3D Dance Head using KINECT and 3D projector

Chan Wai Yeung Lai Tai Shing 1155005589 1155005604

Agenda

- Introduction & Background
- Design and implementation
- Conclusion
- Difficulties
- Future Work
- ♦ Q & A

Introduction

- Background
- Motivation
- Objective

Background

- What is Dance Head?
- A company called "Dance Heads" present
- Video shows people dancing
- Participants stand alone and wear clothes
- Participants' heads are superimposed to the dancers

Motivation

- Entertainment for the public
- Limitation of current Dance Head
- KINECT is popular electronic device

Objective

- Design and implement an algorithm to extract Head part
 - Study KINECT SDK
 - Study open source libraries
 - OpenCV & OpenNI

KINECT

- Device developed by Microsoft
- XBOX 360
 - Mainly used in game

KINECT

3D Depth sensor

- infra-red projector and monochrome CMOS sensor
- Range 1.2m-3.5m
- 320*240 resolution with 16-bit sensitivity
- video captured is in 30Hz frame rate

RGB camera

- camera with resolution 640*480 in 32-bit colour
- 30Hz frame rate

KINECT SDK

- Software development kit (SDK)
 - launched by Microsoft
 - Several versions
 - Orivers for using the Kinect
 - APIs and device interfaces for Windows sensor

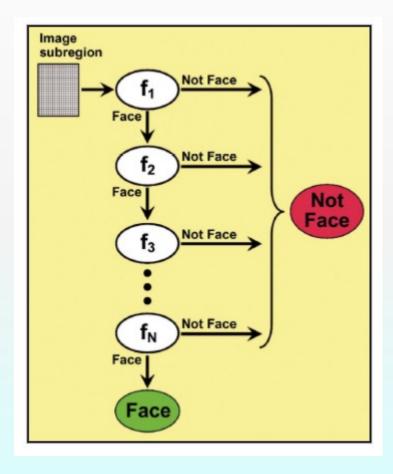
KINECT Application

- Face tracking
- Skeleton tracking

OpenNI

- Open source
- Cross platform framework
 - Provides the interface for physical and software components
 - Application programming interface (API)
- As a channel to get data from KINECT
 - Color image
 - Depth map

OpenCV


- OpenCV (Open Source Computer Vision)
 - Library of programming functions for real time computer vision
 - Open source software
 - Used in different platforms
 - Image processing

Face Detection

- From Kinect SDK V1.5
 - tracking the face position, orientation and the face features
 - Larger faces are easily tracked
 - 87 2D points on the face
 - 13 points that aren't shown on the face
 - center of eye, the corner of mouth and the center of noise

Face Detection

- openCV
- Haar-Like features to identify object
 Classifier
- Cascade classifier for detection of face
 - Classifier is trained with particular object
 - Applied to the input image
 - Return 1 if likely to that object
 - Step by step

Comparison

- Working platform
- Programming language
- Principle of face tracking

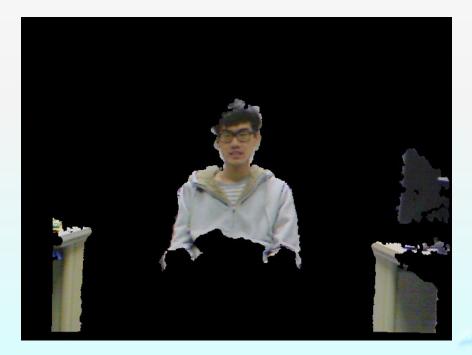
Decide to use face detection in OpenCV
 Run in different platforms

Design & Implementation

- Study the background
- Study KINECT SDK
- Study open source libraries
- Decide the best way to extract the head

- 3 milestones
- Milestone 1
 - Manipulate the image by the depth value
 - Learn how to program in OpenNI
- Milestone 2
 - Program with face detection in OpenCV
 - Use the concept of connected component
 - Improve the output image by filling the holes

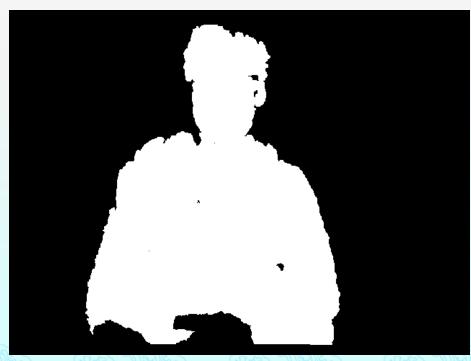
- Try out different method to extract
- Superimpose the head to the video

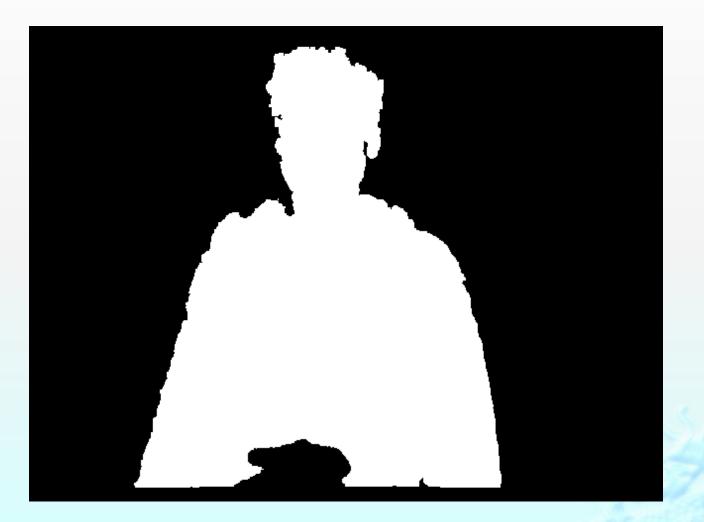

- Use the depth data received from the KINECT
- Show the image within certain depth

- Make use of face detection in OpenCV
 - Use cascade classifier to identify face
 - Extract the head part
 - To obtain the face's depth

Combine with milestone1 Should be determined Should be

Show the object within face's depth

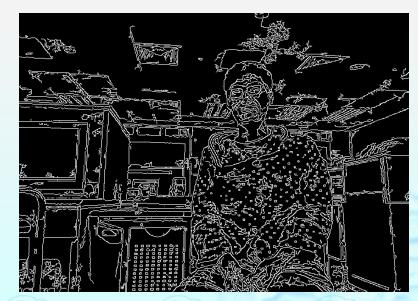



- Connected component
 - Other objects also shown in result image
 - To exclude the other image
 - No other object is shown

- Noise reduction
 - Black holes appear
 - Improve the result image by filling the holes

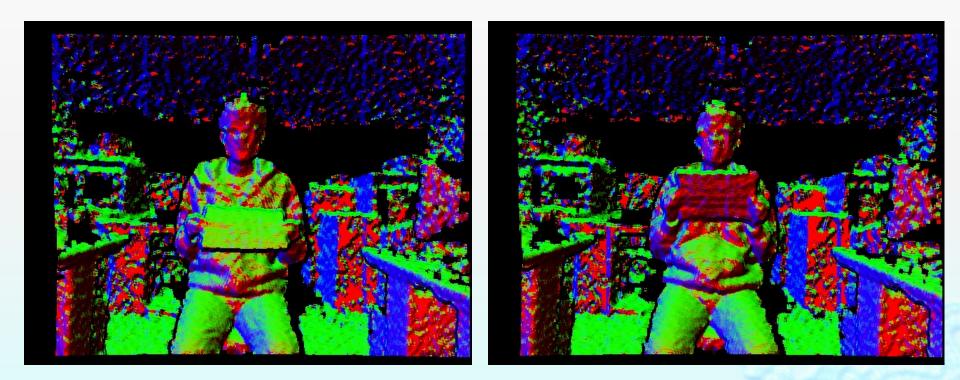
- Find out the best method to extract the head
- Cutting the head by radis
- Edge detection
- Surface normal
- Surface normal combined with depth value

Cut the face by radius


- Based on Face detection in OpenCV
 - Find the center of the face
 - Set the radius
 - Out the head by a circle with the radius
 Out the radius

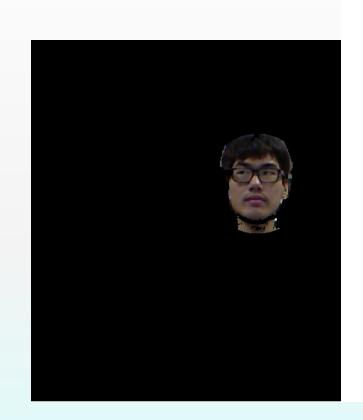
Edge detection

- Try to extract the face by edge
 - Use Canny edge detector

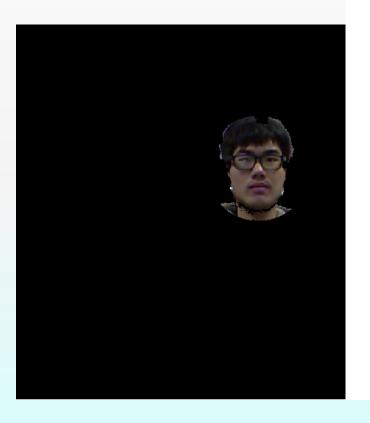


Not possible method

- No great gradient different in edge map
- Cannot extract the face


Surface normal

- Vector at a point that perpendicular to the tangent plane to that surface at that point
- Different surface normal on the face point
 - use difference gradient of the chin
 - Extract the head by the change of the chin
- Seem to a better way to extract the head


Surface normal combined with depth


- Surface normal of the chin is pointing down
- Depth value larger than certain range
- Only if these two conditions are fulfilled
 - the head extracted
- Best result
 - Smooth curve of the chin

Conclusion

- Study KINECT SDK
- Study open source libraries
- Try out different methods to extract the head
- Find out the best way for extraction of the head

Difficulties encountered

- Lack of knowledge in image processing
- Difficult to find the best way for extracting the head
- Limited resources and documentation

Current limitation

- Kinect limitation
- Detection of multi-face
- Side view problem
- Low frame rate

Further work

- Improvement of the output image
- Improve the frame rate
- Implement advance features to Dance Heads
- Point Cloud
- Link with 3D Projector

Reference

- I1] Kurt Demaagd, Anthoy Oliver, Nathan Oostendorp &Katherine Scott "Practical Computer Vision with SimpleCV"
- [2] Gary Bradski & Adrian Kaebler "Learning OpenCV"
- [3] Kinect for Windows :
- <u>http://www.microsoft.com/en-us/kinectforwindows/</u>
- [4] Microsoft Developer Network
- <u>http://msdn.microsoft.com/en-us/default.aspx</u>
- [5] OpenCV
- <u>http://opencv.org/</u>
- [6] OpenNI
- <u>http://openni.org/</u>
- [7] Face Detection in OpenCV
- http://www.cognotics.com/opencv/servo_2007_series/part_2/sidebar.html
- [8] Haar-like features
- <u>http://en.wikipedia.org/wiki/Haar-like_features</u>
- [9] Face Recognizer in OpenCV
- <u>http://docs.opencv.org/modules/contrib/doc/facerec/index.html?highlight=face</u>

- [10] Using Kinect and OpenNI compatible depth sensors
- <u>http://docs.opencv.org/trunk/doc/user_guide/ug_highgui.html#using-kinect-and-other-openni-compatible-depth-sensors</u>
 [additional content in the sensors]
 [additional content in the sensors]
- [11] Cascade classifier
- <u>http://docs.opencv.org/trunk/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.h</u>
 <u>tml#cascade-classifier</u>
- I12] OpenNI history
- <u>http://en.wikipedia.org/wiki/OpenNI</u>
- [13] Getting started with Kinect for Windows SDK
- <u>http://msdn.microsoft.com/en-us/library/hh855354.aspx#feedback</u>
- [14] Face tracking
- <u>http://msdn.microsoft.com/en-us/library/jj130970.aspx</u>
- [15] Dance Heads
- <u>http://danceheads.com/</u>
- [16] Opencv 2.4.3
- <u>http://fossies.org/dox/OpenCV-2.4.3/objdetect_8hpp.html</u>
- [17] Yong Kok Ching, Anton Satria Prabuwono, Riza Sulaiman "Visitor face tracking system using OpenCV library
- [18]OpenNI Programmer Guide
- <u>http://openni.org/Documentation/ProgrammerGuide.html</u>

Q & A