074
Have all polyps been removed?	0.284	0.282	0.002
How many findings are present?	0.835	0.816	0.019
How many instrumets are in the image?	0.963	0.93	0.033
How many polyps are in the image?	0.79	0.763	0.027
Is there a green/black box artefact?	0.624	0.636	-0.012
Is there text?	0.98	0.963	0.017
Is this finding easy to detect?	0.594	0.589	0.005
What color is the abnormality?	0.465	0.406	0.059
What color is the anatomical landmark?	0.369	0.388	-0.019
What is the size of the polyp?	0.21	0.206	0.004
What type of polyp is present?	0.176	0.163	0.013
What type of procedure is the image taken from?	0.976	0.964	0.012
Where in the image is the abnormality?	0.653	0.644	0.009
Where in the image is the anatomical landmark?	0.365	0.386	-0.021
Where in the image is the instrument?	0.924	0.896	0.028
Average	0.632	0.617	0.015

Overall score before deletion

Results

- The VQA testing result on GPT-4V.
- We found that some questions are ambiguous and not related to our task.

GPT-4V	Original	Average Perturbation	Difference (Original - Average)
Are there any abnormalities in the image?	0.888	0.861	0.027
Are there any instruments in the image?	0.947	0.873	0.074
Have all polyps been removed?	0.284	0.282	0.002
How many findings are present?	0.835	0.816	0.019
How many instrumnets are in the image?	0.963	0.93	0.033
How many polyps are in the image?	0.79	0.763	0.027
Is there a green/black box artefact?	0.624	0.636	-0.012
Is there text?	0.98	0.963	0.017
What color is the abnormality?	0.465	0.406	0.059
What is the size of the polyp?	0.21	0.206	0.004
What type of polyp is present?	0.176	0.163	0.013
What type of procedure is the image taken from?	0.976	0.964	0.012
Where in the image is the abnormality?	0.653	0.644	0.009
Where in the image is the instrument?	0.924	0.896	0.028
Average	0.694	0.672	0.022

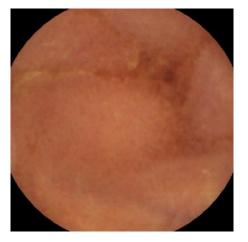
Overall score after deletion

RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?

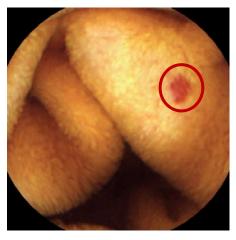
- Segmentation
- Visual-Question Answering
- Classification

Classification

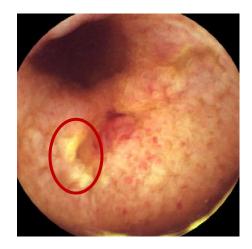
- A medical image analysis technique that involves classifying medical images into different categories based on the type of image or the presence of specific structures or diseases.
- Our Task: Classify wireless capsule endoscopy (WCE) images into three types Normal, Vascular Lesion, Inflammatory



Normal



Vascular Lesion



Inflammatory

Evaluation Criteria

Measurement for classification task:

- Accuracy: the proportion of accurately classified samples to the total number of test cases
- F1 Score: a weighted harmonic mean of Precision and Recall normalized between 0 and 1

$$F1 \ Score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

• **Cohen's Kappa Score**: measures the proximity of the predicted classes to the actual classes when compared to a random classification

- The performance of AGDN and DSI-Net on different perturbations, respectively.
- We can find a maximum decrease in the accuracy of **0.229** and **0.144** in the two models respectively.

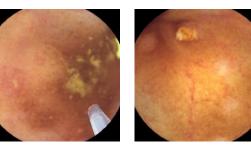
Artifact	Accuracy	Cohen's Kappa	F1 Score	Artifact	Accuracy	Cohen's Kappa	F1 Score
Original	0.893	0.836	0.893	Original	0.940	0.908	0.940
Blur	0.702	0.517	0.660	Blur	0.897	0.841	0.896
Contrast	0.747	0.602	0.735	Contrast	0.883	0.823	0.884
Feces	0.797	0.682	0.790	Feces	0.907	0.858	0.907
Instrument	0.852	0.773	0.852	Instrument	0.897	0.843	0.897
Saturation	0.685	0.516	0.682	Saturation	0.755	0.635	0.757
Spot	0.817	0.712	0.811	Spot	0.932	0.895	0.931
Text	0.828	0.733	0.825	Text	0.908	0.859	0.908
White Balance	0.532	0.226	0.463	White Balance	0.728	0.574	0.711
Average	0.745	0.595	0.727	Average	0.863	0.791	0.861

DSI-Net

Perturbation Analysis

- Lighting conditions (e.g. white balance, saturation) can trigger most errors.
 - Possible explanation: 1. Edges of critical regions become vague
 - 2. Sensitive to color

- Motion Blurring can also lead to some corner cases.
 - Possible explanation: Edges of critical regions become vague
- Object-related perturbations resulted in some misleading cases.
 - Possible explanation: 1. Unseen elements (e.g., Instruments) in the training data 2. Feces resemble some objects of interest



Answer-RQ1

Evaluate our methodology by answering the following Research Questions (RQ):

RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?

Answer to RQ1: MedTest obtained up to 17.49% EFR when testing on segmentation models, qualitatively affected VQA models' performances, and reduced the accuracy of classification models for up to 16.6% in average, indicating that MedTest can effectively discover corner cases and be used for further testing the robustness of other models.

Evaluate our methodology by answering the following Research Questions (RQ):

- RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?
- RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?
- RQ3: What are the various factors that influence the performance of our method and how do they do so?

RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?

- Segmentation
- Classification

Further Training Settings

• We have further trained the models with perturbed images synthesized by MedTest to improve the performances of those models.

- Datasets Construction:
 - CVC-ClinicDB (612 images) and Kvasir (1000 images)
 - Besides the original training set, we also randomly selected an equal number of perturbed images generated from the original training set.

• We used the same training settings as stated in their original papers.

- We used Dice and IoU scores directly for comparison.
- "Blur" has an over 10% increase across both datasets and metrics.

	CVC-300				CVC-ColonDB				
PraNet	Dice Score		IoU Score		Dice Score		IoU Score		
	Before	After	Before	After	Before	After	Before	After	
Original	0.86	0.889	0.777	0.817	0.696	0.701	0.619	0.629	
Saturation	0.818	0.878	0.735	0.806	0.677	0.711	0.598	0.636	
White Balance	0.815	0.879	0.74	0.805	0.624	0.709	0.551	0.634	
Contrast	0.861	0.887	0.777	0.815	0.692	0.707	0.618	0.633	
Spot	0.849	0.885	0.764	0.812	0.694	0.702	0.615	0.628	
Blur	0.706	0.872	0.619	0.794	0.582	0.695	0.491	0.618	
Text	0.744	0.819	0.659	0.746	0.629	0.663	0.554	0.593	
Instrument	0.812	0.879	0.717	0.805	0.653	0.699	0.571	0.626	
Blood	0.843	0.891	0.751	0.821	0.678	0.696	0.599	0.624	
Feces	0.838	0.878	0.75	0.804	0.674	0.691	0.592	0.619	
Average	0.815	0.876	0.729	0.803	0.66	0.697	0.581	0.624	

PraNet: average improvement 4.9%

- We used Dice and IoU score directly for comparison.
- "Text" achieving up to a 6.6% increase in the IoU score on CVC-300.

	CVC-300				CVC-ColonDB				
\mathbf{SANet}	Dice Score		IoU Score		Dice Score		IoU Score		
	Before	After	Before	After	Before	After	Before	After	
Original	0.898	0.904	0.828	0.836	0.757	0.763	0.677	0.69	
Saturation	0.879	0.882	0.807	0.816	0.766	0.757	0.683	0.683	
White Balance	0.877	0.889	0.805	0.822	0.738	0.76	0.655	0.687	
Contrast	0.898	0.897	0.827	0.829	0.754	0.765	0.673	0.691	
Spot	0.899	0.904	0.828	0.837	0.754	0.76	0.675	0.686	
Blur	0.851	0.899	0.773	0.831	0.735	0.773	0.646	0.697	
Text	0.803	0.864	0.727	0.793	0.694	0.749	0.621	0.674	
Instrument	0.898	0.903	0.829	0.836	0.747	0.749	0.668	0.679	
Blood	0.899	0.903	0.829	0.835	0.753	0.762	0.675	0.689	
Feces	0.901	0.904	0.831	0.837	0.743	0.759	0.665	0.687	
Average	0.88	0.895	0.808	0.827	0.744	0.76	0.664	0.686	

SANet: average improvement 1.6%

- We used Dice and IoU score directly for comparison.
- "White Balance" achieving up to a 3.7% increase in the IoU score on CVC-ColonDB

	CVC-300				CVC-ColonDB			
SSFormer	Dice Score		IoU Score		Dice Score		IoU Score	
	Before	After	Before	After	Before	After	Before	After
Original	0.891	0.891	0.825	0.827	0.774	0.774	0.698	0.700
Saturation	0.841	0.876	0.779	0.806	0.778	0.778	0.699	0.702
White Balance	0.880	0.874	0.813	0.811	0.731	0.764	0.656	0.693
Contrast	0.883	0.882	0.817	0.817	0.765	0.774	0.689	0.700
Spot	0.892	0.892	0.826	0.828	0.770	0.775	0.695	0.701
Blur	0.883	0.893	0.813	0.825	0.766	0.766	0.690	0.693
Text	0.892	0.893	0.825	0.830	0.768	0.769	0.691	0.696
Instrument	0.872	0.886	0.800	0.820	0.747	0.769	0.672	0.695
Blood	0.877	0.891	0.809	0.827	0.760	0.770	0.684	0.697
Feces	0.898	0.899	0.831	0.835	0.753	0.759	0.679	0.687
Average	0.881	0.888	0.814	0.823	0.761	0.770	0.684	0.696

SSFormer: average improvement 0.8%

RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?

- Segmentation
- Classification

Further Training Settings

Dataset construction:

- Excluded blood perturbation in the dataset construction
- 2422 images in the training set + randomly select $\frac{1}{8}$ of the total images in each perturbation generated from the training set Seed images Perturbed images

- In general, we follow the original model setting in the implementation
- Minor adjustments on parameters such as the learning rate and batch size
- Performed train-validation split (0.85 : 0.15) on our customized data and used the validation performance to select checkpoints

1:1

• Classification Performance on AGDN model:

Artifact	Initial Accuracy	Enhanced Accuracy	Difference
Original	0.893	0.885	-0.008
Blur	0.702	0.808	+0.106
Contrast	0.747	0.812	+0.065
Feces	0.797	0.860	+0.063
Instrument	0.852	0.852	0.000
Saturation	0.685	0.770	+0.085
Spot	0.817	0.873	+0.056
Text	0.828	0.858	+0.030
White Balance	0.532	0.673	+0.141
Average	0.761	0.821	+0.060

AGDN: The average improvement in accuracy score is 6%

• Classification Performance on DSI-Net model:

Artifact	Initial Accuracy	Enhanced Accuracy	Difference
Original	0.940	0.947	+0.007
Blur	0.897	0.918	+0.021
Contrast	0.883	0.917	+0.034
Feces	0.907	0.937	+0.030
Instrument	0.897	0.928	+0.031
Saturation	0.755	0.835	+0.080
Spot	0.932	0.942	+0.010
Text	0.908	0.908	0.000
White Balance	0.728	0.848	+0.120
Average	0.872	0.909	+0.037

DSI-Net: The average improvement in accuracy score is 3.7%

Answer-RQ2

Evaluate our methodology by answering the following Research Questions (RQ):

RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?

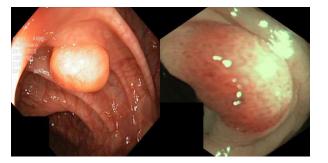
Answer to RQ2: Test cases generated by MedTest can be leveraged to construct our customized training dataset and effectively improve the robustness of academic medical image diagnosis models through further training on both segmentation and classification tasks.

Evaluate our methodology by answering the following Research Questions (RQ):

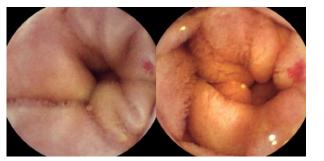
- RQ1: Is our method effective in identifying incorrect outputs produced by medical image diagnosis software and algorithms?
- RQ2: Can the test cases generated by our method be utilized to enhance the performance of medical image diagnosis software?
- RQ3: What are the various factors that influence the performance of our method and how do they do so?

External Factors and Influences

- Divergence in Image Structure and Overlay
 - Hard to decide on suitable places for object-related perturbations
- Medical Landmarks Characteristics
 - Need to avoid affecting the original medical characteristics
- Lighting Conditions
 - Require targeting methods to keep the lighting condition consistent and realistic



Samples of various polyp shapes



Samples of vascular lesions (bleeding)

Answer-RQ3

Evaluate our methodology by answering the following Research Questions (RQ):

RQ3: What are the various factors that influence the performance of our method and how do they do so?

Answer to RQ3: The performance of MedTest can potentially be affected by the above - proposed factors, including image structure, medical landmark characteristics, and ambient lighting conditions. We have considered these factors in the design of MedTest and tried to mitigate the negative effect to the greatest extent in our implementation.

Future Work

• Expand our testing objectives to other large language models and multi-modal models specially on medical diagnosis, e.g., Gemini and Med-PaLM.

Conclusion

 Targeting the important inter-discipline of AI and medicine, we designed a comprehensive metamorphic testing paradigm, MedTest, to comprehensively evaluate models and software on medical imaging tasks.

 With our clinical-equivalent perturbations, our method was proved to effectively identify potential model errors and showed potential in assisting to improve model performance.

• Future work focuses on expanding the testing objectives of MedTest, especially in medical multi-modal models.

Thank you for listening!

References

[1] Zhang, Mengshi, et al. "DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving systems." *Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering*. 2018.

[2] Antol, Stanislaw, et al. "Vqa: Visual question answering." *Proceedings of the IEEE international conference on computer vision*. 2015.

[3] Chen, Songqiang, Shuo Jin, and Xiaoyuan Xie. "Testing your question answering software via asking recursively." 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2021.

[4] Chen, Tsong Y., Shing C. Cheung, and Shiu Ming Yiu. "Metamorphic testing: a new approach for generating next test cases." *arXiv preprint arXiv:2002.12543* (2020).

[5] Bohr, Adam, and Kaveh Memarzadeh. "The rise of artificial intelligence in healthcare applications." *Artificial Intelligence in healthcare*. Academic Press, 2020. 25-60.

[6] Tomar, Nikhil Kumar, et al. "TGANet: Text-guided attention for improved polyp segmentation." *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Cham: Springer Nature Switzerland, 2022.

[7] Pei, Kexin, et al. "Deepxplore: Automated whitebox testing of deep learning systems." proceedings of the 26th Symposium on Operating Systems Principles. 2017.

[8] Vázquez, David, et al. "A benchmark for endoluminal scene segmentation of colonoscopy images." Journal of healthcare engineering 2017 (2017).

[9] Ali, Sharib, et al. "An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy." Scientific reports 10.1 (2020): 2748.

[10] Acosta, Julián N., et al. "Multimodal biomedical Al." Nature Medicine 28.9 (2022): 1773-1784.

[11] Xing, Xiaohan, Yixuan Yuan, and Max Q-H. Meng. "Zoom in lesions for better diagnosis: Attention guided deformation network for wce image classification." *IEEE Transactions on Medical Imaging* 39.12 (2020): 4047-4059.

[12] Zhu, Meilu, Zhen Chen, and Yixuan Yuan. "DSI-Net: Deep synergistic interaction network for joint classification and segmentation with endoscope images." *IEEE Transactions on Medical Imaging* 40.12 (2021): 3315-3325.

[13] Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774 (2023).

[14] Team, Gemini, et al. "Gemini: a family of highly capable multimodal models." *arXiv preprint arXiv:2312.11805* (2023).