Stock Trend Prediction with News Data using Deep Learning

Li Kam Po & Lau Tsz Yui LYU2004

Motivation

Buy today Sell tomorrow (BSTS) trading

Buy a stock and sell it within several days
Profit from frequent transactions
Advantage: Easier to manage risk
Disadvantage: High transaction cost

Can machine learning help us to find which stock will rise on the next day?

Project Context & Objective

Simplify the situation

- 1. Focus on one large cap stock, Apple Inc (AAPL)
- 2. Not considering the transaction cost

Objective

To classify whether AAPL will rise on the next day To evaluate the influence of news to the stock trend

Overview

Model overview: Stock trend prediction model

- Two components
 - Numerical analysis
 - Sentiment analysis

Data acquisition & Dataset

DATA

Stock Dataset

Yahoo Finance

- Pandas DataReader
- AAPL, ^GSPC, ^IXIC
- 2010 2019 (2729 days)
- High, low, open, close, adj Close, volume

News Dataset 2

News selected by MarketWatch

- Web crawler
- Crawl the data once per day
- Financial news, highly related to Apple
- Training & test set (merge model)
- 379 news (until Nov 23)

News Dataset 1

Sentiment analysis for financial news

- Kaggle
- Labelled (positive, neutral, negative)
- Financial news, not related to Apple
- Training set (sentiment)
- 4837 records

News Dataset 3

New York Time

- Web crawler & API
- General news, some related to Apple
- Training & test set (merge model)
- 29084 news

Experiment

01 Visualization

02 Numerical Analysis

03 Sentiment Analysis

04 Model Merging

Candlestick chart

- Investors study the chart to deduce the stock trend
- A candlestick
 - High, Low, Open, Close
 - Upper, Lower shadow, and Real body

Candlestick chart pattern

01 Visualization

Visualization

Preprocessing

- NSL = USL LSL
- BL = Close Open
- Labeling

- High Upper Shadow. Experimental Action of the state of th
- Rise / Fall on the next day
- E.g. label day t is rise if close of day t+1 > close of day t

- Short & positive BL
- Long & negative NSL
- Shooting Start
 - Short & negative BL
 - Long & positive NSL

Result

- Green box: 9 green and 3red
- Red box: 8 green and 8 red
- "Accuracy" about 58.6%
 - Not a rigorous approach

- Statistical model may not be a good starting point
 - Other paper about 70% accuracy

02 Numerical analysis

LSTM GRU KNN Prophet

LSTM

- Stock data is a typical time series data
- Input feature: (six basic values)High, low, open, close, adj close, volume

- LSTM

Dense

- Sequence length: 10 days
- Output: The predicted close price of the next day
- Architecture:
 - 1 input layer
 - 1 LSTM layer
 - 1 dense layer
 - 1 output later

LSTM – Experiment result

- MSE: 1.083
- The prediction is quite close the ground truth

LSTM – Experiment result

- Not a good prediction
- Not sensitive to short-term volatility
- Delayed real trend, shifted to right
- Using today's closing price as tomorrow's closing price

GRU – Experiment result

- Replace LSTM cells by GRUs
- MSE: 1.174
- Still base on the current trend to give the prediction
- Similar problems with LSTM

Problems in LSTM & GRU

- As they use a sequence of days to predict the coming close price
- The models will follow the trend of the input sequence to make prediction
- It give the same trend of the input sequence
- Not able to predict a turning point

A better model should be

- Not always follow the trend of recent stock price
- Try to predict the turning points

KNN Regression

• The average value of nearest points

Key differences:

• Nearest points are not necessary to be the recent stock data

20

• Less likely to follow the trend of recent data

- Input: Six basic values of day t
- Output: Closing price of day t+1
- Training set: 2010 2018 (~2250)
- Test set: 2019 2020 (~300)
- Best MSE is 1.162 when K is 13

К	7	10	12	13	14	15	
MSE	1.191	1.180	1.163	1.162	1.186	1.169	
RMSE	1.091	1.086	1.078	1.078	1.089	1.081	
	h. Ber				A.		

• KNN is a better prediction model

• "Delay" still exist but improved

• Try to predict turning points

- "Delay" mainly occurs when there is an obvious rising or falling trend
- If the trend is relatively steady, KNNR can give us interesting prediction

- We can see KNNR is trying to predict the turning point
- There are two "on time" turning point predictions made in the box

24

- One correct prediction
- One wrong prediction

KNN Classification

- KNN Classification
 - Given the stock data of day t
 - To predict whether the closing price of day t+1 is higher or lower than the closing price of day t
- Preprocess
 - Label each day by comparing it closing price with the closing price of the next day

- Input: Features of day t
- Output: Closing price of day t+1
- Training set: 2010 2018 (~2250)
- Test set: 2019 2020 (~300)
- Best accuracy 0.557 when K is 5

KNNR: As a classifier

- As KNNR can make turning point prediction
- This characteristic helps predict whether the stock will rise or fall

27

- Performance measure
 - *Close_t*: Actual close price of day t (today)
 - *Close*_{t+1}: Actual close price of day t+1 (tomorrow)
 - \widehat{Close}_{t+1} : Predicted close price of day t+1 (tomorrow)

```
\begin{aligned} & \textit{Correct if } \left( \widehat{\textit{Close}_{t+1}} > \textit{Close}_t \textit{ and } \textit{Close}_{t+1} > \textit{Close}_t \right) \\ & \textit{or}(\widehat{\textit{Close}_{t+1}} \leq \textit{Close}_t \textit{ and } \textit{Close}_{t+1} \leq \textit{Close}_t) \end{aligned}
```

Wrong if $(\widehat{Close}_{t+1} > Close_t and Close_{t+1} \le Close_t)$ $or(\widehat{Close}_{t+1} \le Close_t and Close_{t+1} > Close_t)$

KNNR: As a classifier – Experiment result

• The best accuracy is 0.583 when K = 11

К	4	5	7	10	11	12	13	15
Accuracy	0.567	0.550	0.553	0.573	0.583	0.580	0.567	0.477

28

• As a comparison, accuracy of previous KNNC is 0.557

К	3	4	5	6	7	8
Accuracy	0.530	0.498	0.566	0.518	0.530	0.470

Prophet

• A time series forecast model proposed by Facebook in 2017

- Three main components
 - g(t) measures the non-periodic change
 - s(t) measures the periodic change
 - h(t) measures the holiday effect
- Apple has 3 events in each year
 - Spring, autumn conferences, and WWDC
 - Define those days for h(t)

 $y(t) = g(t) + s(t) + h(t) + \epsilon_t$

Prophet – Experiment result

- The graph show the trend learned
 - Overall trend
 - Holiday effect
 - Weekly trend
 - Yearly trend

Prophet – Experiment result

Prophet – Experiment result

• MSE: 150

 Not a good prediction model for stock

32

• It gives an overall trend

03 Sentiment analysis

TextBlob VADAR Sentiment ANN BERT

TextBlob

• Python library for processing textual data

- Input sentence -> output polarity score
- Test on pre-labelled dataset
- 49% accuracy

	Sentiment	Headlines	tb_hl_polarity
)	0	According to Gran , the company has no plans t	0
L	0	Technopolis plans to develop in stages an area	1
2	-1	The international electronic industry company	0
3	1	With the new production plant the company woul	-1
1	1	According to the company 's updated strategy f	0
841	-1	LONDON MarketWatch Share prices ended lower	-1
1842	0	Rinkuskiai 's beer sales fell by 6.5 per cent	0
1843	-1	Operating profit fell to EUR 35.4 mn from EUR	0
1844	-1	Net sales of the Paper segment decreased to EU	1
845	-1	Sales in Finland decreased by 10.5 % in Januar	-1
4846	rows x 3 c	olumns]	
accura	ancy: 49.11	3	

VADAR Sentiment

- A lexicon and rule-based sentiment analysis tool
 - specifically attuned to sentiments expressed in social media
- Test on pre-labelled dataset
- 54% accuracy

	Sentiment	Headlines	vadar polarity
9	0	According to Gran , the company has no plans t	-1
1	0	Technopolis plans to develop in stages an area	-1
2	-1	The international electronic industry company	0
3	1	With the new production plant the company woul	1
4	1	According to the company 's updated strategy f	1
4841	-1	LONDON MarketWatch Share prices ended lower	-1
4842	0	Rinkuskiai 's beer sales fell by 6.5 per cent	0
4843	-1	Operating profit fell to EUR 35.4 mn from EUR	1
4844	-1	Net sales of the Paper segment decreased to EU	1
4845	-1	Sales in Finland decreased by 10.5 % in Januar	0
4846	rows x 3 c	olumns]	
accura	ncy: 54.35	4	

ANN

- Input feature: sentence / word count vector
- Output: sentiment score (-1, 0, 1)
- Test on pre-labelled dataset
- Accuracy 72.78%

BERT – Experiment result

- Classify the sentiment of a given sentence
 - Positive, neutral, and negative
- Training set: sentiment for financial news

E MILLE E C. Ed

- Test set: sentiment for financial news
- Accuracy: 81.6%
- Balanced accuracy: 80.3%

04 Model Merging

KNN + VADAR LSTM + BERT

Final model 1: KNN + VADAR Sentiment

- Input:
 - Average sentiment score of today's news
 - Close price of today
- Output:
 - Rise (1) / Fall (0) of tomorrow's close price

Final model 1 – Experiment result

- With sentiment
- Accuracy 51.39%

- Without sentiment
- Accuracy 50.68%

Final model 1 – Experiment result

• Overall performance

	w/ sentiment	w/o sentiment	changes
accuracy	51.39%	50.68%	0.72%
balanced accuracy	50.65%	50.51%	0.13%

a set in the first of the set of

Final model 2: LSTM + BERT

- Output of Bert
 - Sentiment value of each news (New York Time)
- Preprocess
 - As there are multiple news on one day
 - Find the average sentiment values for each day
- LSTM
 - Input features: Stock data of AAPL, ^GSPC, ^IXIC, and sentiment

42

• Output: Rise / fall

Ŷ.

Final model 2 – Experiment result

- Without sentiment
 - No sentiment value (all set to 0)
 - Accuracy: 50.83%
 - Balance accuracy: 50.92%

- With sentiment
 - Accuracy: 52.08%
 - Balance accuracy: 52.14%

44

• Comparison

	No sentiment	With sentiment	Changes
Accuracy	50.83%	52.08%	+1.25%
Balanced accuracy	50.92%	52.14%	+1.22%
ñ if		i i i i i i i i i i i i i i i i i i i	

Final model 2 – Experiment result

• Examples

	High	Low	Open	Close	Volume	Adj Close	Sentiment	Prediction	Ground truth
Without sentiment	44.80	44.17	44.49	44.58	8.49E+07	43.97	N/A (0)	Rise (FP)	Fall
With sentiment							-0.613	Fall (TN)	
Without sentiment	44.48	42.57	43.9	43.325	1.62E+08	42.74	N/A (0)	Fall (FN)	Rise
With sentiment							0.359	Rise (TP)	

Conclusion

Numerical analysis

- Initially we though statistical approach may not give us a good prediction.
- Based on the inspiration of LSTM/GRU experiment, we inferred what a good model should be capable of.
- In the KNN experiment, we saw it is trying to predict the turning points

Model merging

- Adding sentiment values improves the accuracy
- Loss between the sentiment analysis model and the numerical analysis model. It will be a bottleneck of the whole model.

Sentiment analysis

- News datasets availability affected the performance of our model
- General news are used to test the model which is trained with financial news

Timeline Style

Thank You

Thank you for your listening Q&A