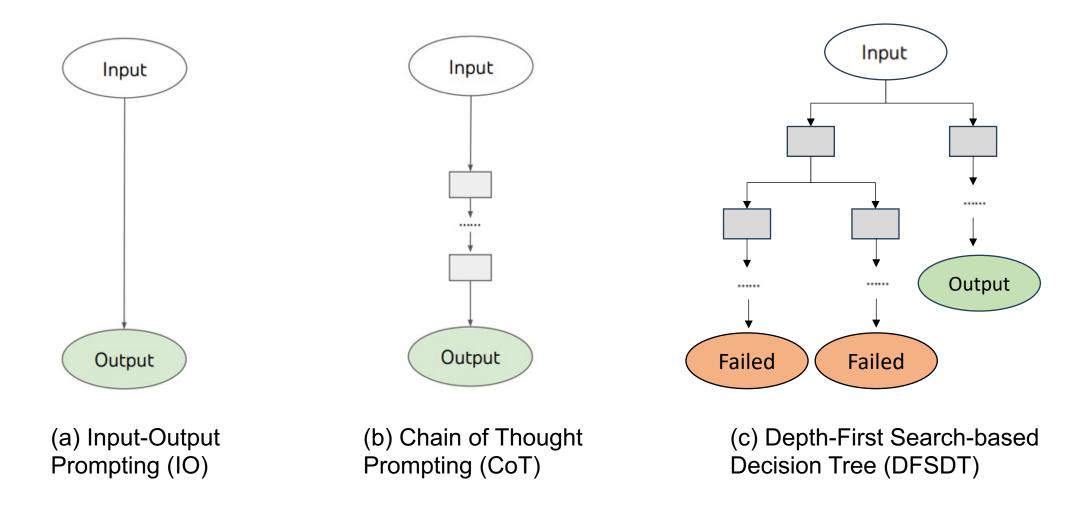
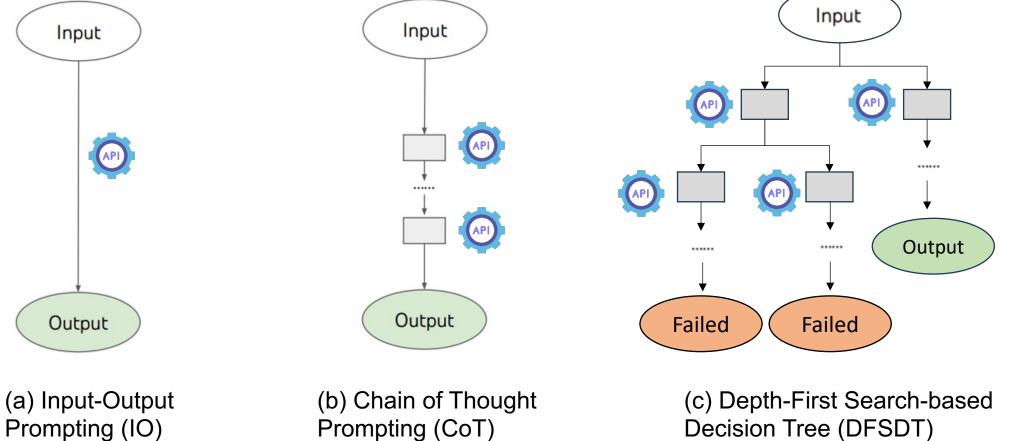


How is Today's Weather? Human-Al Interaction Makes the Instruction Clear

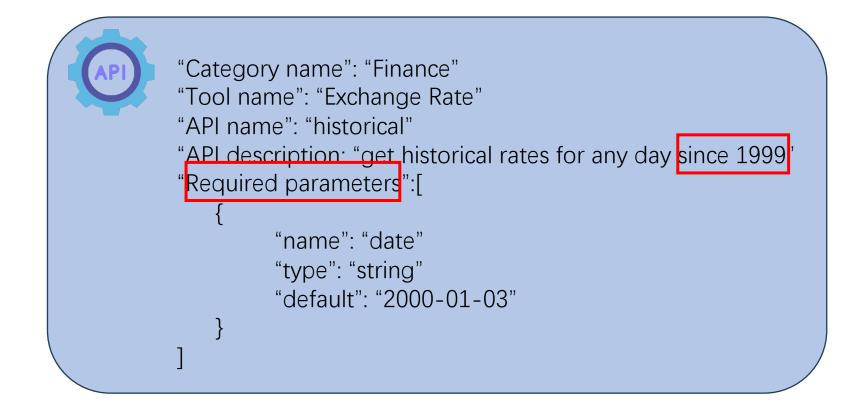
ESTR 4999 Presentation Supervisor: Professor Michael Lyu Presenter: SHI Juluan (1155160208) Chan Chun Yip (1155158514)

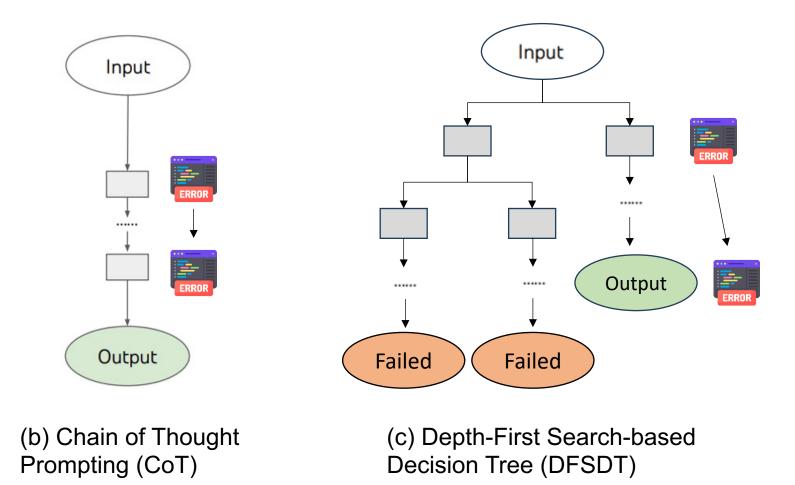




Prompting for decision-making

Failed Failed




Special Feature of APIs

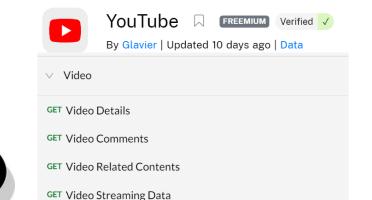
- Conduct an extensive examination of the failures in tool utilization by current LLMs when faced with ambiguous user instructions in **real-life scenarios**, categorizing the prevalent issues into **four** distinct categories.
- Crafted our benchmark, which thoughtfully incorporates the above **four** distinct categories of challenges alongside a **diverse** selection of tools.
- Refined the existing planning and reasoning algorithms and introduced a novel algorithm, termed QwN. This algorithm is designed to prompt LLMs to actively request clarifications from users upon facing uncertainties.
- Devised innovative evaluation metrics tailored to the new tasks and introduced an automated evaluation method to streamline the efficient assessment of results.

Categories of User Instruction Errors

- Classify these instructions into 4 categories based on their characteristics.
- Instructions missing key details (IKEI)
 - User instructions that omit crucial details

- Instructions with unclear references (IUR)
 - User instructions include elements that can be interpreted in several ways

Categories of User Instruction Errors



- Instructions with errors (IWE)
 - Information is incorrect

- Instructions beyond tool capabilities (IBTC)
 - Request actions or answers beyond the available APIs

Please post a comments "..."

User Instruction Analysis

Overview of API Categories Analyzed

- Number of Categories: 28
- Total API Sets Reviewed: Over 150

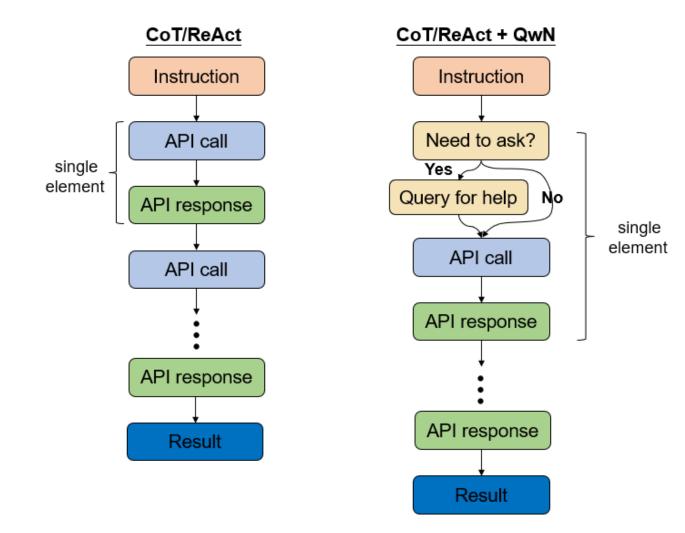
Many APIs work as database

Type of error	Error percentage
Information missing	56%
Information unclear	11.3%
Information incorrect	17.3%
Tool limitation	15.3%

Table 1: Error percentages in various problematic instructions.

API dÖjÖ.net By Api Dojo Update	FREEMIUM ed 10 days ago Weather
✓ Required Parameters	
date	20200622
STRING	REQUIRED Date to get weather forecast, format as yyyyMMdd
latitude	37.765
NUMBER	REQUIRED The latitude of GEO location to get weather forecast
longitude	-122.463
NUMBER	REQUIRED The longitude of GEO location to get weather forecast

Crafted Benchmark

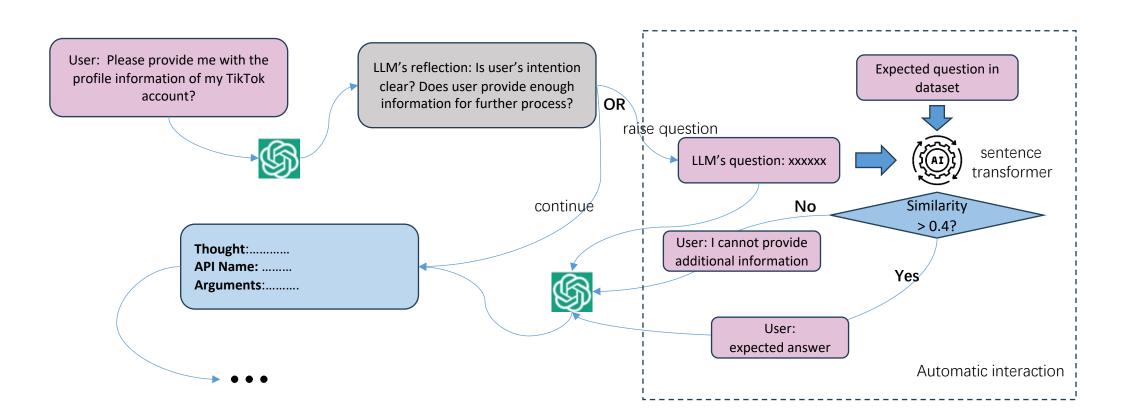


• Curated our benchmark around these four categories, with each category comprising 50 user instructions.

Query-when-Need Prompting

Evaluaiton Metrics

- **Goal 1:** This metric evaluates the capability of LLMs to ask the anticipated questions that pinpoint the ambiguous elements in user instructions.
- **Goal 2:** This metric assesses the ability of LLMs to use all available information to invoke the correct API calls.
- **Goal 3:** This metric measures the ability of LLMs to extract the anticipated information from previous API calls to fulfil the user's instructions.
- Average Redundant Asked questions (Re): This metric evaluates the quantity of irrelevant or redundant questions asked by tool-augmented LLMs during the instruction executing process.
- **Steps:** This metric quantifies the average number of actions required to complete an instruction.


Accuracy

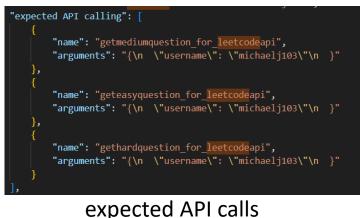
Efficiency

13

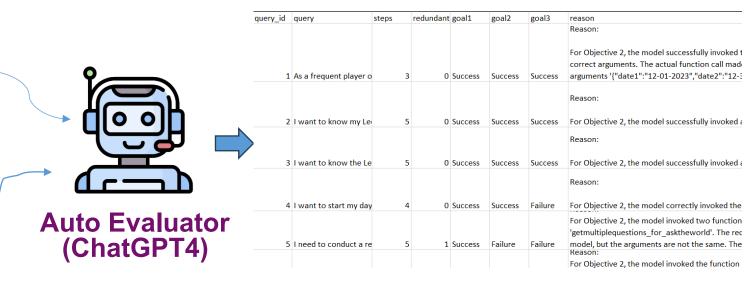
Evaluation Pipeline --- Auto Interaction

Evaluation Pipeline --- Auto Evaluation

"role": "assistant",
"content": "Question: Could you please provide me with your friend's LeetCode username?"


"role": "user",
"content": "His LeetCode username is 'michaelj103'"

"role": "assistant",
"content": null,
"function_call": {
 "name": "getmediumquestion_for_leetcodeapi",
 "arguments": "{\n \"username\": \"michaelj103\"\n}"


"role": "function",
"name": "getmediumquestion_for_leetcodeapi",
"content": "{\"error\": \"\", \"response\": \"515\"}"

"role": "assistant",

history of instruction execution

ARISE Template 2022

evalution result

Main Experiments

base model	framework	IKEI			IUR			IWE			IBTC		
	in unite work	G1(%)	G2(%)	G3(%)	G1(%)	G2(%)	G3(%)	G1(%)	G2(%)	G3(%)	G1(%)	G2(%)	G3(%)
gpt-3.5-turbo	CoT + QwN	0.34 0.86	0.56	-0.48	0.24 0.76	0.42	-0.24	0.21 0.58	- 0.28	- 0.16	-	-	-
-16k-0613	DFS + QwN	0.53 0.84	- 0.44	- 0.52	0.42 0.88	- 0.46	- 0.42	0.42 0.86	- 0.26	-0.4	-	-	-
gpt-4-0125-preview	CoT + QwN	0.68 0.84	- 0.50	-0.44	0.58 0.76	0.42	- 0.34	0.35 0.42	- 0.26	0.30	-	-	5
	DFS + QwN	0.64 0.8	- 0.46	- 0.70	0.56 0.64	- 0.42	- 0.36	0.37 0.51	- 0.40	- 0.58	-	-	-

Table 2: Assessing the accuracy of various LLMs using different prompting methods in our benchmark

Table 3: Assessing the efficiency of various LLMs using different prompting methods in our benchmark.

base model	framework	IK	EI	IU	JR	IV	VE	Π	BTC		
buse model	municwork	Re	Steps	Re	Steps	Re	Steps	Re	Steps		
gpt-3.5-turbo	CoT + QwN	- 0.84	4.64 5.80	- 1.46	4.52 6.16	- 1.67	5.09 6.28	-	3.10 3.75		
-16k-0613	DFS + QwN	- 10.90	50.20 68.60	- 11.54	55.50 74.50	- 15.30	45.83 79.80	-	17.06 9.25		Efficiency
gpt-4-0125-preview	CoT + QwN	- 0.18	3.00 3.70	- 0.20	2.92 3.40	0.23	2.79 3.47	-	1.58 1.17		
SPC . 0120 providen	DFS + QwN	- 0.34	5.26 5.30	- 0.36	6.88 4.98	- 0.37	6.18 6.76	-	2.65 1.25		

Accuracy

Main Result (Accuracy)

base model	framework	IKEI			IUR			IWE			IBTC		
	in all to the office	G1(%)	G2(%)	G3(%)	G1(%)	G2(%)	G3(%)	G1(%)	G2(%)	G3(%)	G1(%)	G2(%)	G3(%)
gpt-3.5-turbo	CoT + QwN	0.34 0.86	- 0.56	0.48	0.24 0.76	0.42	- 0.24	0.21 0.58	0.28	-0.16	-	-	-
-16k-0613	DFS + QwN	0.53 0.84	- 0.44	0.52	0.42 0.88	- 0.46	0.42	0.42 0.86	0.26	- 0.4	-	-	-
gpt-4-0125-preview	CoT + QwN	0.68 0.84	- 0.50	- 0.44	0.58 0.76	0.42	- 0.34	0.35 0.42	- 0.26	- 0.30	-	-	-
gpt-4-0123-preview	DFS + QwN	0.64 0.8	- 0.46	- 0.70	0.56 0.64	- 0.42	- 0.36	0.37 0.51	- 0.40	- 0.58	-	-	-

Interaction module encourages LLM to interact with users to solve ambiguous instruction

-This can be particularly seen in the G1 scores across both models when the interaction module is utilized

Evaluating IBTC differently

-We do not conduct statistical analysis for groups G1, G2, G3, and Re. Instead, our focus shifts to comparing the Steps

Main Result (Efficiency)

base model	framework	IK	EI	IU	JR	IW	VЕ	IBTC	
		Re	Steps	Re	Steps	Re	Steps	Re	Steps
gpt-3.5-turbo	CoT + QwN	- 0.84	4.64 5.80	- 1.46	4.52 6.16	- 1.67	5.09 6.28	-	3.10 3.75
-16k-0613	DFS + QwN	- 10.90	50.20 68.60	- 11.54	55.50 74.50	- 15.30	45.83 79.80	-	17.06 9.25
gpt-4-0125-preview	CoT + QwN	- 0.18	3.00 3.70	- 0.20	2.92 3.40	0.23	2.79 3.47	-	1.58 1.17
	DFS + QwN	- 0.34	5.26 5.30	- 0.36	6.88 4.98	- 0.37	6.18 6.76	-	2.65 1.25

• Impact of the interaction module on the average number of steps

- In every instance of adding an interaction module to the base model framework, there is an increase in the number of steps required to complete an instruction

- DFS method introduces more redundant questions
 - DFS method on gpt-3.5 introduces a significantly higher amount of redundancy
- GPT 4 avoid asking unnecessary questions

- GPT-4 is effective in identifying and inquiring about unclear elements without generating excessive unnecessary questions, as indicated by the lower "Re "

Instructions with errors (IWE)

Instructions beyond tool capabilities (IBTC)

Instructions with errors

User: I'm a blogger and I want to write a detailed review of a specific product with SKU X005789621. Can you provide me with all the information about this product and provide reviews for these products?

Assistant : Action call: "products_detail_for_wayfair" {sku: X005789621}

{error: request invalid, data error. status_code=500, response: }

Assistant : Question: I apologize, but it seems that the request for product information with SKU X005789621 is currently unavailable. Is there another product you would like information about?"

User: "The correct one is 'W003247135""

Instructions beyond tool capabilities

User: Get subtitles for a Vimeo video with the ID '12345abc

Assistant : Due to the limitation of toolset, I cannot solve the question

Assistant: End

Introduced the Interaction-for-Tool-Usage benchmark

- Designed to evaluate an LLM's ability to request clarifications, thereby improving its task execution capabilities.

Developed the Query-when-Need algorithm

- Empowers LLMs to actively seek user input whenever there is uncertainty in the instructions provided

Created an automated evaluation tool

- Reduces the manual efforts required in performance assessment, facilitating a more efficient and consistent evaluation process.

Thanks for listening!

