LYU 1103

Digital Interactive Game Interface Table Apps for iPad

Supervised by: Professor Michael R. Lyu

Student:

Ng Ka Hung Chan Hing Faat

(1009615714) (1009618344)

Year 2011 – 2012 Final Year Project

Department of Computer Science and Engineering The Chinese University of Hong Kong

i.Digi.T.able

Introduction & background Project Idea Our work Conclusion

i.Digi.T.able

Augmented Reality

What is AR?

Combination of reality

Computer generated graphics

Interactive & digitally manipulable

What is AR?

i.Digi.T.able

Enhance realism and impressiveness

AR types

i.Digi.T.able

Marker-less

- GPS
- Digital compass
- Camera assisted

AR types

i.Digi.T.able

Marker-based

- Camera
- Analyze marker
- e.g. QR code

AR examples

Applications

- Geo-navigation

Compass, etc.

- Informative

Stores

-Translation

Direct view

.Digi.T.able

AR examples

Applications

- Samplers
- As an interactive prototype
- Product Advertisement

Background

Digi.T.able

A project supervised by Prof. Michael Lyu in 2007

Background

Digi.T.able

- a multi-purpose interactive table
- allows players in different places to play games by real objects
- Board games (e.g. Chinese chess, uno)
- Action games (e.g. snooker, air hockey)

Inspiration

i.Digi.T.able

Digi.T.able

allows players in different places to play games by real objects Share a same common space

Implementation on iPAD

Idea

i.Digi.T.able

i.Digi.T.able

2 iPAD shares a common AR space to play a game

Objectives

i.Digi.T.able

i.Digi.T.able

- Track the real-object mark and determine the camera's position
- Display simple objects on virtual space depends on real space scenes
- Exchange position information between 2 iPad clients
- Implement a simple AR game on iOS platform (iPad)

How we do that

.Digi.T.able

i.Digi.T.able

Marker tracking

The Marker Tracking Module is the agent that directly communicate with the

Qualcomm AR SDK. It is a finite state machine keep analyzing data from camera.

i.Digi.T.able

Marker tracking

Marker tracking

Image conversion

- thresholding

- convert the captured frame from colored into binary image

Marker tracking

Feature points computation

- corners need to be detected
- in order to have reliable camera pose estimation

Marker tracking

Identification

- restore the effect of rotation, translation and perspective transformation

Feature

points

computation

Identification

Image

conversion

by solving a simple linear system

Marker tracking

Identification

- the positions of four corners by feature points computation and the 3D coordinates in object space of the marker's corners are given by (xi, yi, 0)

Feature

points

computation

Identification

Image

conversion

$$X_{i} = \frac{a_{1}x_{i} + a_{2}y_{i} + a_{3}}{a_{7}x_{i} + a_{8}y_{i} + 1}$$
$$Y_{i} = \frac{a_{4}x_{i} + a_{5}y_{i} + a_{6}}{a_{7}x_{i} + a_{8}y_{i} + 1}$$

Marker tracking

Identification

$$\begin{vmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \\ X_7 \\ X_8 \end{vmatrix} = \begin{vmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -X_1 x_1 & -X_1 y_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -X_2 x_2 & -X_2 y_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -X_3 x_3 & -X_3 y_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -X_4 x_4 & -X_4 y_4 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -Y_1 x_1 & -Y_1 y_1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -Y_2 x_2 & -Y_2 y_2 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -Y_3 x_3 & -Y_3 y_3 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -Y_4 x_4 & -Y_4 y_4 \end{vmatrix} \begin{vmatrix} a_1 \\ a_2 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_7 \\ a_8 \end{vmatrix}$$

Feature

points

computation

Identification

Image

conversion

The result vector of the linear system implies a normalized marker. By using the result vector, the system can provide users the pose information for drawing virtual 3D objects.

i.Digi.T.able

Marker tracking

Qualcomm AR SDK

-fetches live streaming from the device camera

- The platform consists of these components:

- -Camera
- -Image converter
- -Tracker
- -Renderer
- -Application Code
- -Target Resources

i.Digi.T.able

Marker tracking

i.Digi.T.able

Marker tracking

Qualcomm AR SDK

-Trackables

-right-handed coordinate system is used

i.Digi.T.able

Marker tracking

How to choose input images?

- Rich in detail
- Good in contrast
- No repeatitive patterns

Examples

Not good

Good

i.Digi.T.able

Marker tracking

Examples

i.Digi.T.able

Marker tracking

Qualcomm AR SDK Compare with String AR

	Qualcomm AR	String AR
License	Free	Free for limited version
Platform	iOS, Android	iOS, Android (in progress)
Multiple markers	Yes	No
3-rd Party Integration	Yes, Unity3D	Yes, Unity3D

i.Digi.T.able

Network

How to exchange data efficiently?

- Data size , data type
- -Network load, frequency of update
- -Accessibility

i.Digi.T.able

Network

Consider...

- Network socket
- HTTP requests
- Game center
- Peer-to-peer

Game Center

GKSessionDelegate

Data Handler

GKSessionDelegate

Data Handler

Network

Connection protocol

Register phase

- gets a token
- use the token to connect again
- (due to HTTP's stateless property)

i.Digi.T.able

Network

Connection protocol

Register phase

- No IP involved
- Unique device identification

phiekurn8r6iyyv65t31h7ujyt73q2

 \bigcirc

Device B has some update for you...

Network

Connection protocol

Data update phase

- present token
- update information to server
- gets update from server

i.Digi.T.able

Virtual world construction

Graphics and UI

An important part to combine computer graphics and real scenes

Light-weighted version of OPENGL on mobile devices

i.Digi.T.able

Virtual world construction

Fi.Digi.T.able

Game engine

What and how you can play...

- -game logic part
- Rule defined
- dependent specified game

i.Digi.T.able

Game engine

Event

- first delivery to the base view
- then its inherited views

Example of responder chain

i.Digi.T.able

On Camera matcl

Objective

investigate the effective stability of camera n

Set up

- Place a target at a
- Application replay
- Observing the repl
- Test the stability of

number of features on the

ard steadily 10cm ng it as a 3D model

i.Digi.T.able

On Camera match-moving

Control

(less feature and small size)

(more feature and small

size)

Control C Control D (less feature and large size) (more feature and large size)

i.Digi.T.able

On Camera match-moving

Results & evaluation

- all controls, the z value keeps constant
- A and B
 - x value changes regularly , but not constantly
 - y value oscillates

-C and D

- x value change differences are constant and small
- -Y remains constant

i.Digi.T.able

On Camera match-moving

Conclusion

- A large marker gives more stable tracking
- marker size also outweighs that the number of features of the marker.

Other factors

- Movement of the iPad
- -Camera Shake
 - -Algorithm to minimize unnecessary effect

Fi.Digi.T.able

On Camera match-moving

Demo program

- Record the track of the movement
- Move the device

Target marker

i.Digi.T.able

Network part

Objective

-Test stability and performance

Set up

- 2 iPads
- app installed
- 2D movement only

i.Digi.T.able

Network part

Procedure

- Connect to server
- Moves ME label
- Observe performance of YOU
 - on another device

i.Digi.T.able

Network part

DEMO

i.Digi.T.able

A demo game

Criteria

- A game to demonstrate AR and network technique
 - Marker dependent
 - battle via network
- Should be simple and direct

i.Digi.T.able

A demo game

Dodge ball

- 2-player battle version

SETUP

- -A marker on the wall
- 2 iPads with app installed
- Server ready

Game interface

Fi.Digi.T.able

A demo game

Target marker

i.Digi.T.able

Admin view on web interface

Conclusion

i.Digi.T.able

To summarize this semester ...

-We focused on tracking AR marker and analysis positional data

- QCAR SDK
- Network implementation
- A simple dodge ball game

Future work

Next goals

- Stabilized camera tracking
- Network Connection
- User Interface
- Assist with iPad accessories (GPS? Gyroscope? Ambient light sensor?)
- More on Game design and implementation (snooker? chat room?)
- Investigate possibility for more clients

The end

i.Digi.T.able

Thank you!