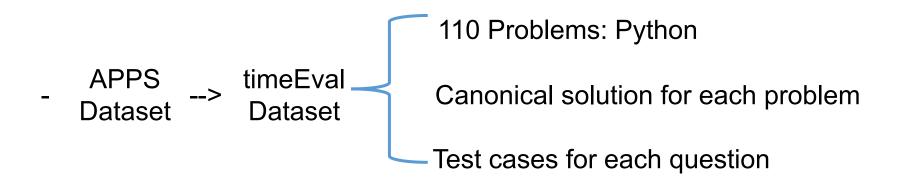


Large Language Models for Code Intelligence Tasks

LYU2301

Supervisor: Professor Michael R. Lyu

Presenter: Canran Liu, Xingyun Ma



1. Introduction

- Recap
- Updates

- What we did last term?
 - Proposed timeEval benchmark.

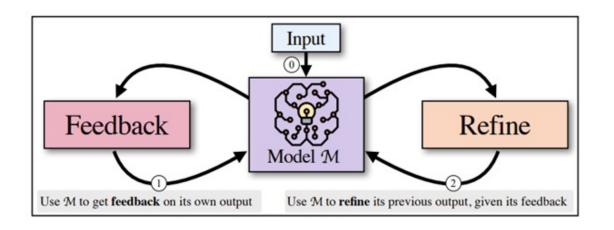
- A framework for automated measurement of code efficiency

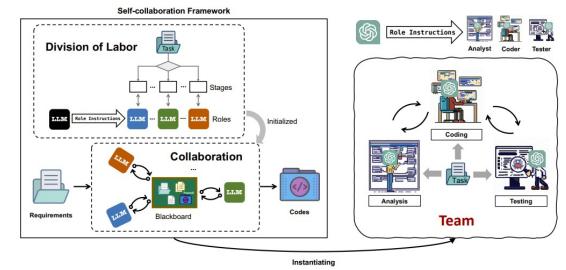
- What we did last term?
 - Proposed timeEval benchmark.
 - On our benchmark, we did several experiments to test the performance of different methods in terms of code efficiency.

- What we did last term?
 - Proposed timeEval benchmark.
 - On our benchmark, we did several experiments to test the performance of different methods in terms of code efficiency.
 - > Tried several frameworks to improve the efficiency of generated code.

Experiment	Pass Rate	Wrong Rate	Timeout Rate	%Opt	%Sp
Self-refinement + One-shot	58.9	22	19.1	25.5	35.4
Self-refinement + One-shot +CoT	35.8	55.4	8.8	60.0	84.8
Self-refinement + One-shot +CoT + Test cases	40.8	49.9	9.3	53.6	72.5

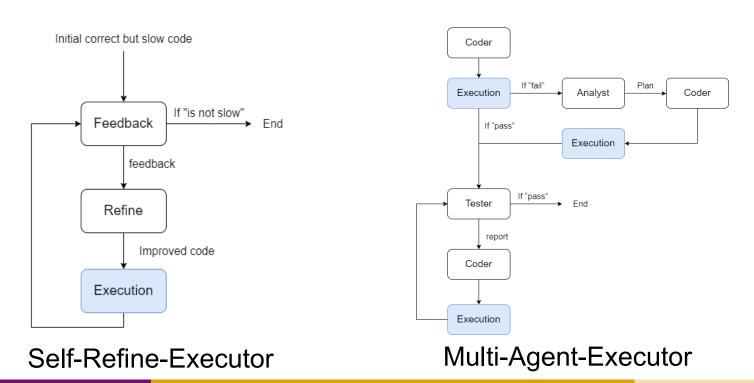
- What we updated this term?
 - Updated timeEval benchmark.


APPS Dataset & --> timeEval CodeContests --> timeEval Dataset -


- A framework for automated measurement of code efficiency:
 - Redesign the metrics

Introduction - Update

- What we updated this term?
 - Updated timeEval benchmark.
 - On our updated benchmark, we did empirical studies of self-refine and multi-agent collaboration to test the efficiency of generated code.


"SELF-REFINE: Iterative Refinement with Self-Feedback"

"Self-collaboration Code Generation via ChatGPT"

Introduction - Update

- What we updated this term?
 - Updated timeEval benchmark.
 - On our updated benchmark, we did empirical studies of self-refine and multi-agent collaboration to test the efficiency of generated code.
 - Proposed our frameworks to improve the efficiency of generated code.

Contents

2. Analyzing existing datasets

Analyzing existing datasets for Code Generation

Name	Time	Author	Language	Source	Difficulty	#Train	#Te st	#Valid	Avg Tes t Cases	Avg Prob lem Wor ds	Avg LOC Solut ion	Paper	Code
APPS	20 May 2021	Dan Hendrycks (UC Berkeley) et al.	Python	Codeforces	competition	5000	500 0	-	13.2	293.2	18.0	Measuring Coding Challenge Competence With APPS	<u>Github</u>
HumanEval	7 Jul 2021	OpenAl	Python	-	Simple Softw are Interview		164	-	7.7	23	6.3	Evaluating Large Language Models Trained on Code	<u>GitHub</u>
MBPP	16 Aug 2021	Google Research	Python	-	entry-level	374	500	90	3.0	15.7	6.7	Program Synthesis with Large Language Models	Github
CodeContest s	8 Feb 2022	DeepMind	Python2&3, C++, Java	CodeChef, Codefo rces, HackerEarth, AtCoder, Aizu	Competition	13328	165	117	95.9	-	59.8	<u>Competition-Level Code Generation</u> <u>with AlphaCode</u>	<u>Github</u>
DS-1000	18 Nov 2022	Yuhang Lai (HKU) et al.	Python	StackOverflow	-	-	100 0	-	1.6	140	3.6	DS-1000: A Natural and Reliable Benchmark for Data Science Code <u>Generation</u>	<u>Github</u>
HumanEval+	2 May 2023	Jiawei Liu et al.	Python	-	Simple Softw are Interview	-	164	-	774.8	23	6.3	Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code <u>Generation</u>	<u>Github</u>
ClassEval	3 Aug 2023	Xueying Du (FDU) et al.	Python	-	class-level	-	100	-	33.1	-	45.7	ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class- level Code Generation	<u>GitHub</u> -

3. Dataset Processing &

Enhancement

Dataset Processing & Dataset Enhancement Python • C++ New dataset Old dataset: Python Java •

• 13,610 coding problems in total.

Code_contests dataset

More than 30 test cases for each problem

- There are more than 30 ground truth solutions for each problem in each language.
- Support Python2, Python3, Java, and C++

Dataset cons: Too difficult.

Rank Model	Test Set Test Test Val Set Val	Val Set Paper Code Result Year Tags Source
Aizu	https://judge.u-aizu.ac.jp	<u>CodeNet</u>
AtCoder	https://atcoder.jp	<u>CodeNet</u>
CodeChef	https://www.codechef.com	description2code
Codeforces	https://codeforces.com	description2code and Codeforces
HackerEarth	https://www.hackerearth.com	description2code

Step 1:

Find the canonical solution among the first 20th ground truth solutions in the dataset:

solutio	on_result_cpp >
1	solution_1.cpp:
2	Results: [False, False, False, False, True, False, False, True, True, True, True, True, True, False, F
3	Outputs: ['8\n5 3 -3 4 -4 1 -1 2\n3\n1 -1 2\n5\n5 4 3 2 1\n', '8\n5 3 -3 4 -4 1 -1 2\n3\n1 -1 2\n5\n5
4	Passed tests: 18
5	Failed tests: 12
6	Execution time: 0.64 seconds
7	
8	solution_2.cpp:
9	Results: [False, False, F
10	Outputs: ['8\n5 1 -1 3 -3 4 -4 2\n1\n2\n5\n5 4 3 2 1\n', '8\n5 1 -1 3 -3 4 -4 2\n1\n2\n5\n5 4 3 2 1\n'
11	Passed tests: 0
12	Failed tests: 30
13	Execution time: 0.84 seconds
14	
15	solution_3.cpp:
16	Results: [False, False, F
17	Outputs: ['8\n2 1 -1 3 -3 4 -4 5\n3\n1 -1 2\n5\n5 4 3 2 1\n', '8\n2 1 -1 3 -3 4 -4 5\n3\n1 -1 2\n5\n5
18	Passed tests: 0
19	Failed tests: 30
20	Execution time: 0.67 seconds
21	
22	solution_4.cpp:
23	Results: [True, True, Tr
24	Outputs: ['8\n2 3 -3 4 -4 1 -1 5\n3\n1 -1 2\n5\n5 4 3 2 1\n', '8\n2 3 -3 4 -4 1 -1 5\n3\n1 -1 2\n5\n5
25	Passed tests: 30
26 27	Failed tests: 0
27	Execution time: 0.66 seconds
28 29	solution_5.cpp:
29 30	Solution_5.cpp: Results: [False, False, Fa
30 31	Results: [raise, raise, raise
31	Passed tests: 0
33	Failed tests: 30
34	Execution time: 0.63 seconds
- 54	Execution time. 0.03 seconds

Step 2:

Test the generated solution:

test_r	esult_java > Ξ 00008_result.txt
1	canonical_solution.java:
2	Results: ['True', 'True', '
3	Outputs: ['2\n', '1\n', '0\n', '4\n', '0\n', '6\n', '5\n', '4\n', '1\n', '9\n', '3\n', '6\n', '1\n', '2\n',
4	Passed tests: 179
5	Wrong answers: 0
6	Time limit exceeded: 0
7	Execution times: ['0.050', '0.043', '0.044', '0.042', '0.045', '0.043', '0.043', '0.043', '0.043', '0.043',
8	Total time: 7.51 seconds
9	
10	gen_solution.java:
11	Results: ['False', 'False', 'True', 'False', 'True', 'False', 'False', 'False', 'False', 'False', 'False',
12	Outputs: ['0\n', '0\n', '0\
13	Passed tests: 30
14	Wrong answers: 149
15	Time limit exceeded: 0
16	Execution times: ['0.080', '0.088', '0.082', '0.096', '0.092', '0.094', '0.091', '0.078', '0.072', '0.064',
17	Total time: 11.77 seconds

Filter conditions: Step 3: Passed all the testcases Keep all the questions that were slow boot correct in the opt time violar the state = 0.5

M67	8 🔺 🗙	$\checkmark f_x$						
	А	В	С	D	E		F	G
1	problem 🔻	passed test 💌	wrong answer ₋ T	time limit exceed	total time	-	opt time 🛛 🗣	opt time / total time 🚽
372	1340	30	0	0	97	.05	2.23	0.023
419	1522	30	0	0	32	.96	1.36	0.04
434	5818	30	0	0	18	.11	0.95	0.05
440	8907	30	0	0	18	.37	0.99	0.05
503	5127	30	0	0	10	.72	0.86	0.0
508	260	30	0	0	19	.21	1.64	0.08
519	7843	30	0	0	10	.81	0.92	0.08
520	4533	30	0	0		.44	1.73	0.08
556	1020	30	0	0	16	.73	1.85	0.11
562	2198	30	0	0		.01	1.34	0.13
567	5133	30	0	0	6	.87	0.92	0.13
573	3152	30	0	0	8	.68	1.37	0.15
583	1980	30	0	0		.59	1.5	0.19
599	8707	30	0	0		.82	0.97	0.20
601	5481	30	0	0		.22	0.99	0.23
604	10166	30	0	0	3	.99	0.95	0.23
610	10527	30	0	0	3	.58	0.97	0.27
619	35	30	0	0		3.6	1.24	0.34
623	9393	30	0	0		4.2	1.59	0.37
629	3751	30	0	0		3.2	1.29	0.40
632	6061	30	0	0		2.2	0.98	0.44
634	7328	30	0	0	2	.44	1.09	0.44
635	1209	30	0	0	2	.66	1.26	0.47
648	2690	30	0	0		.92	1.41	0.48
654	1820	30	0	0	2	.62	1.3	0.49
655	6536	30	0	0		.05	1.02	0.49
659	12345	30	0	0		2.1	1.05	0.

File structure

__question.txt
__canonical_solution.cpp
__canonical_solution.java
__canonical_solution.py
__input_output.json
__metadata.json

	Supported Language	Number of Problems
	C++ only	52
	Java only	18
Statistical data of our dataset	Python only	32
	Python and C++	1
	Java and C++	7
	C++, Java and Python	1
	Total	111

• Metrics

- Total Time (TT)
- Efficiency Level (EL)
- Timeout Rate (TR)
- Pass@1
- Optimal solution ratio (Opt)

Code Execution Framework

Total Time (TT)

Bechmark Creation

Metrics

• Efficiency Level (EL)

$$G = \{G_1, G_2, ..., G_n\} \qquad EL_k = \frac{\sum_{O_i \in O} O_i}{\sum_{G_i \in G} G_i}$$

$$O = \{O_1, O_2, ..., O_n\} \qquad \% EL = \frac{1}{N} \sum_{K=1}^N EL_k * 100\%$$

Metrics

• Timeout Rate (TR)

• Pass@1 =
$$\mathbb{E}_{\text{Problems}} \left[1 - \frac{\binom{n-c}{1}}{\binom{n}{1}} \right]$$

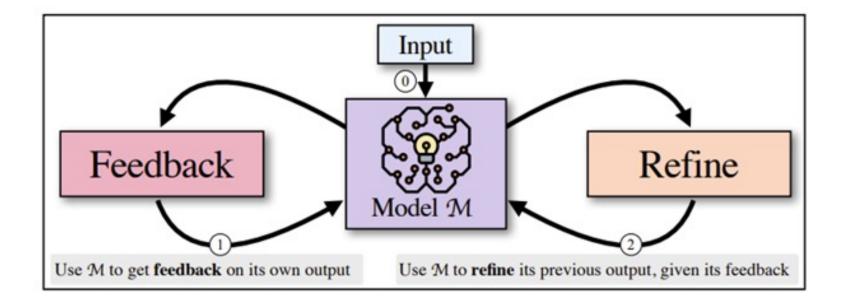
• Optimal solution ratio (Opt)

$$\frac{t_{\rm gen} - t_{\rm opt}}{t_{\rm opt}} < \theta$$

Code Evaluation Framework

o (base) canranliu@Canrans-MacBook-Pro timeEval % python test_print.py
Please enter the language you want to test (python, cpp, java):

	А	В	С	D	E	F	G	Н	I	J
1	problem	passed tests	wrong answers	e limit excee	opt_time	Π	EL	TR	Pass@1	Opt
2	98	30	0	0	1.13	11.89	0.095	0	1	0
3	99	30	0	0	0.85	1.28	0.667	0	1	0
4	111	0	30	0	1.3	9.19	0	0	0	0
5	116	1	29	0	0.87	1.61	0.508	0	0	0
6	118	30	0	0	1.4	1.38	1	0	1	1
7	124	6	18	6	1.01	36.41	0.552	0.2	0	0
8	133	30	0	0	0.83	1.26	0.662	0	1	0
9	135	0	30	0	0.82	1.27	0	0	0	0
10	136	30	0	0	0.89	1.27	0.703	0	1	1
11	140	30	0	0	0.82	1.33	0.615	0	1	0
12	145	30	0	0	0.84	1.3	0.651	0	1	0
13	157	30	0	0	0.83	1.92	0.434	0	1	0
14	172	30	0	0	1.12	11.85	0.094	0	1	0
15	184	0	30	0	0.83	1.27	0	0	0	0
16	185	0	30	0	0.87	1.3	0	0	0	0


4. Empirical Study

- Self-Refine
- Multi-Agent Collaboration

• "SELF-REFINE: Iterative Refinement with Self-Feedback"

Initialization Phase:

- The model is first provided with a correct yet slow version of code, and it is tasked to directly generate an optimized version of this code.

• Feedback Phase:

- The optimized version of code is given back to the model to obtain feedback.

Refine Phase:

- Refine the code based on the feedback.

• Initialization Prompt (few-shot):

slower version:

{Slow code}

optimized version of the same code:
{Optimized code}

END

More examples...

slower version:

{The correct but slow code provided by timeEval}
optimized version of the same code:

Few-shot examples

• Feedback Prompt (few-shot):

{slow code}
Why is this code slow?
{feedback}
END

More examples...

Few-shot examples

{The correct but slow code provided by TimeEval}
Why is this code slow?

• Refine Prompt (zero-shot):

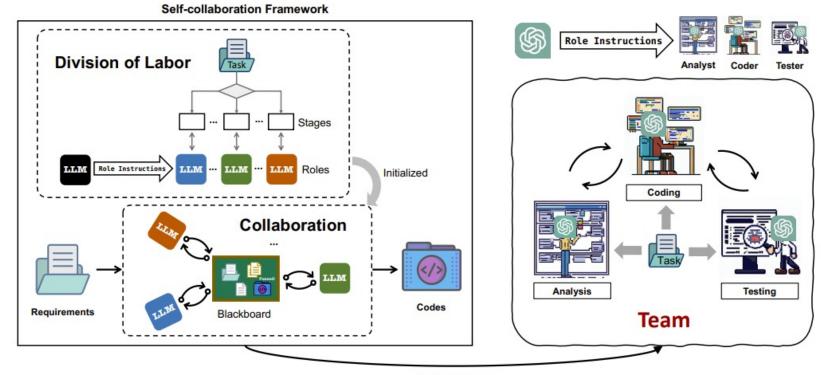
{The correct but slow code provided by TimeEval}

Why is this code slow?

{Feedback from the model}

How to improve this code? Please provide the improved version of the code.

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
Duthon	baseline	6.0	31.5	0	100	8.8
Python	Self-refine	7.0	41.9	2.5	61.8	11.8
<u></u>	baseline	3.5	40.4	0	100	16.4
C++	Self-refine	4.3	63.4	2.2	52.5	37.7
Java	baseline	12.6	24.0	0	100	3.8
	Self-refine	7.5	30.7	2.6	46.1	7.3



- Wrong when initialization: 12/20
- Wrong when 1st round of self-refine: 5/20
- Wrong when 2nd round of self-refine: 1/20
- Wrong when 4th round of self-refine: 2/20

Multi-Agent Collaboration: Overview

• "Self-collaboration Code Generation via ChatGPT"

Instantiating

Multi-Agent Collaboration: Process

Analysis Phase:

- The task is first given to the Analyst, who then writes a high-level plan based on the task requirements.

Coding Phase:

- Then, this plan is passed on to the Coder, who writes the corresponding code according to the plan.

• Testing and Iteration Phase:

- The completed code is handed over to the Tester for testing, and the Tester summarizes the test results into a report.
- If the code passes the test, the process ends, and the correct code is output.
- If the test fails, the test report is fed back to the Coder, who then tries to correct the code.

Multi-Agent Collaboration: Prompt

• Role Instruction

Role Instruc	tions Team Description User Requirment Role Description						
Team Description	There is a development team that includes a requirements analyst, a developer, and a quality assurance tester. The team needs to develop programs that satisfy the requirements of the users. The different roles have different divisions of labor and need to cooperate with each others.						
User Requirment	The requirement from users is '{Requirment}'. For example: {Requirment} = Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string						
Role Description	<pre>Coder: I want you to act as a developer on our development team. You will receive plans from a requirements analyst or test reports from a tester. Your job is split into two parts: 1. If you receive a plan from a requirements analyst, write code in Python that meets the requirements following the plan. Ensure that the code you write is efficient, readable, and follows best practices. 2. If you receive a test report from a tester, fix or improve the code based on the content of the report. Ensure that any changes made to the code do not introduce new bugs or negatively impact the performance of the code. Remember, do not need to explain the code you wrote.</pre>						

Multi-Agent Collaboration: Result

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	6.0	31.5	0	100	8.8
Python	Multi-Agent Collaboration	24.6	53.0	17.0	20.1	5.9
	baseline	3.5	40.4	0	100	16.4
C++	Multi-Agent Collaboration	11.9	39.8	6.0	55.7	16.4
Java	baseline	12.6	24.0	0	100	3.8
	Multi-Agent Collaboration	16.0	39.0	6.7	57.7	3.8

Multi-Agent Collaboration - Adjust

• Prompt of Tester:

Tester = team description + user requirement +

"I want you to act as a quality assurance tester on our development team. You will receive code from a developer. Your job is:

- 1. Test the functionality of the code to ensure it satisfies the requirements.
- 2. Test the efficiency of the code to ensure it has good time complexity.
- 3. Write reports on any issues or bugs you encounter.
- 4. If the code or the revised code has passed your tests, write a conclusion 'Code Test Passed'.

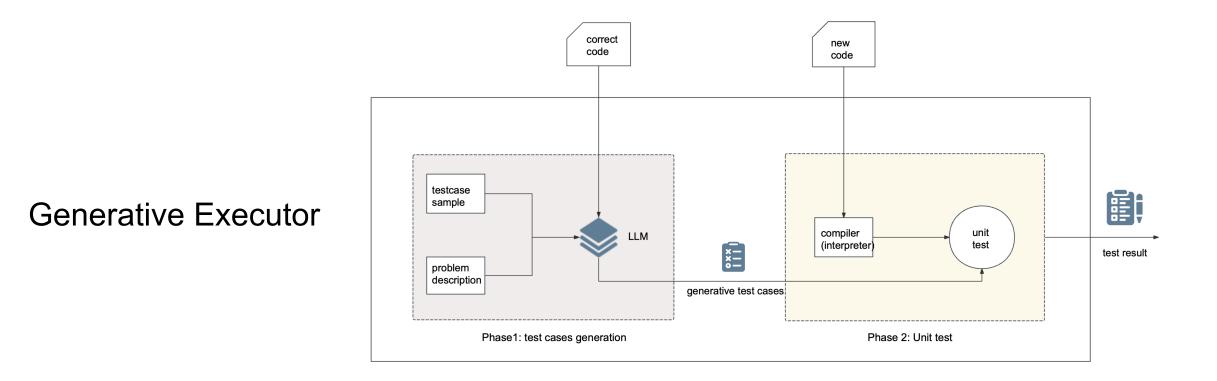
Remember, the report should be as concise as possible, without sacrificing clarity and completeness of information. Do not include any error handling or exception handling suggestions in your report." + "The code from a developer is: {script}".

Multi-Agent Collaboration: Result

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimalit y)
	baseline	6.0	31.5	0	100	8.8
Python	Multi-Agent Collaboration	24.6	53.0	17.0	20.1	5.9
	Multi-agent collaboration with new Tester	21.8	46.7	14.3	26.5	5.9
	baseline	3.5	40.4	0	100	16.4
C++	Multi-Agent Collaboration	11.9	39.8	6.0	55.7	16.4
	Multi-agent collaboration with new Tester	8.3	39.0	4.1	50.8	18.0
	baseline	12.6	24.0	0	100	3.8
Java	Multi-Agent Collaboration	16.0	39.0	6.7	57.7	3.8
	Multi-agent collaboration with new Tester	16.0	39.0	6.7	57.7	3.8

Multi-Agent Collaboration: Case Study

Туре	Number
Correct but low-efficient plan, timeout code, and useless tester	6
Correct but low-efficient plan, wrong code, and useless tester	11
Wrong plan, wrong code, and useless tester	1
Others	2

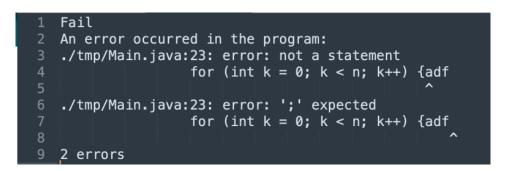


5. Methodology

- Generative Executor Module
- Self-Refine-Executor Framework
- Multi-Agent-Executor Framework

Senerative Executor Module

40

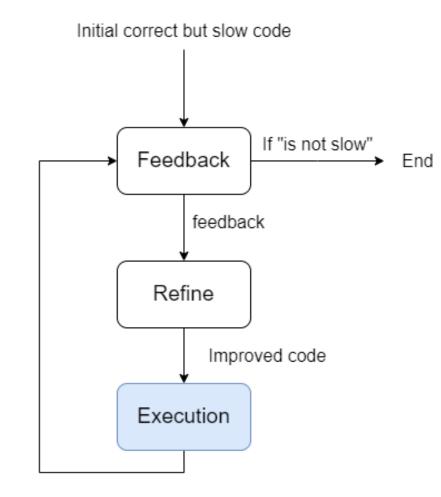

Phase 1: Testcases generation

▶ (base) canranliu@Canrans–MacBook–Pro UT % python main.py		
Generating testcases based on correct code		
0%	0/1 [00:00	, ?it/s]</td
Generating testcases for problem: ./098/question.txt		
100%	1/1 [00:01<00:00,	1.67s/it]
Input testcases: ['3 4\n0110\n1010\n0111\n', '2 3\n101\n010\n', '4 5\n11111\n00000\n11111\n00000\n', '1 1\n1\n']	
Output testcases: ['2\n', '0\n', '0\n', '0\n']		

Generative Executor Module

Phase 2: Unit test and feedback generation

1	Fail
2	The new code failed following testcases:
3	When the input is 3 4
4	0110
5	1010
6	0111
7	The expected output is 2
8	The output of the new code is -1
9	
10	When the input is 2 3
11	101
12	010
13	The expected output is 0
14	The output of the new code is -2
15	
16	When the input is 4 5
17	11111
18	00000
19	11111
20	00000
21	The expected output is 0
22	The output of the new code is -10


Self-Refine-Executor Framework - Motivation

- The feedback phase only focuses on code efficiency, which often lead to errors in the refined code.
- The subsequent self-refinements cannot correct the errors, leading to the worse code.

Self-Refine-Executor Framework - Design

Self-Refine-Executor Framework - Design

Initialization Phase:

- The model is first provided with a correct but slow version of code, and it is tasked to directly generate an optimized version of this code.

• Execution Phase:

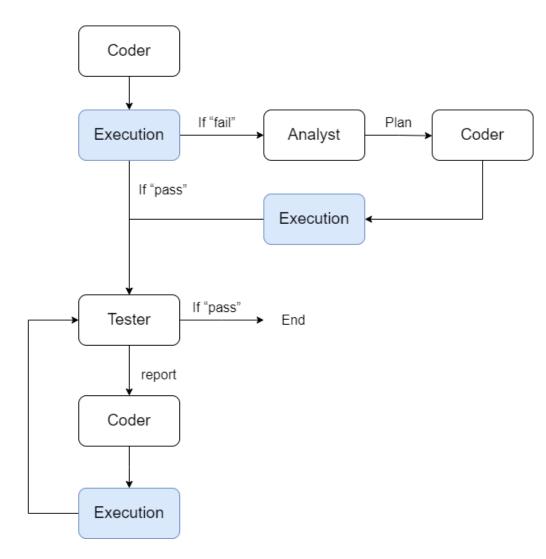
- Submit the code for testing by the execution module.
- If the test result is "pass", the code is retained.
- If it fails, the code is discarded, and the previous correct code is used for the next feedback and refinement.

• Feedback Phase:

- The optimized version of code is given back to the model to obtain feedback.

Refine Phase:

- Refine the code based on the feedback.


Multi-Agent-Executor Framework - Motivation

- The plans given by the Analyst are generally correct but often inefficient;
- The Tester is not able to effectively detect obvious errors and judge the efficiency of the code.

Multi-Agent-Executor Framework - Design

Multi-Agent-Executor Framework - Design

Initialization Phase:

- The task is firstly given to the Coder, who will write code according to the requirements of users.
- The code will then be passed to the Executing Phase directly.
- If the execution result of this initial code is "Pass", it then goes to the Testing Phase.
- If the code fails, the Analyst would be called to give a high-level plan for this task.

Coding Phase:

- This plan is passed back to the Coder, and then the Coder will write the code according to the plan.

Multi-Agent-Executor Framework - Design

• Executing Phase:

- The code will be executed through the external "Generative Executor module".
- The module returns a result, indicating "Pass" if the code passes all test cases, or "Fail" along with the test cases that failed and any error information (if available).

Testing and Iteration Phase:

- The execution result is given to the Tester.
- If the result is "Pass", the Tester analyzes whether there is room to improve the efficiency of the code;
- If the result is "Fail", the Tester drafts a report based on the error information.
- If the code is correct and the Tester believes it is efficient enough, the iteration ends.

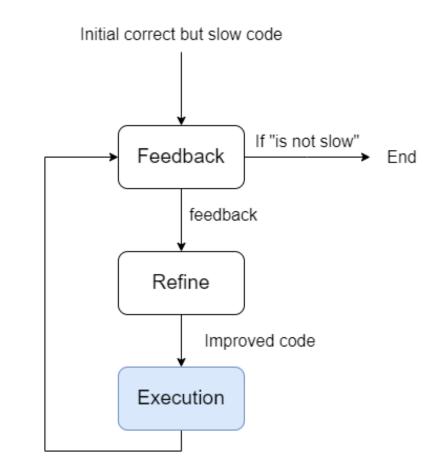
• Repairing Phase:

- If the test is not passed, the test report is sent back to the Coder, who revises the code according to the report.

6. Experiment

- Baseline Experiment
- Self-Refine-Executor
- Multi-Agent-Executor
- In-context Learning
- Others

- Prompt:
 - Please generate {language} code that can be run directly to solve the following programming problem. Do not add any text description!


• Prompt:

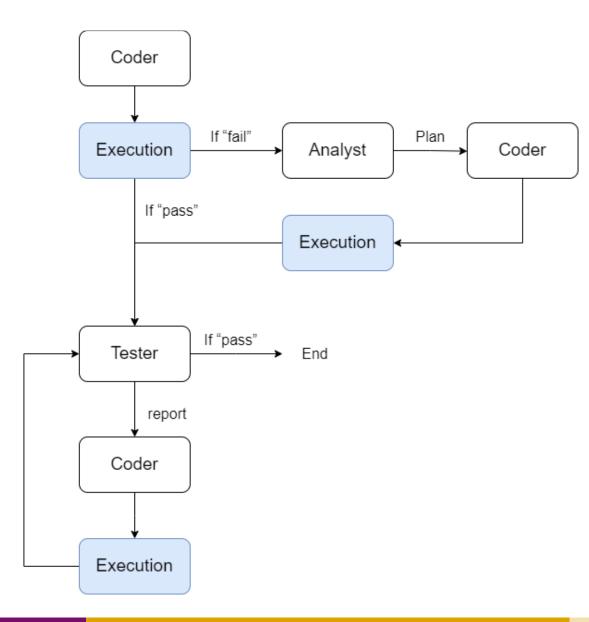
- Please generate {language} code that can be run directly to solve the following programming problem. Do not add any text description!
- Result:

Language	Experiment	Total Time(TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
Python	baseline	6.0	31.5	0	100	8.8
CPP	baseline	3.5	40.4	0	100	16.4
Java	baseline	12.6	24.0	0	100	3.8

Self-Refine-Executor: Result

Language	Experiment	Total Time(TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	6.0	31.5	0	100	8.8
Python	Self-refine	7.0	41.9	2.5	61.8	11.8
	Self-refine-executor	7.1	40.2	2.3	91.2	17.6
	baseline	3.5	40.4	0	100	16.4
CPP	Self-refine	4.3	63.4	2.2	52.5	37.7
	Self-refine-executor	3.4	53.8	0.7	90.1	29.5
Java	baseline	12.6	24.0	0	100	3.8
	Self-refine	7.5	30.7	2.6	46.1	7.3
	Self-refine-executor	7.6	33.2	0.9	87.3	4.4

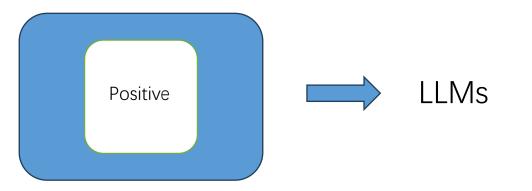
Self-Refine-Executor: Result



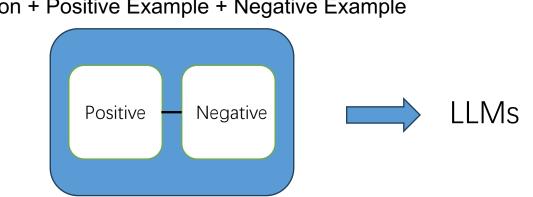
Language	Experiment	Total Time(TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	6.0	31.5	0	100	8.8
Python	Self-refine	7.0	41.9	2.5	61.8	11.8
	Self-refine-executor	7.1	40.2	2.3	91.2	17.6
	baseline	3.5	40.4	0	100	16.4
CPP	Self-refine	4.3	63.4	2.2	52.5	37.7
	Self-refine-executor	3.4	53.8	0.7	90.1	29.5
Java	baseline	12.6	24.0	0	100	3.8
	Self-refine	7.5	30.7	2.6	46.1	7.3
	Self-refine-executor	7.6	33.2	0.9	87.3	4.4

- Why is the pass@1 not 100%?
 - After self-refine, the efficiency of the code actually decreased, but the executor-generated test cases were not large enough to detect timeout situations.
 - After self-refine, the optimized code had errors, but the executor-generated test cases were not comprehensive enough to detect these errors. 55

Multi-Agent-Executor



Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	6.0	31.5	0	100	8.8
Python	Multi-Agent Collaboration	24.6	53.0	17.0	20.1	5.9
,	Multi-agent collaboration with new Tester	21.8	46.7	14.3	26.5	5.9
	Multi-Agent-Executor	10.2	53.2	4.6	73.5	14.7
	baseline	3.5	40.4	0	100	16.4
C++	Multi-Agent Collaboration	11.9	39.8	6.0	55.7	16.4
	Multi-agent collaboration with new Tester	8.3	39.0	4.1	50.8	18.0
	Multi-Agent-Executor	8.9	63.7	3.4	70.2	32.8
	baseline	12.6	24.0	0	100	3.8
Java	Multi-Agent Collaboration	16.0	39.0	6.7	57.7	3.8
	Multi-agent collaboration with new Tester	16.0	39.0	6.7	57.7	3.8
	Multi-Agent-Executor	15.8	45.5	8.0	59.1	7.4



Question + Positive Example

In-Context-Learning

Question + Positive Example + Negative Example

In-Context-Learning

Problem Type	Negative	Positive
Binary search	O(m+n)	$O(\log(m+n))$
Divide and conquer	$O(n^2)$	O(n)
Dynamic programming	$O(n^3)$	O(n)
Sorting	$O(n\log n)$	O(n)

 Table 18: Time Complexity of Different Problem Types

Experiment

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	6.0	31.5	0	100	8.8
	ICL (1 positive example)	7.4	32.1	6.8	26.5	2.9
Python	ICL (2 positive example)	3.1	36.4	2.0	50	8.8
	ICL (4 positive example)	3.4	32.5	2.5	50.0	8.8
	ICL (1 positive and negative example)	3.3	30.1	2.5	50.0	11.7
	ICL (2 positive and negative example)	3.7	39.3	2.0	58.8	8.8
	ICL (4 positive and negative example)	6.2	34.3	4.3	50.0	5.9

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	12.6	24.0	0	100	3.8
	ICL (1 positive example)	10.3	29.8	2.6	65.4	0
	ICL (2 positive example)	8.8	28.4	1.5	73.0	0
	ICL (4 positive example)	7.3	23.9	0.5	69.2	3.8
Java	ICL (1 positive and negative example)	9.6	27.4	2.0	65.3	3.8
	ICL (2 positive and negative example)	9.2	26.4	1.5	69.2	0
	ICL (4 positive and negative example)	7.0	26.2	0	76.9	0

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
	baseline	3.5	40.4	0	100	16.4
	ICL (1 positive example)	5.6	38.6	1.1	81.8	21.2
	ICL (2 positive example)	5.2	57.1	1.3	90.2	42.6
C++	ICL (4 positive example)	6.7	50.8	1.9	83.6	39.3
	ICL (1 positive and negative example)	5.4	48.9	1.3	85.2	26.2
	ICL (2 positive and negative example)	5.3	49.1	1.3	83.6	31.1
	ICL (4 positive and negative example)	5.6	48.5	1.4	80.3	23.0

Change Prompt


```
def get_messages(prompt, language):
    messages = []
    system_prompt = "Please generate " + language + "code that
        can be run directly to solve the following programming
        problem. Do not add any text description!" + "Please pay
        attention to the time complexity of your solution."
    messages.append(
        {"role": "system", "content": system_prompt})
    )
    messages.append(
        {"role": "user", "content": prompt}
    )
    return messages
```

Experiment

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
Python	baseline	6.0	31.5	0	100	8.8
	Change Prompt	7.49	42.2	5.2	67.7	11.7
C++	baseline	3.5	40.4	0	100	16.4
	Change Prompt	4.8	50.1	0.6	80.3	37.7
Java	baseline	12.6	24.0	0	100	3.8
	Change Prompt	11.0	31.1	2.4	80.7	7.7

Chain of Thought (CoT)

```
def get_messages(prompt, language):
    messages = []
    system_prompt = "Please generate " + language + "code to
        solve the following programming problem. Let's think it
        step by step."
    messages.append(
            {"role": "system", "content": system_prompt}
    )
    messages.append(
            {"role": "user", "content": prompt}
    )
    return messages
```

Experiment

Language	Experiment	Total Time (TT)	Efficiency Level (EL)	Timeout Rate (TR)	pass@1	%opt (Optimality)
Python	baseline	6.0	31.5	0	100	8.8
	СоТ	14.6	40.5	11.3	50.0	2.9
C++	baseline	3.5	40.4	0	100	16.4
	СоТ	3.2	54.9	0.7	77.0	31.1
Java	baseline	12.6	24.0	0	100	3.8
	СоТ	9.6	39.8	2.0	69.2	3.8

• Measure and process code contests dataset.

• We have improved the timeEval benchmark.

• We did the empirical study of the existing method.

• We proposed several frameworks and finally achieved satisfactory results.

Thank you