Timechain

A Time Synchronization Protocol based on Distributed Network

LEUNG TSZ HIN (1155079351)
SUPERVISED BY PROF. LYU RUNG TSONG MICHAEL

Recap

- Research on Network Time Protocol
 - ► How it works
 - ▶ Security concerns
- Proposed Timechain
 - ▶ Blockchain for timekeeping
 - Demonstration

Agenda

- Background research
- ▶ Timechain
- ▶ Testing and Evaluation

- Preventing Byzantine faults:
 - Ensuring the proposed block in the chain generated by a node is legitimate
 - Preventing malicious users from successfully derailing the system

Proof of Work (PoW)

	Nonce	Hash
	0001	888B19A43B151683C87895F6211D9F8640F97BDC8EF
Block	0002	4FAC6DBE26E823ED6EDF999C63FAB3507119CF3CB
content	0003	446E21F212AB200933C4C9A0802E1FF0C410BBD75F
	•••••	
	1234	03AC674216F3E15C761EE1A5E255F067953623C8B38

Page 5

- Proof of Stake (PoS)
 - Probability of creating a block depends on the amount of stake
 - ▶ Economic incentive

Practical ByzantineFault Tolerance (pBFT)

https://www.geeksforgeeks.org/practicalbyzantine-fault-tolerancepbft/

- Computational overhead
- Network overhead
- ► Fault tolerance
- ► Transaction finality
- Scaling

- ▶ Physical Time
- ► Logical Time

► Lamport Clock

https://www.cs.rutgers.edu/~pxk/417/notes/clocks/index.html

Vector Clock

https://www.cs.rutgers.edu/~pxk/417/notes/clocks/index.html

- ▶ Network Time Protocol
 - ▶ Real time

https://commons.wikimedia.org/wiki/File:Network_ Time_Protocol_servers_and_clients.svg

- ▶ Berkeley's Algorithm
 - No trustworthy time source

https://www.geeksforgeeks.org/berkeleys-algorithm/

Vector clock

Lamport clock

Decentralized

Timechain

Logical time

Physical time

NTP

Centralized

Berkeley's Algorithm

Page 15

NTP Clock Selection

- ► Truechimers vs Falsetickers
- $\triangleright [\Theta_0 \lambda, \Theta_0 + \lambda]$
- \triangleright θ_0 : Measured offset
- λ: Root distance
 - ▶ 1/2 Round trip delay + root dispersion

$$\Theta_{0} - \lambda$$

$$\Theta_0$$

$$\Theta_0 + \lambda$$

NTP Clock Selection

- Marzullo's algorithm
 - intersection interval: the smallest interval containing points from the largest number of correctness intervals

NTP Clock Selection

Marzullo's algorithm

https://en.wikipedia.org/ wiki/Marzullo%27s_algorit hm

Timechain

- Decentralized, distributed timekeeping
- ▶ Physical time + logical time

- Proof of Work (PoW)
 - ▶ Highly scalable
 - ▶ No stake
 - ▶ Better fault tolerance

Timechain

▶ Block

Page 21

Operation

Operation

- Deployed working instance on 7 machines
- Timechain vs NTP in clock selection
- ▶ How to choose a time among the blocks

NTP Test:

NTP Test:

▶ Timechain Test:

Choosing a Time

- ► Mean(n)
 - n: number of samples
 - $0\left(\frac{4}{7}\right) + 2\left(\frac{2}{7}\right) 2 \times \left(\frac{1}{7}\right) = 0.285 \text{ mins}$

Choosing a Time

- ► Median(n)
 - n: number of samples

Choosing a Time

Average of timestamps of nodes between 25th percentile and 75th percentile

Conclusion

- Timechain capable to keep physical time and logical ordering
- There may exist better methods to computer a more accurate time
- Intended to provide a more creditable time source alongside with other timing mechanisms