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Abstract of thesis entitled:
Impact of Opinions in Social Networks

Submitted by GARG, Priyanka
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in July 2012

Social opinions play a crucial role in shaping both our purchase
decisions and our experience. While on one hand, we are encour-
aged (discouraged) to adopt a product upon hearing the posi-
tive (negative) opinions; on the other hand, our opinions tend
to conform to our social circle. Both of these aspects of social
opinions are important in order to make precise product recom-
mendations, to accurately predict the information flow pathways
and to launch efficient viral marketing campaigns.

In this thesis, we first study the impact of polarity of opinions
on our purchase decisions. For the same, we analyze the informa-
tion propagation patterns of the negative and positive opinions
on two real world social networks, Flixster and Epinions, and ob-
serve that the presence of negative opinions significantly reduces
the number of expressed opinions. To account for the asymme-
try between the two kinds of opinions, we propose extensions
of the two most popular information propagation models, Inde-
pendent Cascade and Linear Threshold models. The proposed
extensions give a tractable influence problem and improve the
prediction accuracy of future opinions, by more than 3%.

Next, we study the impact of social opinions on our expressed
opinions about the products. The hypothesis is that many times
our expressed opinions are not completely independent of our
social circle and gets calibrated such that they are similar to the
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social opinions. In order to understand this phenomenon, we
propose a novel formulation for the users ratings where every
expressed rating is considered as a function of the social opinion
along with the user preference and item characteristics. The
proposed method helps in improving the prediction accuracy of
users’ rating by more than 2% in presence of social influence.
Additionally, the learned model parameters reveal the degree of
conformity of users. Detailed analysis of user social conformity
show that more than 76% of users tend to conform to their
friends to some extent. On an average, user ratings become more
positive in presence of the social influence. We also find that the
social conformers are usually not the first one to participate in
an information cascade.
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學位論文摘要 

學位論文題目：社會網絡中的意見影響 

提交人：GARG, Priyanka  

學位：哲學硕士 

香港中文大學，二零一二年 

 

社會意見在塑造我們購買決策和購買經歷發揮了至關重要的

作用。除了正面（或負面）的意見會鼓勵（或打消）我們購買某

個產品，我們的意見更傾向於遵循我們的社交圈。社會意見的這

些方面對於做出精確產品推薦、準確預測信息流向、及有效營銷

活動發布極為重要。 

 

在這篇論文中，我們首先研究極性意見對我們的購買決策的影響。

同時，我們分析了兩個現實世界中的社會網絡，Flixster 和

Epinions 中的消極和積極的意見的信息傳播模式。我們觀察到，

否定意見的存在大大降低了表達意見的數量。考慮到這兩種意見

的不對稱性，我們提出並擴展了目前最流行的兩個信息傳播模式，

獨立分級和線性閾值模型。我們提出的拓展模型提供了一個可處

理的影響問題和並能夠提高將來意見的預測精度，超過 3％。 

 

更進一步，我們研究了社會意見對我們表達產品意見的影響。該

問題的假設是多次顯示我們表達的意見並不完全獨立於我們的

社交圈，而是通過校準，使之跟社會意見相似。為了理解這一現

iii



象，我們為用戶的評分提出了一個新型的模型。該模型中，用戶

對項目的評分是由社會輿論、用戶的偏好和項目特點的一個函數。

該模型可以提高用戶評分的預測準確率達 2%。此外，模型中學

習到的參數可展示用戶對社會意見的遵循程度。用戶對社會意見

的遵循分析表明，超過 76％的用戶傾向於在一定程度上遵循他

們好友的意見。平均而言，當社會影響存在的時候，用戶評分更

趨於正面。我們還發現，社會的遵循者通常不是信息傳播的第一

次參與者。 
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Chapter 1

Introduction

Social networks are the graphs of individuals and relationships
between them, where a relationship could be friend, colleague,
follower, family, etc. The interactions in these networks, play
a fundamental role in spreading information, ideas and tech-
nologies among their members. Often the decision to adapt a
product is influenced by one’s social connections. Such effects
have been observed in many cases, when an idea or action gains
sudden widespread popularity through word-of-mouth or “viral
marketing” [22] effects. To name an example from recent past,
Googles Gmail achieved wide usage largely through referrals,
rather than direct advertising.

Study of social networks is not new and has a long history in
social sciences. They have helped in identifying patterns in so-
cial networks like Milgram’s famous 6-degrees of separation[68],
Dunbar’s threshold on the size of the well functioning commu-
nity [23] etc. However, these studies were usually restricted to
small sized network and the information flow was studied for
one product or technology. Recently the popularity of online
social networks has opened the possibility of studying the large
scale social networks. Courtesy to the online networks, now we
know that the social networks have small diameter, and most of
the individuals have few connections but few nodes have unusu-
ally high number of connections. In fact, we know the precise
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CHAPTER 1. INTRODUCTION 2

shape of the degree distribution which is power-law [14]. We
are also convinced that the large scale networks have a complex
structure with no clear hierarchy and they are most likely struc-
tured in a core-periphery (or jelly-fish) kind of structure [61].
Researchers are also been able to propose generators which can
generate networks with such properties [56].

However, peer influence in social networks is still a mystery.
We know that the probability of a user to join a group or buy
a product increases as a function of number of friends, and
stronger ties play more important role in adoption of product or
technology. But quantifying the social influence is not always an
easy task. In most of the social networks, it is hard to directly
observe the path of information flow; the only observable traces
are the actions taken by individuals. In other words, we only
know that a user has taken an action (or bought a product) but
we do not know, who has influenced his/her decision. In case,
multiple friends have affected the decision, then how to quantify
the influence of each of his/her friend?

Recent research works have made progress in defining models
to mimic the flow of information because of social influence and
need for social conformity. These models have been employed for
both inferring the pair-wise influence from the action logs, and
for identifying the seed nodes for the viral marketing campaign.
However, the efforts are required, not only to develop accurate
models and efficient algorithms to solve these problems, but also
to answer the following.

• How can we differentiate the social influence from homophily
or external factors?

• How does the influence of a user varies with time?

• Does the influence depends on the topic?

• How does the polarity of opinion affect the product adop-
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tion?

• Can social opinions also affect the user posterior evalua-
tion of the product, i.e., the opinion the user form after
experiencing the product?

These are some of the daunting questions and in this thesis,
we set ourself with the goal to answer the latter two questions.
We study the impact of social opinions in shaping both our pur-
chase decisions and our experience. While on one hand, we are
encouraged (discouraged) to adopt a product upon hearing the
positive (negative) opinions; on the other hand, our opinions
tend to conform to our social circle. Both of the studies are
vital, not just from the point of curiosity, but are also vital in
making precise product recommendations, accurately predict-
ing the information flow pathways and launching efficient viral
marketing campaigns.

1.1 Contributions

The main contributions of this thesis include:

• Impact of Polarity of Opinions on Products’ Adop-
tion Probability [31]

– Taking examples of two real world social rating net-
works Flixster and Epinions, we observe that presence
of negative opinions reduces the product adoption prob-
ability from 10% to 7% for Flixster and from 6% to 1%
for Epinions dataset.

– Motivated by above observation, we propose a gener-
alize information propagation model which explicitly
models the social influence as a latent state variable,
while the observed state of the users are defined in
terms of this latent state and the quality of product.
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– To find the social influence, we propose polarity sensi-
tive extensions of state of art social influence functions.
The usefulness of the proposed model and polarity sen-
sitive influence functions, are demonstrated by predict-
ing the future users’ opinions using them. The predic-
tion accuracy improves by more than 3% on Flixster
and 5% on Epinions datasets.

• Impact of Social Opinions on Posterior Evaluation
of Products [30]

– We propose a novel formulation for user ratings that ex-
plicitly considers the users’ social conformity as model
parameters. The proposed formulation improves the
predict accuracy of users’ ratings by more than 2% in
presence of social influence on Goodreads.

– The learned social conformity parameters are also veri-
fied by qualitatively comparing the discovered most in-
fluential users with the authoritative and most socially
active users.

– Based on the learned users’ degree of conformity, we
find various interesting patterns on Goodreads that un-
derline the impact of social conformity. To our surprise,
the results indicate that approximately 76% socially
active users tend to conform to their friends to some
degree. We also find that social opinions make the user
ratings more positive than negative.

1.2 Organization

The report is organized as follows:

• Chapter 2
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This chapter provides a background on social networks and
detailed survey of research progress made in developing the
information flow models, in estimation of social influence
and in maximizing the social influence. We also list the
key observations from the empirical studies of the real social
networks.

• Chapter 3

This chapter studies the impact of polarity of social opin-
ions on product’s adoption probability. We study the in-
formation propagation patterns on real world dataset and
based on the observations, we develop a generic frame-
work that explicitly accounts for the asymmetry between
the positive and negative opinions. The proposed frame-
work is throughly studied on both synthetic and real world
datasets.

• Chapter 4

We propose a novel rating formulation that explicitly mod-
els the role of social conformity on users’ product ratings.
The usefulness of the proposed formulation is demonstrated
by assessing its recommendation accuracy on a large scale
dataset. The learned parameters are then used, to explore
the nature of social conformity.

• Chapter 5

The last chapter summarizes the thesis and provides po-
tential future research directions.

� End of chapter.



Chapter 2

Background & Survey

In this chapter, we review the research progress made in under-
standing both the social network structure and the information
flow in social networks. For both, we first present their char-
acteristic properties and then present the models to generate
them.

2.1 Network Structure

Social network is represented with a graph G = (V,E) where
every node v ∈ V corresponds to an individual in the social net-
work and an edge (u, v) ∈ E represents the relationship between
nodes u and v. The size of vertex set V is represented by n. In
this section, we will first present the key structural properties of
social networks and then we will briefly review the models that
can generate networks with such properties.

2.1.1 Basic Definitions

Here we define the terminology related to network structures
which we will be using throughout the thesis.

Directed and undirected graph: A graph is undirected if
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CHAPTER 2. BACKGROUND & SURVEY 7

(u, v) ∈ E =⇒ (v, u) ∈ E, i.e., edges are unordered pairs of
nodes. If pairs of nodes are ordered, i.e., edges have direction,
then the graph is directed.

Subgraph: A subgraph Gs = (Vs, Es) of a graph G = (V,E) is
a graph whose vertex set Vs ⊂ V and edges among them Es are
subset of E.

Node degree: A node has degree d if it has d incident edges.
For directed graphs we define out-degree, which is the number
of edges pointing out from the node. Similarly, in-degree de-
notes the number of edges pointing to the node. For undirected
graphs, out-degree is same as in-degree and is equal to the num-
ber of edges the node participates in.

Network Diameter: A graph has diameter o if every pair
of nodes can be connected by a path of length at most o.

Triad: A triad or a triangle is a triplet of connected nodes
(u, v, w) such that (u, v), (v, w), (w, u) ∈ E.

Connected component: A connected component is the max-
imal set of nodes such that there exists a path connecting every
pair of the nodes in the set. For directed graph, one can de-
fine the weakly connected components and strongly connected
components depending on the nature of connectivity between
the nodes. The component is weakly connected if there exists
an undirected path connecting every pair of nodes. While it is
strongly connected is there exists a directed path between every
pair of nodes.
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2.1.2 Structural Properties of Social Networks

Research over the past few years has identified a number of
properties that can be found in many real-world networks from
various domains. While many patterns have been discovered,
the principal ones are following.

1. Degree distributions. The degree distribution of many
real world networks such as phone call graphs [71], citation
graph [77], Epinions social graph [14], have been found to
follow the power law distribution. If the number of nodes
of degree d is denoted by nd, then according to power law

nd ∝ d−γ s.t. γ > 1, (2.1)

where γ is called the power law degree exponent. That
is, few nodes in the network have exceptionally high node
degree while there are a large number of nodes with small
degree. Networks with power law degree distributions, are
also often refereed as scale-free networks. The name fol-
lows from the scale invariance property of power laws. The
scale-free property implies that given a relation f(x) = axγ,
scaling the argument x by a constant factor c causes only
a proportionate scaling of the function itself. That is,

f(cx) = a(cx)γ = cγf(x) ∝ f(x). (2.2)

This behavior is what produces a linear relationship when
logarithms are taken of both f(x) and x. That is why, most
commonly γ is estimated by fitting a straight line on the
log-log axis and setting γ as the slope of the line. Unfor-
tunately this method shows some bias because it violates
the independence and Gaussian noise assumption of least
squares linear regression [73]. One can get better estimate,
by fitting a straight line on a log-log plot of the cumulative
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conditional distribution function (CCDF) which is more ro-
bust to the fluctuations due to the finite sample size [19].
Recently the Maximum Likelihood Estimates [19] are used
for getting an unbiased estimation of γ. Based on the ob-
served sample, γ is estimated as:

γ̂ = 1 + k
( k∑

i=1

log
xi
xmin

)−1

, (2.3)

where xi are observed values of x such that xi ≥ xmin ∀i
and k is the number of observations. For most real world
datasets, the degree exponent γ typically takes values 2 <
γ < 3.

2. Small diameter. Most real-world networks have very
small diameter. This observation is also known by the
“small-world” or “six degrees of separation” phrases. To
measure the diameter of any network, we do not use the
shortest distance between every pairs of nodes because this
measure is very sensitive to outliers. More robust measures
such as effective diameter [86] are used. The integer effec-
tive diameter is the smallest number of hops at which at
least 90% of all connected pairs of nodes can be reached.

Calculating the effective diameter is very expensive for large
networks at it takes O(n3) time. One possible way is sam-
pling, i.e., sample pair of nodes in the network and calculate
the length of the shortest paths between them. Another
possible approach is by using an approximation algorithm
ANF [75] that is based on fast approximate counting and
hashing.

The effective diameter is found to be small for many real-
world social graph. The effective diameter was found to 6.6
for MSN [57] and ≈4 in Twitter [52]. Milgram [68] found
that when subjects of his experiments are asked to route
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their letters to a lawyer in Boston only via their first-name
acquaintance, then they were able to find paths with aver-
age length 6. That is, real social networks not only exhibit
small diameter but they are also “navigable”, where uses
are able to find paths just based on their local information.

3. Edge locality. Most of the edges in social networks are
local, i.e., it is highly likely that friend of a friend is also
my friend. This transitivity between the relations (edges) is
measured in terms of the clustering coefficient. The cluster-
ing coefficient cv of a node v with degree d, is defined as the
fraction of triads centered at node v among the d(d− 1)/2
triangles that could possibly exist. The clustering coeffi-
cient of the global network c is then defined as the average
cv over all nodes v and the clustering coefficient cd is defined
as the average of cv over all nodes v with degree d.

The cluster coefficient c of the real social network is found
to be significantly higher than for random networks [76].
Further, it has been observed that that cd scales as power
law, i.e., cd ∝ d−1. This observation has been used as an
indication of the existence of hierarchical network structure
[76]. The idea is that the low-degree nodes belong to very
dense sub-graphs and those sub-graphs are connected to
each other through hubs, which have high degree.

4. Community Structure. Social networks are naturally
composed of large number of overlapping communities, where
a community is a set of nodes that have more or closer
connections among its members than to nodes outside the
community. Mathematically, the goodness of any commu-
nity Vs ⊂ V is measured in terms of conductance. The
conductance is defined as the fraction of number of edges
between the nodes in Vs to the number of edges whose one
endpoint is in Vs and other endpoint is in V − Vs.
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Many work suggest the existence of a hierarchical structure
[74] in communities, where bigger communities can be re-
cursively split into smaller and smaller communities. Con-
trary to this, the existence of core-periphery structure has
been suggested recently. Core-periphery structures, also go
by the name of jellyfish or octopus structures, are com-
posed of a large and densely linked core and a periphery.
The nodes in the periphery are not connected among them-
selves and point towards the core. Thus, it is easier to cut
periphery nodes from the rest of the network. While the
core is very densely connected and is very hard to cut. Ex-
istence of such recursive core-periphery structure has been
observed over many social networks like Flickr, Livejournal
[61].

Further, it has been observed that the size of good com-
munities is approximately 100. As the communities start
to grow bigger, they start to gradually “blend in” with the
rest of the network. This limit of community size is ap-
proximately same as Dunbar number [23] which is equal
to 150 and indicates the upper limit on the size of a well-
functioning human community.

Apart from above patterns, two key patterns have recently
emerged as graphs evolve over time.

5. Network densification. Most of the networks evolve over
the time as the nodes join and leave the network. It has
been found that, many real networks such as paper citation
and patent citation networks become denser as they evolve
over the time [58]. That is, as a social network grows, the
ratio of number of edges to number of nodes increases. Fur-
ther, the densification has been found of follow the power
law. At any time t, if the number of nodes are denoted by
N(t) and the number of edges in the network by E(t), then
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according to densification power law, E(t) ∝ N(t)α. The
densification exponent α has been observed to be greater
than 1 for several real networks. This implies the real net-
works tend to have many more edges than nodes, and thus
densify as they grow.

6. Shrinking diameter. It has been found that the effective
diameter of many real world graphs tend to shrink (or/and
stabilize) as they grow over the time [58]. That is, as the
time passes the nodes become closer to each other in space.
This property is not the direct result of densification but is
caused by the the way the degree sequence evolves over the
time.

In addition to above, several other properties have been found
in social networks. For example, the real-networks have been
found to be resilient [2] under the random node attacks. That
is network’s connectivity remains almost unaffected if one ran-
domly removes nodes from the network. It has also been found
that the scree plot obeys the power law distribution [27].

2.1.3 Network Generators

In parallel with empirical studies of large networks, there has
been considerable work done to develop models for graph gen-
eration. The main motivation behind developing these graph
generators is to gain better understanding of the networks, to
measure the graph similarity and to be able to generate the syn-
thetic data which can be used later for developing and testing
new algorithms. Following are one of the most popular graph
generators.

Random Graph Model. The earliest probabilistic genera-
tive model for graphs is a random graph model [25]. The model
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works by creating an edge between every pair of nodes with equal
prior probability. Though this model has been used to develop
a number of mathematical theories, it does not produce prop-
erties observed in the real networks. For example, the degree
distribution in the random graph follows the Binomial distri-
bution instead of the power law. Its diameter increases as the
number of nodes increases in the network, which is contrary to
the shrinking diameter property of social networks.

Small World Model. This family of models generate net-
works with small diameter and with local structures. In the
small-world model [88], nodes are present in a ring structure.
The local edges are created by adding edges between two hop
away neighbors. To create the long range edges, some of the local
edges are chosen with a fixed probability p, and their endpoints
are changed such that they point to some randomly selected
node in the network. Thus, when p = 0, this model generates
very regular structures and when p = 1, it is equivalent to ran-
dom network. That is, as p increases, both clustering coefficient
and diameter of the network become smaller.

Related to the small-world models are the “navigable” net-
work models [47]. These models strive to create networks which
respect the navigable property of social networks. The naviga-
ble model assumes that nodes are present in a 2-dimensional
lattice structure. Additional links are then created based on the
distance between the two nodes. If the distance between the
nodes u and v is dist(u, v) then probability of creating an edge
between them is set proportional to dist(u, v)−β. For β = 2, the
expected path length in the network O(log(n)).

Hierarchical based network based models have also been pro-
posed to achieve the same effect [46]. In these models, nodes
are considered to reside in a hierarchy for example hierarchy
based on persons’ profession. Then, long range links between
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two nodes u and v are created based on the height of their least
common ancestor. These networks also generate paths with ex-
pected length O(log(n)). This hierarchical model has also been
extended to case where every node belongs to multiple hierar-
chies e.g. profession, location [87]. In this model, the letters are
routed via neighbors who are closest in any of the hierarchies.

Preferential Attachment. The discovery of degree power
laws have led to the development of random graph models that
exhibited such degree distributions, including the family of mod-
els based on preferential attachment [5]. According to these
models, nodes join the network one after the other and when a
node joins the network, it creates fixed number of the edges in
the network. However, the edges are not created uniformly at
random, but are created “preferentially”. The probability that
a newly arriving node creates an edge with an already existing
node v is proportional to the degree of node v. This preferen-
tial attachment is also referred to as “rich getting richer” phe-
nomenon or “cumulative advantage”. This model generates the
networks with power law degree distribution.

Several variants of preferential attachment have also been
proposed to incorporate the node fitness [26], geography infor-
mation [28] etc. The fitness of a node is its intrinsic ability
to gather links in the network. The most fit node is able to at-
tract more edges in comparison to the nodes with smaller fitness
value. Fitness is modeled by using a fixed parameter per node
and probability of new edge to any node is set proportional to its
degree and its fitness parameter value. Geography information
is also used to improve the models, where the intuition is that
the probability of linking to node v is higher, if the node v is
geographically closer. Here, a node preferentially creates edges
to those nodes that belong to its local neighborhood.



CHAPTER 2. BACKGROUND & SURVEY 15

Copying Model. Another set of models which generate the
power law degree distribution are the copying model [48] and
forest fire model [59]. According to the copying model, nodes
arrive one at a time. When a new node joins the network, it
randomly selects a node v and then either copies all its edges
or creates random edges. The edges of v are copied by creating
edges to all the neighbors of v. If β represents the probability of
copying the edges then this model generates power law degree
distribution with exponent γ = 1/(1− β).

However, the diameter of the networks generated by the copy-
ing model increases as the graph evolve. This observation has
lead to the development of forest fire model [59]. According to
forest fire model, when a node joins the network, it first ran-
domly selects a node v. Then, it randomly selects edges of v
with a fixed probability and copy or burn them. The edges go-
ing out of the end points of the burnt edges are burned in the
next step. The process continues until no more edges are se-
lected for burning. Thus, burning of edges starts at node v and
spreads like a fire in the forest.

Affiliation Networks. The underlying idea behind the affilia-
tion network model [53] is that in social networks, there are two
types of entities - individuals and societies. Individuals belongs
to multiple societies by affiliation such as a particular football
club, same location. This relation between the individuals and
societies can be structurally viewed as a bipartite graph. The
social network can then be generated by creating relations be-
tween the nodes with common affiliations. If the bipartite graph
is generated as the scale-free bipartite graph then the generated
social network has power law degree distribution. Further, it
preserves local structure and respects the evolving graph prop-
erties such as shrinking diameter and densification.
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Self-Replicating Networks. The key idea behind the self-
replication models is to recursively produce networks with self-
similarity. One such type of the model is the Kronecker network
[56] which uses the Kronecker product recursively to replicate
the self-similar structure. The basic structure is represented by
a matrix K1. A 2-dimensional matrix K1 = [a b; c d] represents
the edge density within and in-between the two components. a

and d represent density of edges within the components 1 and 2
respectively. While b and c represent the density of edges in be-
tween the two components. If a is high and d is very small, then
the recursive Kronecker product of K1 produces networks with
core-periphery structure. Further, it displays most of the struc-
tural properties of the real social networks such as power law
degree distribution, small diameter, densification and shrinking
diameter. Since this model is a parametric model with K1 as its
parameter, it can be fit over any real network data to generate
the network signature.

The properties of above generators are summarized in Table 2.1.
For further reading on the graph laws and generators, we refer
readers to a detailed survey in [13].

2.2 Information Diffusion in Social Networks

There are many situations when people’s decision making pro-
cess is influenced by other’s behavior and decisions, for exam-
ple, their product purchase decisions, their political opinions,
their interests, their usage of a particular technology. This so-
cial influence sometimes gives rise to a network wide diffusion
of information. Thus, the study of social influence is important
from two point of views. One view is to understand the guiding
principles behind individual’s decision making process. Another
view is the micro level view and look at the population-wide
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effect produced by every individual actions.
Even though, the information diffusion has been studied for

many years by sociologists, most of the empirical studies are
carried out on small sized datasets and usually in restrictive en-
vironments. However, with the advent of internet age, a number
of online social networks have become popular recently and thus
a large volume of data related to information cascades have been
made available. Most of the online social networking sites work
by letting their users to perform some actions or express their
opinions/ideas. These actions or opinions or ideas are then made
visible to users’ friends/peers in the network. Twitter, Flixster,
Goodreads, Facebook are few examples of popular online social
networks. Twitter is a micro-blogging site where users can ex-
press ideas/information in 140 text characters. On Flixster and
Goodreads users can rate movies and books online and share
their reviews with their friends. While Facebook is a general
social networking site where users can share pictures, videos,
message, blogs with their friends.

The main interest here is to under some of basic princi-
ples which govern individual’s decision making process and then
leverage them to achieve or observe some of the aggregate effect
in the network, for example, to launch effective viral marketing
campaign and to accurately detect a new event. Next, we in-
troduce basic terminologies related to information diffusion in
social networks and then list the key understanding of social
influence among the researchers. The models developed for in-
formation diffusion based on these patterns, are discussed next
in Section 2.2.3. The related topic of estimation of social influ-
ence in the network is then taken in Section 2.2.4. One of the
main application of social influence analysis, viral marketing is
then discussed in depth in Section 2.2.5. It is important that
we do not confuse the social influence from homophily and this
is a topic of discussion in Section 2.2.6.
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2.2.1 Basic Terminologies

Here we define some of the basic terminologies that will be used
throughout this thesis.

Social Influence. The term social influence refers to the phe-
nomenon where individual adopts a product because of the ac-
tions taken by others. Social influence is known by different
terms like conformity, peer pressure etc. In general individu-
als’ decisions can be classified as rational or irrational decisions.
However, many times it is not easy to tell them apart.

Information Cascade. Information cascade of a product, is
the process where the product is adopted by the individuals in
the network because of social influence.

Early adopter. An early adopter is an user who adopts the
product in early stages of its information cascade. This person
is also referred to as a trend-setter.

Homophily. Homophily is the tendency of individuals to make
friends or associate with people who are similar to them. This
principle explains why our friends do not look like a random
sample of population, but are similar to us in terms of age, race,
geographic locations, interests. This behavior is often captured
by “birds of a feather flock together” saying.

2.2.2 Principles governing the Decision-Making

process

A large number of social studies have established the basic prin-
ciples that have been used to model the decision making process
of individuals in the social networks. Following are the key prin-
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ciples found by the diffusion of innovation work.

• Informational Effect. Many times individuals derive in-
direct information by observing the actions taken by others.
This derived information then lead them to take the simi-
lar actions regardless of their prior opinion. This is known
as informational effect. For example, consider a scenario
where you have to chose to dine in a new town and based
on your research, you find restaurant A is better than B.
However, when you reach there, you find that no one is eat-
ing in the restaurant A and there is a long queue outside the
restaurant B. Then, if you believe that other people also
have similar taste as yours then you might decide to join
the crowd and go to restaurant B. Under the informational
effect principle, your decision is seen as a rational decision
if everyone is assumed to have independent but imperfect
information about the two restaurants [24].

• Direct Benefit Effect. Contrary to information effect is
the direct benefit effect, where people get a direct payoff
by copying others’ actions. For example, consider a choice
to join a social network. Your utility is directly depended
on the number of friends who have already joined a partic-
ular network. Further, every time another friend joins the
network, you get a direct payoff.

• Bandwagon Effect. According to the bandwagon effect,
as the number of individuals who believe in something in-
creases, others tend to disregards their own opinions and
also “hop on the bandwagon” [32]. That is, tendency to fol-
low others opinions is directly proportional to the number
of individuals holding the same opinion. Both the direct-
benefit and informational effect produce the bandwagon ef-
fect. In case of direct-benefit effect, as the number of friends
adopting a product increases, you get a direct benefit from
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that product. While in case of information effect, your be-
lieve in the goodness of a product will increase if lots of
people are adopting.

• Strength of Ties. The interpersonal ties between the in-
dividuals are generally classified as: strong ties and weak
ties. The weak ties act as bridges between the tightly knit-
ted communities and are responsible for spreading the in-
formation about a product across the network. On the
other hands, the actions taken by strong ties (family and
close friends) build more trust in a product and thus reduce
the resistance or threshold of the user to take an action.
Thus, weak ties help in spreading a word about the prod-
uct but the probability of buying the product increases if
your strong ties also buy the product.

Brown et al. [10] interviewed the families of students being
instructed by three piano teachers, in order to find out the
network of referrals. They found that strong ties, those
between family or friends, were more likely to be activated
for information flow and were also more influential than
weak ties between acquaintances.

2.2.3 Information Cascade Models

Based on the above principles, several information cascade mod-
els have been proposed to mimic the way information flows in
the social networks. The different models with their key charac-
teristics are show in Figure 2.1. Next we will describe each one
of them in details.

Direct-benefit Effect Models. Networks based on the direct-
benefit effect are usually modeled using the coordinated games
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Figure 2.1: Information flow models

[69]. Each node in the network has the choice between two pos-
sible behaviors, A and B. If two nodes u and v are linked in the
network then they gain direct incentive by adopting the similar
behavior. The payoffs are then defined as follows

v
A B

u
A a,a 0,0
B 0,0 b,b

where a and b are positive payoffs. Thus if p fraction of u’s
neighbors adopt A and rest of them adopt B, then u will get a
payoff of p ·a by adopting behavior A while a payoff of (1−p) · b
by adopting B. Thus, A will be a better choice if p ≥ a/(a+ b).
This basic model has been extended to account for the differ-
ent payoffs for each users and to consider the user resistance
to adopt any behavior. This resistance is modeled by setting a
threshold parameter for each node. In such setting, a behavior is
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adopted only when p is greater than the node’s threshold. The
node threshold can be imagined to be small among the early
adopters.

Informational Effect Models. These models consider a sit-
uation where nodes make decisions sequentially one after the
other and these decisions can be seen by other nodes in the net-
work [24]. Every node u has a prior belief about a behavior
and as it observes the actions of others, it derives the informa-
tion from it and revise its belief. It is assumed that the node
u does not know prior belief of other nodes. In the example of
selection between the two restaurants A and B, the two choices
can be seen as two opposing behaviors, where selection of one
implies the rejection of the other. If the belief of the node u in
the goodness of restaurant A is denoted by probability pu then
the goodness of restaurant B can be written as (1 − pu). Let
us assume that the probability of a node to visit a restaurant
given it is good, is q s.t. q > 1/2. According to the information
effect, when the node u observes that other node v has visited
the restaurant B, then it revises its estimation based on its prior
belief (recall that u does not know the prior belief of node v).
According to the Bayes theorem,

p(A is good|v choses B) =
P (A is good)p(v choses B|A is good)

p(v choses B)

=
pu(1− q)

pu(1− q) + (1− pu)q

≤ pu(1− q)
pu(1− q) + (1− pu)(1− q)

∵ q > 1/2

= pu.

(2.4)

Thus, the initial belief of the node u in A reduces. Similarly,
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we can see that the user’s belief in goodness of B increases when
it observes the other node v has visited the restaurant B.

p(B is good|v choses B) =
P (B is good)p(v choses B|B is good)

p(v choses B)

=
(1− pu)q

pu(1− q) + (1− pu)q

≥ (1− pu)q
puq + (1− pu)q

∵ q > 1/2

= (1− pu).
(2.5)

It is important to note that cascades generated under this
model can lead to wrong cascades, where the wrong selection of
behavior by initial nodes can lead to future wrong choices. This
can happen when every node has a different prior information.
If every node in the network makes decision independently based
only on its prior belief then on an average they will make the cor-
rect decision. However, the wrong decision of initial nodes and
informational effect can lead to lots of wrong choices. This effect
is many times exploited by marketers where they distribute free
samples of a new product to few people for adoption. By seeing
them, others in the network can also adopt the product, even
though the new product is not better than the existing ones.
This kind of strategy works best when people can see the adop-
tion behavior but not how satisfied they are. If the reviews from
previous customers are known then such kind of wrong cascades
can be prevented.

Probabilistic Social Influence Models. The models in this
category do not explicitly model the reason behind a persons’
decision, but consider all different types of social influence by
directly modeling the bandwagon effect. These models consider
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the adoption of a product as a step-wise process. The social
influence of nodes who have already adopted the product, influ-
ence the new nodes to adopt the product in the next time step.
Thus, the dynamics of every information cascade in considered
to unfold in discrete steps. The nodes who adopt the prod-
uct are called the active nodes. Initially, at time t = 0, few seed
nodes are active. Influence of these seed nodes can activate their
neighbors at t = 1 and the influence of newly activated nodes
can activate their neighbors in next time step. Thus, the pro-
cess of activation continues until there are no new activations.
These kind of models can be broadly divided in two categories
- the Independent Cascade and the Linear Threshold models.

• Independent Cascade model (IC). According to this
model, as soon as a node v becomes active, it takes a single
chance to activate its inactive neighbor u. If it succeeds
then the node u becomes active else it remains inactive.
Thus every time a neighbor of u purchases a product, there
is a chance that u will also decide to purchase the product.
Specifically, every directed edge (u, v) in the network is as-
sociated with a fixed probability pv,u which indicates the
influence of node v on the node u. Larger the value of pv,u,
stronger is the strength of influence of v on u. When the
node u becomes active at time t then it flips a biased coin
with head probability pv,u, if the outcome is head then the
edge (v, u) is considered an active edge. Note that the direc-
tion of active edges or influence is opposite of the original
edges.

Thus, the node u becomes active in the next time step (t+1)
if it has at least one active edge incident on it. Formally,
given the set of neighbors A(u) of the node u that got
activated at time t, the node u’s probability of activation
can be written as



CHAPTER 2. BACKGROUND & SURVEY 26

(a) Influence Probabilities (b) t=0

(c) t=1 (d) t=2

Figure 2.2: An example of IC cascades.

1−
∏

v∈A(u)

(1− pv,u). (2.6)

Figure 2.2 shows an example of a network with six nodes
and how information flows in it under the IC model. The
influence probabilities are indicated next to the correspond-
ing edges. At any time, the nodes activated in that time
step are indicated by the black circles and the nodes ac-
tivated before that are shown by gray circles. Initially, at
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time t = 0 only node u5 is active. It flips the coins for its
all outgoing edges according to the edge influence probabil-
ities and since the outcome for edges (u5, u2) and (u5, u3) is
head, the nodes u2 and u3 become active at t = 1. While
the node u6 remains inactive. After t = 0 the node u5 is not
given any chance to active any other nodes. At time t = 1,
both the newly active nodes u2 and u3 are successfully able
to activate the node u1. Node u3 tries to activate the node
u6 but fails. Thus, u6 continues to remain inactive. Infor-
mation propagation stops at time t = 2, when only active
node u1 fails to activate u4.

• Linear Threshold model (LT). In LT model, a node
becomes active when sufficient number of its friends have
become active. Specifically, every node u in the network is
associated with a threshold θu ∈ [0, 1]. This threshold indi-
cates the resistance of the user u to adopt a new product.
The larger the value of θu, larger amount of social influence
is required to convince the user about the product. The
social influence of neighbor v on the node u is denoted by
weight wv,u, such that

∑
(u,v)∈E wv,u ≤ 1. When the sum of

social influence weights of the active neighbors of the node
u exceeds its threshold, the node becomes active. Formally,
given a set of all active neighbors A(u) of the node u, the
node becomes active when

θu ≤
∑
v∈A(u)

wv,u. (2.7)

An example of how information cascade unfolds under the
LT model is shown in Figure 2.3. In this example, there are
six nodes which are connected to each other via directed
edges. The threshold of each node is indicated along with
its label and the influence weights are indicated next to
the corresponding edges. All the active nodes are shown
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(a) Influence Weights (b) t=0

(c) t=1 (d) t=2

Figure 2.3: An example of LT cascades.

by the black circle. The information cascade starts from
the node u5, which is able to influence the node u2 and
u3 as their internal thresholds are less than the influence
weights. These nodes also become active in time step t = 1.
The combined influence of the node u5 and u3 are able to
activate the node u6 in step t = 2. It should be noted that
the node u5 failed to activate the node u6 in step t = 1
because the influence weight was less than 0.4.

The two models have been generalized to model the complex
decision functions [45].
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Information Flow in presence of Competition. Both the
IC and LT models have been extended for the situations where
instead of one product, multiple products compete in the net-
work for adoption. Like in case of the single product, the cas-
cade unfolds in discrete steps and every node is either in active
or inactive state. Additionally, every active node also has a
color associated with it which denotes the product the node has
adopted. Thus, initially only few seed nodes are active with
specific color. The activation processes of new nodes is then
modeled by following models.

• IC-Based Model. Like the IC based model, as soon as
a node v becomes active in the network, it flips coins with
head probability pv,u to activate its neighbors u. It the out-
come is head then the node u becomes active in the next
time step. Further, the color of v is also copied to the
node u. However, the problem arises when more than one
neighbor with different colors, try to activate their common
neighbor u at the same time t. If they all get the coin flip
outcome as head, then it is not clear which color should be
copied to node u. To resolve this situation, one of the active
edge is considered (at random) as the influencing edge and
the color of its node is copied to the node u [7]. This model
has been used to study the second-mover strategy where
given the competitor’s choice of early adopters for product
B, the task is to select a set of early adopters for the prod-
uct A, such that the expected spread of the product A can
be maximized.

• LT-Based Model. LT model has been naturally extended
to handle the competitive product adoption scenario [8].
The weight-proportional model considers that a node u be-
comes active if the sum of weights from neighbors exceeds
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its threshold. However, the color of the node u is decided
based on the relative weight of the social influence of each
color. Thus, the probability of node u selecting the color A
is proportional to the sum of the weights of neighbors with
color A. In the separated-threshold model, every node has
separate internal threshold for different products. If the
sum of weights from neighbors with the color A, exceeds
the corresponding threshold of u, then u becomes active
with color A. In case, more than one color is able to acti-
vate the node, then the ties are broken at broken. The or
model is a theoretical model which first assumes that each
color diffuses in the network unhindered from the compet-
ing color. Then, once the information cascades for all the
colors stop, a tie-breaking stage takes place where the col-
ors of the active nodes are decided. If a node is active
with more than one color, then its final color is selected by
randomly picking from the active colors set.

Information Flow in presence of Negative Opinions. All
of the above models assume that people can observe just the
adoption decision of others. However, in many real world situa-
tions, we not only know the adoption decision of others but also
their experience with the product. Further, in most of the cases,
the negative opinions do not exist in the beginning but they arise
as the information cascade unfolds and people try the product.
In such situations, it is important to consider the emergence and
propagation of polarity of opinions. Among the few works done
in this direction is by Ma et al. [65] and Chen et al. [15]. How-
ever, the former work assumes that both kinds of opinions exist
from the beginning, thus is closer to the competitive scenario
where two opinions compete with each other.

Recently, the IC model has been extended to model the emer-
gence and propagation of negative opinions. This model is been
referred as IC-N (IC model when Negative opinions may emerge)
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[15]. The motivating scenario for IC-N is the restaurant’s review,
where people decide to dine in a new restaurant based on their
friends’ reviews. If the reviews are positive then they decide to
try that restaurant and based on their experience, they will ei-
ther hold a positive opinion or negative opinion. However, if the
friends’ reviews have extremely negative and surprising voice to
it, then they may decide not to go to the restaurant. For ex-
ample, if a review says “I found cockroach in my meal.”, then
you surely will not go to that restaurant and in turn tell your
friends, not to try it. Thus, the negative opinions will emerge
from the product faults and will spread virally in the network.
Specifically, the IC-N model associates a quality factor q with
every product, where a high value of indicates that the product
has a very good quality. Every node v in the network influence
its neighbor u with probability pv,u,+ when it is positively opin-
ionated. The influence probability is pv,u,− when the node v is
negatively opinionated. The information cascade starts with few
seed nodes as active nodes, who choses their opinion as positive
with probability q or become negative with probability (1− q).
Then like the IC-model, they try to activate their neighbors u
according to the influence probabilities. If there are more than
one active edge on the node u, one of them is chosen as influenc-
ing node and its opinion is considered as the influencing opinion.
If the influencing opinion is negative, then it is directly copied
to the node u. However, if it is positive, then the node u goes
and tries the product (restaurant in our example) and thus, be-
comes positive with probability q and negative with probability
1 − q. The newly active node influence their neighbors in the
next time step. Thus, the process of activation continues until
there are no new activations.

The decision making process of node u for different cases is
shown in Figure 2.4. There are five active neighbors, out of
them three are positively active and two are negatively active.
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(a) Case 1 (b) Case 2

(c) Case 3

Figure 2.4: Example of decision making process under the IC-N model.

In each case, every active node flips a coin according to edge
influence probabilities. The figure shows the different outcome
for different outcomes of coin flip. In case 1, when the attempts
of only positively active nodes are successful, the node becomes
positively active with probability q and negative with probability
(1−q). While in case 2, when only successful activation is by the
negatively active node, the influencing node becomes negative
with probability 1. The case 3 is tricky where two out of three
edges are positively active and one is negatively active. Since
the influencing opinion is found by breaking ties at random,
there is 1/3 probability that negative edge is chosen, in which
case the opinion is replicated by the influencing node. Thus,
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there is 1/3 probability that the node becomes negatively active.
However the influencing opinion is positive with 2/3 probability.
In this case, the node will be positive with probability q, thus
the overall probability of being positive is 2q/3 and probability
of being negative is 1/3 + 2/3(1− q).

There are a number of problems with this model. First it
assumes that the negative opinions flow virally in the network,
which could be true in case of extremely negative and shocking
news; but in most of cases negative opinions do not get echoed
by the others and stops the information diffusion. For example,
comments like “food was cold ”, are not likely to spread virally
in the network. Secondly, the propose model gives rise to a
complex inference problem. That is, if we try to estimate the
influence probabilities using this model, the resultant form is
very complex to solve. This problem arises even if we assume
that every active node v influences its neighbor with p+ when v
is positively opinionated and influence probability is p− when v
is negatively opinionated. In such case, the total probability of
a node u getting activated with positive opinion is

q

s+∑
s′+=1

s−∑
s′−=0

s′+
s′+ + s′−

(
s+

s′+

)(
s−
s′−

)
p
s′+
+ (1− p+)(s+−s′+)p

s′−
− (1− p−)(s−−s′−),

(2.8)

where s+ is total number of positive neighbors and s− is total
number of negative neighbors of the node u. The fraction term
which is the first component inside the sum, is the probability of
selection of positively active edge given s′+ edges are positively
active and s′− edges are negatively active. The rest of the term
corresponds to the probability of activation of s′+ out of s+ edges
from positive neighbors and the probability of activation of s′−
out of s− edges from negatively opinionated neighbors. The
complexity of this expression shows the difficulty involved in
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estimating the model parameters p+ and p−. We address both
of the above problems in Chapter 3.

2.2.4 Influence Estimation

All the information models proposed in the previous section,
have a set of parameters. Specifically the probabilistic models
have the probability/weight of social influence parameters for
every edge in the network. Usually, these parameters are chosen
to be some function of frequency and duration of interactions
and number of common attributes between two persons [90].
The following is the rational behind it: when two individuals
interact with each other more frequently and their interaction
duration is high, then it is highly likely that the two are close to
each other and hence the tie between them is strong. Another,
factor which is considered is number of interests and friends
the two persons share, because similar interests implies stronger
friendship. However, these heuristics do not have a principled
approach behind them and they often confuse the social influ-
ence with homophily (discussed in Section 2.2.6).

Another idea is to directly observe who influence whom in
the given social networks. However, such signals can never be
observed directly. Usually, the activities in any social network,
can be recorded at the node level, not at the edge level. For
example, it can be recorded when a user buy a product but not
whose recommendation has motivated the user. Further, many
times it is not just one friend who influence the user’s decisions.
In such cases, we need to find out the relative weight of influence
of each friends.

Recently few approaches have been proposed to estimate these
influence parameters using just the action log data. The action
log data contains the details of the time an action is taken (in
our case adopts a product) by a user. These logs do not have
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the information of who influenced the user to take the action.
Formally, if the set of information cascades is represented by C,
where every cascade c ∈ C represents the information cascade
for a particular product and Ac represents the the set of active
nodes in the cascade c. Then, the action log records the time tcu
when every user u ∈ Ac takes the action in the cascade c.

The key idea behind these influence estimation approaches
is following: If a user’s actions are frequently followed by the
actions’ of her friend, then it implies that the user has high in-
fluence on her friend. Most of the proposed approaches learn the
influence probabilities by maximizing the likelihood of observing
the action log. One notable exception is [29] where authors max-
imize the f-measure instead of the likelihood. The approaches
differ from each other in two ways: 1) The formulation of like-
lihood function and 2) the assumed information cascade model.
Following are the key approaches.

• IC-Based Approach. This is the first approach pro-
posed to learn the influence parameters from the action log.
The approach [80] assumes that the information propagates
strictly according to IC model and divides the likelihood of
observing an action log in three components, which are as
follows.

1. The conditional probability that the nodes u ∈ Ac get
activated at time tcu in a cascade c, given the set of
neighbors v activated at time tcv = tcu − 1.

2. The conditional probability that these active nodes u ∈
Ac do not get activated before time t < tcu, given the
set of neighbors v activated at time tcv = t− 1.

3. The conditional probability that the inactive nodes u 6∈
Ac do not get activated at any time step t, given the
set of neighbors v activated at time tcv = t− 1.
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Thus, the likelihood of an action log is written as,

L =
∏
c∈C

∏
u∈Ac

[(
1−

∏
(u,v)∈E;tcv=tcu−1

(1− pv,u)
)
·

∏
t<tcu

∏
(u,v)∈E;tcv=t−1

(1− pv,u)
]
·

∏
u 6∈Ac

∏
t

∏
(u,v)∈E;tcv=t−1

(1− pv,u), (2.9)

The expectation maximization (EM) algorithm is then used
for maximizing the likelihood function.

• IC with transmission delay. Unlike the above approach,
which strictly follows the IC model, approaches in this cat-
egory consider a variation of IC model which also accounts
for the transmission delays or incubation delays. The trans-
mission delay specifies the time between the time of influ-
ence and time of an action of a node. This delay occurs
because taking actions take time, for example to buy a
product or to write a review. Thus, for most real world
settings transmission delays can not be assumed to be zero.

The modified IC model works as following. When a node
v gets activated at time tu and it attempts to activate its
neighbors u. If the attempt is successful, then the node
u will become active at time tu + τu,v, where τu,v is the
transmission delay and is sampled from a transmission de-
lay model. Rest of the process of the information flow is
same as the IC model. The likelihood of observing the en-
tire action log (over various products) is then divided in
two components, which are as follows.

1. The conditional probability that the nodes u ∈ Ac get
activated at time tcu by its active neighbor v and selects
tcu − tcv as the transmission delay.
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2. The conditional probability that the inactive nodes u 6∈
Ac do not get activated at any time step t, given the
set of all active neighbors v.

ConNIe [70] assumes that all transmission delays are sam-
pled from a fixed transmission model and writes the likeli-
hood of the action log as,

L =
∏
c∈C

∏
u∈Ac

(
1−

∏
(u,v)∈E;tcv<t

c
u

(1− ẇ(tcu − tcv)pv,u)
)
·

∏
u 6∈Ac

∏
(u,v)∈E;v∈Ac

(
1− pv,u

)
, (2.10)

where ẇ(t) is the probability of selecting t as the trans-
mission delay. Note that above expression for likelihood
ignores the probability of the nodes not getting activated
before their recorded time of activation.

Since maximizing log of a function also maximizes the origi-
nal function, we maximize the log likelihood function. Thus,
we have the following optimization problem

maximize
∑
c∈C

∑
u∈Ac

γ̂cu +
∑
u6∈Ac

∑
(u,v)∈E;v∈Ac;

ˆ̄pv,u

subject to

ˆ̄pv,u ≤ 0,

γ̂cu ≤ 0,∑
(v,u)∈E;tcv<t

c
u

log(1− ẇ(tcu − tcv) + ẇ(tcu − tcv) exp ˆ̄pv,u)

≤ log(1− exp γ̂cu),

(2.11)

where γ̂cu = log(1 −
∏

(v,u)∈E;tcv<t
c
u
(1 − ẇ(tcu − tcv)pv,u) and

ˆ̄pv,u = log(1 − pv,u). Above optimization problem is a sep-
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arable convex optimization problem because the objective
function is linear and the last constraint is the sum of non-
linear functions who depend on only one variable (recall
ẇ(tcu − tcv) is a constant). Thus, it can be solved efficiently
using Mosek [1] and gives solution with global maximum.

ConNIe has been extended by considering different trans-
mission delays for every edge. NetRate [33] considers same
functional form for every edge but with different transmis-
sion rate parameter. These parameters are then learned
along with influence probabilities by maximizing the log
likelihood function. It has been shown that the optimiza-
tion problem is convex for the exponential, power-law and
Rayleigh transmission models.

Apart from above, many variations of the problem of influ-
ence probabilities, have also been explored. Gomez-Rodrigue et
al. [34] assume the same influence probability for every edge and
focus on learning the existence of influential edges in the net-
work. They exploit the sub-modularity property to efficiently
find the most likely spanning tree for each cascade. In [91], au-
thors consider the problem of finding the over all influence of the
nodes, instead of finding the edge-wise influence. They propose
an efficient method to estimate the influence of the nodes as the
function of time. Specifically, they assume that influence of any
node v as a long vector along the time axis, where every kth

entry indicates the expected number of nodes directly activated
by the node v at k time units passed the time of activation of the
node tv. Thus, this vector represents the influence of the node v
as the function of time. Then, the idea is to consider the number
of new activations in the network at any time t, to be the sum
of (t − tv)

th entries of influence vectors of all the active nodes
v. Thus, the nodes influence vectors are learned by minimizing
the square error between the actual number of new activations
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and the proposed functional form. The problem of learning the
topic-specific influence weights has also been considered [85].

Recently researchers have started questioning the above ap-
proaches because they attribute every activation to social influ-
ence. Many times correlation in time of actions can also result
from the homophily (similarity between ties) or from the exter-
nal factors [3]. Aral et al. [4] observe that ignoring these factors
results in 300-700% overestimation of social influence in Yahoo!
Go data. To add to complexity, Crandall et al. [20] observe a
feedback effect between the homphily and the social influence,
where social influence makes current friends more similar while
homophily results in creation of new ties.

2.2.5 Viral Marketing

Viral marketing is unanimously agreed key application of infor-
mation flow in social networks. It refers to a marketing tech-
nique that uses the social network connections to produce in-
crease in the brand awareness or to increase product sales. It
uses the self-replicating word-of-mouth publicity, which is anal-
ogous to the spread of viruses or computer viruses. The under-
lying goal of marketers is to identify individuals with high social
influence that can spread a word about the product such that
it reaches to many people. However, these individuals do not
always produce non-overlapping set of influenced nodes, thus it
is required to select these individuals such that the overlapping
can be minimized. Formally, this is formulated as the following
influence maximization problem [22].

Influence Maximization Problem. Given a directed and
edge-weighted social graph G, a propagation model m, and a
number k ≤ n, find a set S ⊆ V, |S| = k, such that the expected
number of active nodes at the end of the information diffusion
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Figure 2.5: Reduction of NP-complete Set Cover problem to Influence Max-
imization problem

process, denoted by σm(S), is maximum.

In general, the influence maximization problem is NP-hard
[45] and the reduction follows from the Set-cover problem. To
understand it, consider an instance of NP-complete set-cover
problem where U = {u1, u2, . . . , un} is the set of nodes and
S1, S2, . . . , Sm are the subsets of U and we want to find k sub-
sets such that they cover all nodes in U . This problem can
be viewed as a special case of influence maximization by con-
structing a social graph as following. Add every node in U and
every subset Si, as a node in the graph. Thus there are total
n+m nodes. Then, for every node corresponding to set Si, add
directed edges to the nodes uj such that uj ∈ Si. Set the activa-
tion probabilities of these edges to 1. Thus, finding the set cover
of size k is equivalent to finding the set of nodes in this graph
with σm ≥ (n + k) under IC model. The graph construction is
shown in Figure 2.5.

However, it has been shown that, under the IC and LT model,
the influence maximization problem can be solved using the
greedy algorithm, to achieve (1 − 1/e) approximate solution
[45]. The result follows from the following well known result:
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if f is a monotonic increasing and submodular function, the
problem of finding a set S of size k such that f(S) is max-
imum, can be approximated to within a factor of (1 − 1/e)
by a greedy algorithm [72]. A function f is submodular if
f(S ∪ v) − f(S) ≥ f(T ∪ v) − f(T ) whenever S ⊆ T . To
utilize this result, authors have proved that, for both IC and LT
models the function σm(S) is monotone and submodular. Intu-
itively, the submodularity of influence function σm implies that
the probability of a node v to influence u, does not increase if
more number of nodes are active.

The submodularity of influence function under IC model, can
be proved as follows. Let S be the set of seed nodes which are
active at time t = 0. Recall that these nodes v activate their
neighbors u by flipping coins with probability pv,u. If outcome is
head then edge (v, u) is considered active and u is marked active.
The newly activated nodes do the same thing and the process
continues. Thus, at the end of cascade, every active node can be
reachable from the seed set via active edges. However, instead
of unfolding the cascade in steps, we can find the active edges
by pre-fliping all the edge coins, thereby revealing the results
immediately. In this case too, the set of reachable nodes from
seed set S will be same as the step wise information propoga-
tion. Thus, the influence of a set of seed nodes can be found
by pre-fliping the coins for every edge and finding the number
of reachable nodes. Let us denote the non-probabilistic graph
generated by one possible pre-flipping the coins, by g. Then the
expected influence of the set S can be written as

σ(S) =
∑
g

P (g).σg(S) (2.12)

where P (g) is the probability of generating the non-probabilistic
graph g and σg(S) is the number of reachable nodes from S in
the graph g. Since non-negative linear sum of submodular is also
submodular, it is sufficient to prove that σg(S) is submodular.
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Algorithm 1 Greedy Algorithm for Influence Maximization

Require: G, k, σm
1: S ← φ
2: while |S| < k do
3: u← arg maxv∈(V−S) σm(S + v)− σm(S)
4: S ← S ∪ u
5: end while
6: return seed set S

To prove the latter, consider two seed sets T and S such that
S ⊆ T . Now consider the set of nodes which are reachable
from (S+ v) but not from S in g. This set is always going to be
superset of the set of nodes which are reachable from (T+v) but
not from T in g. That is, σg(S∪v)−σg(S) ≥ σg(T ∪v)−σg(T ).
Thus, the influence function σ(S) is submodular under the IC
model.

The submodularity of influence function under LT model, can
be proved by observing that, corresponding to every LT model,
an IC model can be constructed such that the distribution of
reachable nodes from the seed set S is same in both models
[45]. The greedy algorithm for the influence maximization for
monotonic increasing and submodular influence function σm is
presented in Algorithm 1.

However, even if we use the greedy algorithm, the complexity
of evaluating line 3 (finding the node with the largest marginal
gain σm(S + v) − σm(S)) is very high. In fact, computing the
expected spread given a seed set σm(S) is #P-hard under both
the IC model [16, 17] and the LT model [18]. One possible way
to estimate σm(S) by running Monte Carlo (MC) simulations
to generate different worlds g and then, calculate the number
of reachable nodes from the seed set S in each of the world
[45]. Then the average of number of reachable nodes can be
used as an estimate of the expected spread. However, to get
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an reliable estimate, a large number of such worlds needs to be
generated (the authors report 10,000 trials). This makes the
step 3 computationally very expensive.

Significant amount of work has been done to find efficient
solutions to influence maximization. The submodularity of in-
fluence function has been further exploited [35, 60] to reduce
the number of calls to the marginal gain module. The key ob-
servation is that, the marginal gain of a node r in the current
iteration cannot be more than its marginal gain in previous it-
erations because of the submodularity property. Thus if there is
a node w whose marginal gain in the current iteration is greater
than that of marginal gain of r in the previous iteration, then
there is no need to calculate the marginal gain of r in the current
iteration. This significantly reduces the number of calls to the
spread estimation module. Leskovec et al. [60] have reported an
improvement of over 700 times in the running time.

Recently many works have focused on replacing the MC sim-
ulations used to calculate σ(S) with efficient heuristics [16, 17,
18]. For IC models, one of the heuristic uses Maximum Influ-
ence Paths (MIP) on the original graph G instead of finding
shortest path in every sampled graph g [17]. An MIP between a
pair of nodes (v, u) is the path with the maximum propagation
probability from v to u. For LT model, the expected influence
of the seed set S can be calculated by enumerating all sim-
ple paths (with no cycles) starting from S and summing their
weight. However, this problem is #-P hard. One of the heuristic
to get tractable solution is to ignore the paths with small prob-
ability and thus, terminate the path traversals if probability of
the path is very small [36]. Another proposed heuristic is to
construct local DAGs for each node and consider influence only
within it [18] because computing σ(S) over DAGs can be done
in linear time while otherwise is #P-hard for general graphs.
While none of heuristics offer theoretical guarantees, they are
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empirically found to obtain solutions which are very similar to
the greedy algorithm output.

The influence maximization problem has also been analyzed
theoretically for specific types of graph, especially for the scale
free graphs [93].

2.2.6 Influence vs. Homophily

It has been well established fact that human behaviors tend to
cluster in both network space and time. That is, the behavior of
nodes who are close to each other behave similarly. Additionally
their time of actions is also close to each other. For example,
obesity in humans. However, this pattern can be explained by
a number of factors apart from social influence, such as ho-
mophily or other confounding factors. Recall that homophily is
the tendency of people to chose friends who are similar to them.
Thus, it can be expected that behavior of friends is correlated in
space. In fact, this observation has lead to development to var-
ious social recommender systems [43, 66]. The homophily can
many times also result in friends to take their actions almost at
similar time, thereby giving high correlation in time space too.
Thus, the correlation in space and time can be attributed to
both influence and homophily. Differentiating between the two
is thus equivalent to differentiate between the causation and
correlation, which is known to be notoriously difficult problem.

It is important that we should differentiate between the social
influence and homophily, because different marketing strategies
are effective for each one of them. When social influence is
prominent, then viral marketing is more effective. While tradi-
tional market segmentation strategy based on observable char-
acteristics of consumers, is best when homophily is prominent.

To differentiate between the two, a simple randomized time
shuffle test has been designed [3]. The key idea is that, if social
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influence is abesent then the activation time of a user should
be independent of the activation time of his friends. The test
works by assuming a simple influence model, where the acti-
vation probability of the nodes increases as number of friends
who have already active increases. Formally, the probability of
activation of a node who has A active neighbors is

ea log(|A|+1)+b

1 + ea log(|A|−1)+b
, (2.13)

where a is the social influence and b is a constant. Then
the shuffle test estimates the values of a on two datasets, the
original data and on the shuffled time data,. If the values of
a are same both the datasets, then it implies that the time of
action of nodes are independent of their friends’ time of action.
Thus, there is no social influence present in the network. This
test has been used to exclude the presence of social influence in
tagging behavior on Flickr [3].

In general, it has been noticed that, it is very difficult to
differentiate between the latent homophily and social influence
without making strong parametric assumptions [83].

2.2.7 Results from Large Scale Empirical Stud-

ies

Several empirical studies have also been carried out to under-
stand the flow of information in large scale social networks like
Flickr [12], Digg [84], Blogosphere [37], Twitter [54] etc. It has
been observed that most of the cascades are short and “stars” to
be most common shape in blogoshpere [62]. Studies on real in-
formation cascades like Digg [84], recommendation referral pro-
gram [55] show that the probability of a node getting activated
from repeated exposure, quickly saturates. This is in odd with
the IC and LT model, where probability of activation increases
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as a function of number of active neighbors. The effect of re-
peated exposures for different topics has been studied on Twitter
[78]. It has been observed that the effect varies with topics. The
repeated exposure results in more number of adoptions for hash-
tags related to politically controversial topic. While for hashtags
related to idioms and neologisms, the effect of multiple exposure
decays rapidly. The transmission delay between the nodes has
been analyzed on a large corporate email network [51], where it
has been found that the transmission delay is not same for every
edge in the network.

� End of chapter.



Chapter 3

Impact on Product Purchase
Decision

3.1 Introduction

Several probabilistic information flow models [45] have been de-
veloped to mimic the way information spreads in a social net-
work. They attempt to predict the probability of a user to adopt
a product given its friends’ recommendations. The underlying
belief is that social recommendations increases the user’s trust
on the product and thereby increases the probability of the user
to adopt it. For example, positive friends reviews about a movie
encourages us to watch it.

However, most of the existing models ignore the polarity of
opinions, which is one of the important aspect of the informa-
tion. In real world, both positive and negative opinions critically
affect one’s decision. While on one hand, positive opinions pro-
mote a product, on the other hand, negative opinions discourage
its adoption. Further, negative opinions usually dominate the
positive opinions in shaping one’s decision [6]. Even slight hint
of product faults, are sometimes sufficient to change our pur-
chase decisions.

The two kind of opinions differ from each other, not just in
terms of affecting the purchase decision, but also in their prop-

47
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agation patterns. Many work in psychology, hypothesize the
negative opinions propagate contagiously in the network [79].
Such kind of pattern can be expected in case of shocking news,
for example, comments such as “food poisoning from a restau-
rant food” are likely to be echoed in the network even though
a user has not dined there. However, on social rating networks,
the negative opinions do not get spread at all. For example, bad
reviews about a movie discourage us from watching it buy it is
less likely that we pass the negative comments to other friends
without watching the movie by ourselves. In fact, we do observe
that the presence of negative opinions reduces the number of ex-
pressed opinions (either positive or negative) on two real world
datasets Flixster1 and Epinions2.

Motivated by above observations, we propose polarity sen-
sitive extensions of both IC and LT to model the flow of infor-
mation in social rating networks. We explicitly consider every
opinion expressed by users to be a two step process. First step
is the social influence which drives users to consider or not to
consider the product. While the second step, describes the ex-
pressed opinion given the outcome of first step. The latter step
considers various scenarios where negative opinions may emerge
from the product faults or may not get published by the node.
The usefulness of the proposed models are demonstrated by pre-
dicting the future users’ opinions using them. On both Flixster
and Epinions datasets, polarity sensitive functions are able to
predict the future opinions more accurately. Further, the best
accuracy is achieved using the LT based extension.

The rest of this chapter is organized as follows. First we
briefly present the closely related works in Section 3.2 and then
present the precise problem formulation in Section 3.3, follow
that with the description of the datasets used in this paper and

1http://www.flixster.com/
2http://www.epinions.com/
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present our key observations in Section 3.4. Next, we describe
our proposed model and the method to infer the social influence
in Section 3.5 and Section 3.6. This is followed by a detailed em-
pirical study on both synthetic and real datasets in Section 3.7
and Section 3.8 respectively. Finally, Section 3.9 summarizes
our main results.

3.2 Related Work

Heat diffusion [65] and IC-N [15] are among the few works, which
consider the polarity of opinions in information flow. However
the former assumes that both kinds of opinions exist from the
beginning of the information cascade and uses the same propa-
gation behavior for both kind of opinions. Therefore, it is closer
to the competitive model rather than the polarity sensitive in-
formation flow models. The IC-N model does consider the pos-
siblity of emergence of the negative opinions from the product
faults but it gives rise to a complex inference problem (the de-
tails are available in Section 2.2.3).

The polarity sensitive information diffusion shares some sim-
ilarities with competitive information flow where more than one
products compete within the social network for adoption [7, 8].
However, the two kind of opinions can not be treated as two
competing products, because the impact of two kind of opinions
is not symmetric. Further, when two polarities are present at
the same time, they can cancel out the impact of each other,
and thereby reduce the overall probability of getting influenced
with either of opinions.

Recently, few studies have been carried out to study the prop-
agation patterns of negative sentiments [39, 89]. However, neg-
ative sentiment is different from negative opinions, because neg-
ative opinions emerge from product qualities and work against
the positive opinion for adoption of the underlying product.



CHAPTER 3. IMPACT ON PRODUCT PURCHASE DECISION 50

3.3 Problem Definition

In this section, we first give necessary definitions and present
the problem formulation.

Definition 1 Let the activation state scu be the state of a node
u in cascade c. If the polarity of its published opinion is positive,
then the node is called the positively active and its state value
scu = +. While if the polarity of its opinion is negative, then
it is called negatively active and its state value scu = −. The
nodes who do not publish any opinion are referred to as inactive
nodes and their state value scu = 0.

Definition 2 Let the activation time tcu be the time when the
node u publishes its opinion in cascade c.

Definition 3 Let the set of active neighbors Ac(u, t) be the
set of already active neighbors of the node u in cascade c at time
t, i.e., Ac(u, t) = {v|v ∈ V & (u, v) ∈ E & scv ∈ {+,−} & tcv <

t}.

Learning Task. Given the set of already active neighbors
Ac(u, t) of user u at time t, the task is to learn the probability
distribution over the activation state p(su|Ac(u, t)) of the node
u.

Next, we observe patterns that arise because of the presence
of negative opinions in two real world rating networks, Flixster
and Epinions. Based on the observed patterns, we propose var-
ious functional forms for the probability distribution over the
activation state. The method to learn the parameters of the
proposed functions is described next.
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3.4 Data and Observations

3.4.1 Data Collection

Flixster. Flixster3 is a popular social movie website which al-
lows users to rate movies and share them with their friends.
Users can rate movies by giving them score between 0 to 50,
with 50 being the best. To construct the dataset, we have col-
lected user ratings for all the movies released from Jan, 2005 to
Dec, 2010. Only users who have rated at least 50 movies from
this set, are kept and their friendship network is crawled. The
raw data has 16,041 movies, 85,209 users and 5,71,505 edges. All
the ratings of a movie are considered as one information cascade
and ratings from 00 to 25 are assumed to be negative while 25
to 50 are assumed to be positive ratings.

Epinions. Epinions4 allows users to post review articles about

Data set Users Edges Products Ratings

Flixster 85,209 5,71,505 16,049 10,086,362
Epinions 1,32,000 71,76,671 560,144 13,668,319

Table 3.1: Data statistics

products items from different categories (software, music, etc).
While other users are allowed to rate their articles on the scale
of 1 to 5, with 5 being most helpful. Recently Epinion has
published an extended dataset [67] which also contains the date
when people have rated the review articles. The dataset con-
tains 1,32,000 users, 71,76,671 trust edges, 560,144 articles and
13,668,319 article ratings across 29 product categories. We con-
sider all the ratings of a review article as one information cas-
cade. Further, we assume rating 1, 2 as negative and 3-5 as

3http://www.flixster.com/
4http://www.epinions.com/
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Figure 3.1: Average number of expressed opinions as percentage of negative
opinions increases. For Flixster dataset, cascade length is scaled (divided by
100) to fit the data in plot.

positive rating.

3.4.2 Observations

As a first step, we qualitatively study the impact of polarity
of opinions/ratings on the information flow. To get the first
qualitative measure, we study the variation of cascade length
with the percentage of negative opinions, where cascade length
is defined as the number of active nodes in that cascade. For
the same, we categorize cascades based on the ratio of number
of negative opinions and total number of opinions expressed in
that cascade. Then, we plot the average cascade length in each
category against the percentage of negative opinions expressed.
The plot is shown in Figure 3.1. We can observe that cascades
with higher percentage of negative opinions, are usually shorter
than the one with lower percentage of negative opinions.
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Figure 3.2: Average probability of activation, when at least one the neighbor
is active vs when more than 50% of neighbors are negatively active.

Next, we look at the probability of activation of users (either
with positive or negative opinion). We compare the probability
of activation of users who have at least one of their neighbor
active, with the probability of activation of users whose more
than 50% of neighbors are negatively active. The plot is shown
in Figure 3.2. It can be observed that the probability of ac-
tivation decreases by a large amount when more than 50% of
neighbors are negatively opinionated.

Both the observations clearly demonstrate the asymmetry be-
tween the positive and negative opinions. They suggest that,

• The presence of negatively opinionated neighbors signifi-
cantly reduce the activation probability of a node.

• Cascades with negative opinions have relatively less num-
ber of participants. That is, negative opinions prevent
information spread in the network.
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Both the observations underline that the presence of negative
opinions discourage users to look at the product (movie in case
of Flixster and article in case of Epinion) and thereby rate them.

3.5 Polarity-Sensitive Information Flow Model

Here, we define p(scu|Ac(u, t)) such that it accounts for the dif-
ference in the propagation patterns and impact of two kinds of
polarities. Since we will be considering only one cascade in this
section, we will write scu as su and Ac = A for reading convince.

We consider the activation of any node u at time t as a two
step process. Step 1 models neighbors’ influence on node u,
while in step 2, node u decides to publish its own opinion based
on its neighbors’ recommendations and its own experience. For
the same, we introduce a hidden state variable s̃u to represent
the social influence on node u, where s̃u ∈ {+,−, 0} with +
indicating positive influence, - indicating negative influence and
0 indicating absence of any influencing opinion. Given the set
of already active neighbors A(u, t) of node u,

p(su|A(u, t)) =
∑
s̃u

p(s̃u|A(u, t)).p(su|s̃u). (3.1)

Thus, we need efforts in two directions:

1. Define the functional form of p(s̃u|A(u, t)), i.e., the proba-
bility of the node u to get influenced with a particular po-
larity of the opinion (positive or negative), given the neigh-
bors’ opinions and their influence probabilities/weights.

2. Define p(su|s̃u), in other words, decide the activation state
of the node given the influencing opinion. In a simplistic
scenario, the node can simply mirror its neighbors’ opin-
ion. Although other scenarios are also possible. A node
can become negatively active even if it is influenced with
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positive opinion by its neighbors. For example, consider
a user who buys a product after reading positive opinions
from its neighbors, but finds it to be a disappointment. In
such cases negative opinions may emerge. Thus, this step
is needed to decide if a node publishes any opinion and its
polarity.

Next, we discuss each of the above steps in detail.

3.5.1 Social Influence Function

In this subsection, we define various functions over the neigh-
bors’ influence to decide whether a node is influenced by its
neighbor and the polarity of opinion, it is influenced with. For
the same we modify, the two most popular information propa-
gation models, IC and LT models.

3.5.1.1 Polarity-Sensitive IC Model

Like IC model, we assume every node ui ∈ A(u, t) influences
node u independently with probability pvi,u,oi when vi is opin-
ionated with opinion oi. However, considering the completely
independent model (considered by IC-N [15]) gives a very com-
plex form for p(s̃v|A(u, t)); even when we assume that every vi
has same pvi,u,+ and pvi,u,−. Hence, next we propose two simple
functions which can be seen as approximation of IC-N.

Independent Activation (IA). Here we first consider influ-
ence form all positively opinionated neighbors and all negatively
opinionated neighbors, separately by following the IC model.
For the same, we combine all the active neighbors with posi-
tive opinions and represent them by a super positive node sp.
While all negatively opinionated active neighbors are combined
to represent a super negative node sn. The probability of sp
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Figure 3.3: IA influence function

to influence the nodeu with positive opinion, is defined as the
probability that at least one of the positive active node is able
to influence u and is equal to

psp,u,+ = 1−
∏

vi∈A(u,t),oi=+

(1− pvi,u,oi). (3.2)

Similarly the probability of sn to influence u with negative opin-
ion is:

psn,u,− = 1−
∏

vi∈A(u,t),oi=−

(1− pvi,u,oi). (3.3)

Then like IC-N model, both sp and sn independently flip coins
with probability psp,u,+ and psn,u,− respectively. If outcome is
head then the corresponding edge to node v is considered to be
an active edge. If both (sp, u) and (sn, u) are active edges then
tie is broken by choosing one of the edges uniformly at random as
the influencing node. Then, the probability of node u influenced
by node sp is equal to the probability of following two events:
E1: (sp, u) is active and (sn, u) is inactive, E2: both (sp, u) and
(sn, u) are active and (sp, u) is chosen as the influencing opinion.
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Thus,

p(s̃u = +|A(u, t)) = p(E1) + p(E2)

= psp,u,+(1− psn,u,−) +
1

2
psp,u,+ psn,u,−

=
1

2
psp,u,+(1 + psn,u,−). (3.4)

Similarly probability of getting influenced with negative opin-
ion p(s̃u = −|A(u, t)) can be written as 1

2 psn,u−(1 + psp,u,+). An
example of decision making process under IA is shown in Fig-
ure 3.3.

Weight Proportional (WP). Here we define the probability
of node u getting influenced with positive opinion as the ratio
of expected number of active edges with positive opinions and
expected number of total active edges. The expected number of
active edges is simply the sum of their influence probabilities.
Thus,

p(s̃u = +|A(u, t)) ∝
∑

vi∈A(u,t),oi=+ pvi,u,+∑
vi∈A(v,t) pvi,u,oi

. (3.5)

However, this excludes the possibility that none of the neighbors
are able to influence the node u. Hence we multiply the above
quantity by the probability of having atleast one active edge.
Thus,

p(s̃u = +|A(u, t)) =

∑
vi∈A(u,t),oi=+ pvi,u,+∑

vi∈A(u,t) pvi,u,oi

(
1−

∏
vi∈A(u,t)

(1− pvi,u,oi)

)
.

(3.6)

Similarly one can write p(s̃u = −|A(u, t)).
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3.5.1.2 Polarity-Sensitive LT Model (LT-PS)

Next, we extend the influence function used in LT model to ac-
count for the polarity of opinions. To the best of our knowledge,
this is the first extension of the LT model which considers the
polarity of opinions. Like in LT model, each node u ∈ V is as-
sociated with an internal threshold θu ∈ [0, 1] which represents
the minimum amount of social influence required for node u to
get influenced. Lets assume that wvi,u,oi ∈ [0, 1] is weight of in-
fluence of node vi on u when vi has oi opinion. Then, we define
the social influence on node u as the difference between the sum
of influence from positive opinionated nodes and the sum of in-
fluence from the negatively opinionated nodes. If the difference
is greater than zero then the probability of u getting influenced
with positive opinion is defined as

p(s̃u = +|A(u, t)) = g(b.(θu − f+(u))), (3.7)

where g is a sigmoid function and is used to keep the probabili-
ties between 0 and 1. The constant b is a hyper-parameter and
controls the slope of sigmoid function. The function f+(u) is
defined as

f+(u) =
∑

vi∈A(u,t),oi=+

pvi,u,+ −
∑

vi∈A(u,t),oi=−

pvi,u,−. (3.8)

Similarly one can defined p(s̃u = 0|A(u, t)) if the difference be-
tween influence from positive opinionated nodes and the neg-
atively opinionated node is less than zero. The probability of
not getting with any influence is simply p(s̃u = 0|A(u, t)) =
1− p(s̃u = +|A(u, t))− p(s̃u = −|A(u, t)).

It is important to note that unlike IC based influence func-
tions (IC-N, IA, WP), in LT-PS influence function, probability
of a node u getting influenced (either with positive or negative
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opinion) does not always increase as the number of active neigh-
bors increases. For example, lets assume that wvi,u,oi (pvi,u,oi for
IC-N) is same for all the nodes and let it be p. Consider the two
scenarios: S1 when there is only one active neighbor and has
positive opinion and S2: when there are three active neighbors
and two out of them are positive and one is negative. According
to LT-PS, p(s̃u|A(u, t)) remain same in both scenarios. However
for IC-N, the probability of influencing node u will increase from
p to (1− (1− p)3) with p(s̃u = +|A(u, t)) = 2

3(1− (1− p)3) and
p(s̃u = −|A(u, t)) = 1

3(1 − (1 − p)3). This property of LT-PS
function makes it more suitable for modeling social influence
for real world data, because in real world the presence of both
positive and negative opinions cancel each others influence and
there by reduces the overall probability of getting influenced.

3.5.2 Activation State of Influenced Node

Having decided the polarity of opinion which has influenced the
node u, the next step is to decide state of the node u. Depending
upon the nature of information, there are several possibilities:

Scenario 1 (Echo). The influenced node mirrors its neighbors’
opinions as they are. Opinions related to ethical or political
campaign, government policies are examples where neighbors
opinions are echoed by their followers. This is similar to the
competitive information propagation where two kinds of opin-
ions exist at the start of the information cascade and compete
with each other [7].

Scenario 2 (Emerge). In this case, opinions are expressed
strictly based on one’s experience with a product, while the
positive (negative) social opinions play role in encouraging (dis-
couraging) the user to buy the product. Thus, negative opinions
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Negative opinions exist Negative opinions
from the beginning emerge

Negative Opinion Scenario 1 (Echo) Scenario 3 (Emerge-Echo)
echoed

Negative Opinion - Scenario 2 (Emerge)
not echoed

Table 3.2: Various possibilities for propagation and emergence of negative
opinions.

can emerge but they are not mirrored. The negative opinions
create negative impression about the product and thus stopping
users from buying it and thereby, no opinion is expressed by the
user. For example, in case of movie reviews, when a user reads
negative opinion, then it is unlikely that the user will watch that
movie, but at the same time, it is unlikely that user publish neg-
ative opinions about the movie without watching it.

Scenario 3 (Emerge-Echo). Unlike Scenario 2, in some cases
negative opinions propagate even without one’s own experience
with the product. For example, comments such as “food poi-
soning from a restaurant food.” are likely to be echoed in the
network even though a user has not dined in that restaurant.
This scenario is studied in detail in [15].

The above scenarios are summarized in Table 3.2. They can
be generalized by using two variables product quality factor,
q ∈ {0, 1} and virality of negative opinion constant ρ ∈ [0, 1],
where q quantifies his experience with a product and ρ repre-
sents the probability by which negative opinions from neighbors
are echoed by a user. Thus, after getting positively influenced,
a user becomes positively active with probability q and with
(1 − q), he becomes negatively active. Thus, the probability of
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positive activation is

p(su = +|A(u, t)) = p(s̃u = +|A(u, t)) ∗ q, (3.9)

while probability of negative activation is

p(su = −|A(u, t)) =p(s̃u = −|A(u, t)) ∗ ρ+

p(s̃u = +|A(u, t)) ∗ (1− q). (3.10)

For Scenario 2, ρ is equal to 0 while for Scenario 3, ρ is equal
to 1. Further if we set q = 1 and ρ = 1 it will be equivalent to
Scenario 1. The Scenario 2 best describes the information prop-
agation is social rating networks. Since we work with datasets
from Epinions and Flixster (which are social rating networks),
we will use Scenario 2 to demonstrate the goodness of the pro-
posed model.

3.6 Influence Estimation

In order to make predictions using p(scu|Ac(u, t)), we need to es-
timate the values of the pair-wise influence parameters pv,u,+/−
(wv,u,+/−, θu for LT-PS). To learn these values, we use the his-
torical information cascades and maximize the likelihood of ob-
serving them. Lets assume that C represents the set of historical
information cascade. Then, the log likelihood LL of observing
the set of cascades C can be written as the sum of log likelihood
of each cascade c ∈ C.

LL(C) =
∑
c∈C

( ∑
ocu∈{+,−}

log p(scu = ocu|Ac(u, tcu))

+
∑
ocu=0

log p(scu = 0|Ac(u, t))
)

(3.11)

Here t is the end of the observation time window of cascades.
Our objective is to chose model parameters which maximize the
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LL(C) and generalize well on the unseen data. Thus, for IC
based model, we write our objective function as

arg max LL(C)− λ
∑
u,v

(p2
v,u,+ + p2

v,u,−), (3.12)

and for LT-PS model

arg max LL(C)− λ
∑
u

θ2
u − λ

∑
u,v

(w2
v,u,+ + w2

v,u,−), (3.13)

where λ is a hyper-parameter that controls the amount of regu-
larization. It can be noted that for Scenario 2, the quality factor
q of products gets observed as part of a constant because it is
assumed to be constant for each product (cascade). Thus, our
objective function is independent of q.

This big objective function can be minimized, by indepen-
dently minimizing the objective function for every node u ∈ V ;
because the parameter set pv,u,+/− ((wv,u,+/−, θu for LT-PS) for
every node u, are different from other nodes’ parameter set. This
makes the inference problem scalable. We minimize each of the
sub-problems using the steepest gradient descent method.

3.7 Experiments on Synthetic Data

The aim of this set of experiments is three folds.

1. Measure the effectiveness of IA and WP influence functions
as approximation of IC-N model.

2. Evaluate the quality of model parameters estimated using
the inference method proposed in Section 3.6.

3. Assess the ability of different influence functions to predict
the next hop neighbor’s activation status.



CHAPTER 3. IMPACT ON PRODUCT PURCHASE DECISION 63

The synthetic data is generated by first synthetically gener-
ating the social network and then generating the synthetic cas-
cades. We use the two state-of-art generators Scale Free Network
[5] and Kronecker Graph [56], to generate the social graph. For
the Kronecker graph, the core-periphery network is generated
because real word networks are believed to have core-periphery.
For the same, SNAP5 is used as the tool for generation with kro-
necker parameter matrix [0.962 0.535;0.535 0.107] . To generate
the scale-free network, we used NetworkX [38] with 512 nodes
and 1024 edges.

The synthetic cascades for a given network are generated us-
ing the IC-N and LT-N as influence function. In both the sets,
activation status of any influenced node is decided based on the
Scenario 2. Further, we assume there is no incubation delay.
The numbers representing the probabilities to influence others
when the node is positively opinionated and negatively opinion-
ated respectively are generated by sampling uniformly from 0.05
to 0.99 intervals.

3.7.1 IA and WP as Approximation of IC-N

Here we measure, how well IA and WP approximate the IC-N
influence functions? For the same, we generate 1000 cascades us-
ing the IC-N model for different values of product quality q and
network type (scale-free and kronecker graph). Then we mea-
sure the performance of the three influence functions assuming
they know the actual model parameters pv,u,+, pv,u,−∀(u, v).

Performance Measure. To measure the performance of each
influence function, we calculate the likelihood of observing the
activation state of every influenced node with respect to the
three influence functions IA, WP and IC-N and actual model

5http://snap.stanford.edu
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parameters.

Network q IA WP IC-N
0.9 0.9604 0.9599 0.9391

Scale Free Network 0.7 0.7865 0.7856 0.7667
0.5 0.6396 0.6388 0.6214
0.3 0.5536 0.5534 0.5422
0.9 0.9098 0.9073 0.8229

Kronecker Network 0.7 0.7435 0.7412 0.6763
0.5 0.6305 0.6292 0.5720
0.3 0.5272 0.5264 0.4824

Table 3.3: Negative log likelihood averaged over all the influenced nodes
when the model parameters are known.

Observations. The negative log likelihood averaged over the
influenced nodes for two types of network is presented in Ta-
ble 3.3. It can be seen that the likelihood obtained from both
IA and WP influence functions is very close to IC-N function
with WP is a slightly better approximation. Further, following
two trends can be noticed. As the product quality q decreases,
the difference between the proposed approximations and IC-N
becomes narrower. Additionally for kronecker network, the dif-
ference between the two approximations and IC-N is larger than
that of the scale-free network. The probable reason is that num-
ber of influencing neighbors with different opinions are more in
kronecker network and when q is large.

3.7.2 Quality of the Estimated Parameters

Next we evaluate the goodness of model parameters obtained us-
ing the inference method proposed in Section 3.6. For the same,
the synthetically generated IC-N cascades are used as training
set and IA and WP are used as the influence functions to esti-
mate the latent model parameters of IC-N model. While LT-N
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(a) IC-N Cascades, Scale Free Network
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(b) LT-N Cascades, Scale Free Network
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(c) IC-N Cascades, Kronecker Network
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(d) LT-N Cascades, Kronecker Network

Figure 3.4: Mean Square Error between the estimated and actual model
parameter, as the number of cascades increases.

model parameters are estimated by using the LT-N cascades as
training set and LT-N as influence function.

Performance Measure. The quality of estimated parame-
ters is measured in terms of mean square error (MSE); where
MSE is defined as the mean of square difference between the
estimated and actual model parameters. Recall that, the IC-
N model has two model parameters are pv,u,+, pv,u,− for every
(u, v) ∈ E, while the LT-N model has one more parameter θu
for every node in addition to wv,u,+, wv,u,− for every (u, v) ∈ E.

Observations. Figure 3.4(a) and Figure 3.4(c) present MSE in
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estimating the IC-N model parameters. The variation in quality
of estimated parameters is plotted against the number of cas-
cades increases for the scale free and kroneker graph. It can
be observed that as the number of cascades increases MSE de-
creases. Further MSE obtained using the WP is slightly lower
than that of IA. Additionally, it can be noted that, lower prod-
uct quality q requires more number of cascades to achieve a given
level of MSE. The probable reason is that there are relatively
lesser number of activation per cascade when q is smaller, thus it
requires more number of cascades to learn the positive activation
probabilities. Similar results can be observed for LT-N model,
when parameters are estimated using the LT-N influence func-
tion. Results for the two types of network are shown in Figure
3.4(b) and Figure 3.4(d).

3.7.3 Prediction Accuracy

We compare the polarity sensitive influence functions with the
polarity-insensitive influence functions IC and LT. For the same,
we randomly divide the cascades in five parts and use every
four parts as the training set and remaining part as the test
set. The parameters of each of the influence functions are then
learnt on the training set. The learnt parameters and activa-
tion state of one-hop-neighbor nodes are taken as input to pre-
dict the activation (either as positive or negative) of a node in
test set cascades. Thus for both polarity-sensitive and polarity-
insensitive influence functions, prediction target is same (node’s
activation). The prediction quality is then averaged over all the
five test parts. The parameters for IA, WP, LT-N and LT are
learnt using the method proposed in Section 3.6 while for IC we
use Mosek [1] implementation of the state-of-art method Connie
[70]. Connie provides a convex objective function to estimate the
IC model parameters and thereby is guaranteed to give global
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(a) IC-N Cascades, Scale Free Network,
q = 0.7
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(b) IC-N Cascades, Kronecker Network,
q = 0.7
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(c) IC-N Cascades, Scale Free Network,
q = 0.3
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(d) IC-N Cascades, Kronecker Network,
q = 0.3
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(e) LT-N Cascades, Scale Free Network,
q = 0.7
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(f) LT-N Cascades, Kronecker Network,
q = 0.7

Figure 3.5: The variation of break even point (to predict the activation state
given the neighbors activation status) as the number of cascades.
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optimal solution.

Performance Measure. We assess the quality of prediction
accuracy in terms of the break even point on the cross-validation
set. The break even point is the point at which both precision
and recall are equal. If tp is the number of true positives, fp is
number of the false positives and tn is the number of true neg-
atives, then precision is defined as = tp

tp+fp and recall as tp
tp+fn .

Observations. The variation of break even point as the num-
ber of cascades for different settings of networks, cascades and
q is shown in Figure 3.5. It can be observed that in all cases,
ignoring the polarity of opinions significantly reduce the perfor-
mance. Further, the performance of IC-N approximations WP
and IA perform better than LT-N model when cascades are gen-
erated using the IC-N model. While the opposite is true when
cascades are generated using the LT-N model. However, the
performance difference between the two is much larger when
cascades are generated using the LT-N model. This shows that
IC-N based influence functions are not suitable when cascades
generation follow the LT-N model. Additionally, it can be no-
ticed that the performance of LT-N models does not increase by
a large amount as the number of cascades increases. This shows
that LT-N can learn the underlying the model parameters with
fewer number of cascades.

3.8 Experiments on Real Data

In this section, we evaluate the proposed polarity sensitive in-
fluence functions in terms of their ability to predict the future
activations on real datasets, Flixster and Epinions. In addition
to comparing IA, WP and LT-PS with polarity insensitive IC
and LT model, we also compare them with other 2 base line
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methods. Base line 1 and 2 are the global influence functions,
where activation of nodes depend on the number of active users
(not necessarily neighbors) and their ratings.

1. BL1. The base line 1 (BL1) sets the activation probability
proportional to total number of active users. If n+ is the
total number of positively active nodes and n− is the num-
ber of negatively active nodes at time (tcu − 1) then, BL1
sets p(scu ∈ {+,−}) ∝ (n+ + n−)/n.

2. BL2. The base line 2 (BL2) respects the polarity of opin-
ions. It sets p(scu = +) ∝ (n+ − n−) · (n+ + n−) if n+ > n−

and p(scu = −) ∝ (n− − n+) · (n+ + n−) if n+ < n−. Thus,
any improvement over BL1 and BL2, can be attributed to
the influence from friends.

3.8.1 Experimental Setup

For all IC and LT based methods, we modify the users’ net-
work G(V,E) by adding external node for every node in the
graph. This is required to account for the tendency of users
to become active irrespective of the social influence. Each ex-
ternal node has positive polarity and has only one connection
and that is to the node it corresponds to. Thus the modified
network G′(V ′, E ′) has twice the number of nodes of in original
network G(V,E) and |V | additional edges. Further, to consider
the global influence on nodes, for every cascade, we add a node
which influences other nodes according to a fixed probability.
For polarity insensitive functions, this probability is defined as
in BL1. While for polarity sensitive functions, this probability
is same as in BL2.

In Epinions dataset, we select 500 most active users for each
of the top 10 product categories. Here most active users are the
set of users who have rated maximum number of articles while
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Dataset BL1 BL2 IC LT IA WP LT-PS

Flixster 28.68 32.08 41.03 41.62 42.59 42.44 44.63
Epinions 17.5 21.16 22.55 22.33 24.19 24.44 27.57

Table 3.4: Breakeven point for Flixster and Epinions

the top product categories are the categories with maximum
number of review article ratings. For each product category, the
set of information cascades is selected by stratified sampling on
the cascade length and number of negative ratings. On an av-
erage 3,000 cascades were selected per product category.

Performance Measure. All the different influence functions
are evaluated in terms of break even point on the test data. For
each dataset 20% of the cascades are randomly selected as the
test set and rest of the 80% cascades are used as the train set.

3.8.2 Observations

The results on Flixster and Epinions dataset are presented in
Table 3.4. For Epinions data, every entry shows the average
breakeven point over top 10 its most popular product categories.
The breakeven point for every category is shown in Table 3.5.
It can be observe that the break even point is lowest for BL1.
By incorporating the polarity of opinions, BL2 improves over
BL1 on every dataset. This shows that considering polarity of
opinions is very important, even if we just consider global influ-
ence. Next we can notice that, both IC and LT outperform BL1
by incorporating the friends’ influence. Though, in most cases,
IC and LT improves over BL2, in some cases the improvement
is not statistically significant; for example in case of Epionion’s
category 1, 2 and 3. Further, there is not much difference in the
performance of IC and LT.

Next, we can note that IA and WP models improve the per-
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Category BL1 BL2 IC LT IA WP LT-PS
1 26.07 31.02 29.55 29.65 32.08 32.81 36.62
2 16.07 19.91 20.85 20.54 21.86 22.11 24.96
3 18.48 24.55 25.44 25.29 27.60 27.68 30.64
4 17.00 21.91 23.30 23.31 24.86 25.12 28.45
5 13.57 17.47 19.88 19.78 21.01 21.05 24.55
6 21.16 21.14 21.96 21.59 23.25 23.59 27.17
7 21.17 23.72 24.59 24.29 26.04 26.38 29.50
8 15.10 18.37 18.70 18.62 19.99 20.08 23.47
9 13.25 18.27 21.00 20.03 23.28 23.30 24.69
10 13.44 15.28 20.25 20.25 22.00 22.27 25.70

Table 3.5: Breakeven point on Epinions Categories

formance by 1.5% on Flixster and 2% on Epinions as compared
to the IC model. It highlights the fact that negative opinions
do not spread contiguously in the social rating networks such as
Flixster and Epinions. Recall that, in the IA and WP model,
a node gets activated only when it is influenced by the posi-
tively active neighbor. However, in the IC model, a node can
get activated by any (positively or negatively) active neighbor.

Among all the models, LT-PS achieves the best prediction ac-
curacy by accurately modeling the behavior of polarity of opin-
ions. In LT-PS model, when some neighbors of a user are pos-
itively active and some negatively active, then the influence of
two kind of polarities cancel out each other, and thereby reduces
the overall probability of getting activated.

In summary, we observe that accounting for the asymmetry
in propagation patterns of two kind of opinions improve the pre-
diction accuracy. Further, the presence of two kind of opinions
work against each other and thereby reduces the total proba-
bility of activation. This is unlike the competitive information
models where the two kind of products compete in the network
for adoption [7, 8].
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3.9 Summary

In this work, we have extended both LT and IC information
flow models to incorporate the polarity of opinions and have
studied the impact of negative opinions with respect to them.
Experimental results show that the proposed polarity-sensitive
influence functions are able to predict the activation state of
nodes more accurately. Moreover, LT-N outperforms all, own-
ing to its unique property to reduce the overall influence on a
node when both kinds of opinions are expressed by its neigh-
bors. Additionally, our analysis on the Epinions data set clearly
shows that the influence of negative opinions is much stronger
than the positive opinions, however they remain local near the
point of origination and are not echoed by the influenced nodes.

� End of chapter.



Chapter 4

Impact on Posterior Evaluation

4.1 Introduction

Several probabilistic information flow models [45] have also been
developed to mimic the way information spreads in a social net-
work. They attempt to predict the probability of a user to adopt
a product given its friends’ recommendations. The underlying
belief is that social recommendations increases the user’s trust
on the product and thereby increases the probability of the user
to adopt it. For example, positive friends reviews about a book
encourages us to read it.

However most of the existing information flow models have
largely ignored the effect of social opinions on the posterior
users evaluation of products, i.e., the opinion the user form af-
ter experiencing the product. They either assume that the ex-
pressed opinion is same as the influencing opinion [45] or they are
assumed to depend strictly on the product quality [15]. However
many times, user’s evaluation of the product, is not completely
independent of her social circle and she tends to conform with
social opinions. For example, a user reads a book and does not
like it much. However lots of friends praise it and call it a re-
ally insightful book or “5/5”, then this might change the user’s
opinion slightly and user might rate the book as “3”. Had she
not interacted with her friend, she might have given a rating

73
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of “2”. This behavior usually arise because of the presence of
social pressure and the innate difficulty in providing an
absolute numerical rating to a product [42]. In such cases,
social opinions can act as a reference rating and calibrate the
user ratings such that they are not very different from the preva-
lent social opinion. We call this behavior as social conformity
and the users who changes their rating as social conformers.
Recently, this effect has been shown to exist on Goodreads and
Douban [41].

Understanding this behavior is important not just from the
point of curiosity, but it is also crucial in improving the accu-
racy of personalized recommender systems and in developing
better information flow models. The recommendation systems
can boost the quality of recommendation by removing the so-
cial conformity bias, thus making the recommendation better
tailored to users’ preference. While the information flow models
can more accurately predict the further information cascade by
accurately predicting the users’ opinions.

However, it is a very difficult task to quantify the social con-
formity as for a given product we never get to know the two
ratings, one under the social influence and one without it. All
that is known is a single opinion expressed by the user. Thus,
the key challenge is to identify what component of any rating
corresponds to the user’s preference and what component cor-
responds to the social conformity.

In this chapter, we propose a novel formulation for the users’
ratings which explicitly considers the social conformity. The pro-
posed formulation represents every user rating as a function of
social conformity and social opinion along with user’s preference
and item’s characteristics. The social conformity down-weighs
the user’s preference such that as the number of influential
friends increases, the user’s rating become more similar to the
social opinion. The model parameters provide an intuitive
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interpretation of the social conformity behavior which reflect
the degree a user conforms to her friend. Using this model, we
explore the presence of social conformity on a real large scale
dataset, Goodreads1. To our surprise, the results indicate that
approximately 76% socially active users tend to conform
to their friends to some degree. We also find that social opin-
ions make the user ratings more positive than negative.

The key contributions of this work are following.

1. We propose a novel formulation for user ratings that explic-
itly considers the social conformity. The proposed model
improves the predict accuracy of users’ ratings by more
than 2% in presence of social influence. The learned so-
cial conformity parameters are also verified by qualitatively
comparing the discovered most influential users with the
authoritative and most socially active users.

2. Based on the learned users’ degree of conformity, we find
various interesting patterns on Goodreads that underline
the impact of social conformity.

The rest of the chapter is organized as follows. Section 4.3
presents the proposed approach to quantify the social confor-
mity. The proposed approach is verified in Section 4.4. The
patterns of conformity are then analyzed in depth in Section 4.5.
Finally we conclude the chapter with potential future work di-
rections in Section 4.6.

4.2 Related Work

Several models for information diffusion have been proposed to
mimic the way information or technological innovations prop-
agate via word-of-mouth publicity. Among them, LT and IC

1http://www.goodreads.com/
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models are the most popular ones [45]. Both LT and IC mod-
els have been extended for the competitive information diffu-
sion, where more than one products compete within the social
network for adoption [7, 8]. However like their predecessors,
they also assume that the influenced user’s opinion is same as
the influencing opinions. Chen et al. [15] first time modeled
the negative opinions as being emerged from the product faults.
They extended the IC model to explicitly incorporate the emer-
gence of negative opinions. However they assume that if in-
fluencing opinion is positive, then the influenced user’s opinion
is strictly governed by the product quality. While if influenc-
ing opinion is negative, then influenced user also holds negative
opinion against the product.

Huang et al. [41] are one of few who have studied the effect of
social influence on the user’s product evaluation on large scale
data. They design statistical tests and show that social rec-
ommendations tend to make improve our posterior evaluation
of the product. However, they do not study the impact of the
social opinions on predicting the user ratings.

A different line of work which is also very closely related to
this work is the collaborative filtering based recommendation
systems. The task of these systems is to predict the rating of a
user for an item, given the user-item rating matrix. The user-
item rating matrix contains product ratings given by different
users. These recommendation systems can broadly be classified
in two categories: neighbor-based approaches and model-based
approaches. Neighbor-based approaches predict a user’s rat-
ing either based on the past user’s ratings for similar products
[21, 63, 82] or based on the ratings given to the item by similar
users [9, 44]. The model based approaches work by learning a
compact model from the user-item rating matrix [64]. These
approaches offer large scale efficiency as they do not need to
keep the entire rating matrix in memory, once the model is
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trained. This category includes the clustering model [49], the
aspect model [40], the latent factor model [11], the Bayesian
hierarchical model [92], the ranking model [64] and low-rank
matrix factorization methods [50, 81]. The low-rank matrix fac-
torization methods are the most popular once among them, be-
cause of their ability to deal with large scale data efficiently.
Probability Matrix Factorization model is one of the low-rank
matrix factorization and is regarded as the state of art model
[81]. The underlying idea is that only a small number of factors
govern the users’ preferences and items characteristics. To learn
the model, the method approximates the user-item matrix with
its low rank matrix factorization.

The recommendation systems have been extended to account
for the social homophily. Most of the social recommendation
approaches leverage the social homophily to widen/regularize
the users preference based on their friends [43, 66]. Contrary to
these homophily based approaches, our proposed extension of
the PMF model considers change in user ratings of a particular
item due to the social pressure.

Many times social influence can be confused with homophily
or other confounding factors which can also result in correlation
of actions in space and time. In this paper, we use PMF model
to best characterize the latent user preference and then look for
the presence of the social conformity.

4.3 Ratings under social conformity

Here, we study the change in user ratings caused by her social
circle. It is different from the existing information flow models,
which study the effect of friends on the product adoption prob-
ability. Also different from the homophily based recommenda-
tion systems, we focus on the change of ratings at item level.
Contrary to our approach, homophily based recommendation
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methods, try to learn user preference based on their friends.

(a) Conformity

(b) item 1 (c) item 2

Figure 4.1: An example of influence of social opinions on users’ ratings on
two very similar items. User u1 behaves like a social conformer. While the
ratings of user u6 are independent of its friends u5.

Many times users tend to give different ratings to products in
social settings. Sometimes this user behavior is a result of social
pressure and sometimes this is caused by the innate difficulty
in providing an absolute rating to the product [42]. In both
cases, the social opinions act as a reference rating for the product
and change the user rating such that it is not very different
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from them. Figure 4.1 shows an example scenario. There are
6 users with their social connections shown by edges between
them. User ratings and the time of ratings are shown for two
very similar items/products in Figure 4.1(b) and Figure 4.1(c).
Dark nodes represent the users who have rated the item. In this
example, u1 behaves like a social conformer while the behavior
of u6 is independent from its social circle. In case of item 1,
u1 gives a rating of 2, when none of its friends have rated the
item before it. However, it gives a rating of 3 to item 2 when
two of its friends give high ratings to the item. Here we can
see that u1 changes its rating in presence of social opinions. On
the other hand, user u6 gives same rating to both items whether
its friend u5 have rated the item (in case of item 2) or not (in
case of item 1). Thus, for social conformer like user u1, we find
differences in its ratings of items even when the two items are
very similar. Figure 4.1(a) shows the actual degree of conformity
of each user with her friends. These values are unknown and we
aim to uncover them.

4.3.1 Problem Definition & Notations

Notations. Let G = (V,E) be a directed graph where every
node u ∈ V corresponds to an individual in the social network
and edge (u, f) ∈ E exists if node f is a friend of u. Nodes
in the network, post their opinions related to several items I,
where every opinion takes a real number and is called rating.
The user’s u rating for item i is represented by ru,i and time of
the rating is denoted by tu,i.

Definition 4 Let the set of active neighbors who have posted
their rating for item i before user u be A(u, i). Formally A(u, i) =
{f ∈ V |(u, f) ∈ E, tf,i < tu,i}.

Problem Definition. Predict the rating ru,i for item i given
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by user u, given the set of active neighbors A(u, i), the prefer-
ences of the user u and the characteristics of the item i.

4.3.2 Conformer’s Ratings

In this section, we propose a new rating function which also
accounts for the social conformity of users along with their pref-
erence and characteristics of items. Lets represent r0

u,i be the
inner rating given by user u to item i, had there been no so-
cial influence. The r0

u,i strictly a function of user’s preference and
item’s characteristics. The social opinions calibrate this inner
ratings of users such that they are not very different from the
prevailing social opinions. To account for such social behavior,
we propose the following social conformity based rating model.

r̂u,i = r0
u,i + conf · (social opinion− r0

u,i)

=
(

1− conf
)
r0
u,i + conf · social opinion, (4.1)

where both conf and social opinion are the social functions and
depend on the set of active friends Au,i. conf defines the degree
by which a user conforms to the social opinion. social opinion
is the social opinion about the item i before the user u rates
it, i.e., at (tu,i − 1) time. The rewritten form in Eq. (4.1) can
also be seen as down-weighing the user’s personal preference and
giving higher weight to the friends’ opinions. That is, if the user
u has extremely high degree of social conformity then user u
will change her rating such that it becomes same as the social
opinion.

We expect the degree of conformity conf to take large values
as the number of friends who have already rated the item in-
creases. This phenomenon is known as the bandwagon effect
in social sciences [32]. According to the bandwagon effect, as the
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number of individuals who believe in something increases, others
tend to disregard their own opinions and also “hop on the band-
wagon”. That is, the social conformity is directly proportional
to the number of friends with similar opinions. Thus, conf can
be written as constant times the number of active friends Au,i,
because only active friends (friends who have posted their rat-
ing of item i before user u) can affect the user’s rating for the
item. However, one can expect that users do not conform to
all their friends equally. The friends who are regarded highly
in the user’s eyes, tend to affect their rating more. Hence, we
introduce a parameter κf,u corresponding to every user and her
friend pair. This parameter defines the degree by which user u
conforms to the rating of its friend f . As the number of friends
with high κf,u increases, the conf can be expected to increase.
Thus, we write

conf =
∑

f∈A(u,i)

κf,u. (4.2)

Since conf can take maximum value of 1, we constraint κf,u
such that

∑
f κf,u ≤ 1. Such linear forms of social influence

have also been used in Linear threshold model [45] where the
adoption probability of a product depends linearly on the active
friends’ influence.

We write the social opinion as the sum of friends’ opin-
ions weighted according to κf,u. This is because the opinions
of friends with high κf,u affect the user’s rating by the most
amount. Thus, we have

social opinion =

∑
f∈A(u,i) κf,u · rf,i∑

f∈A(u,i) κf,u
. (4.3)

Substituting values of conf and social opinion from Eq. (4.2)
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and Eq. (4.3) in Eq. (4.1), we get

r̂u,i =
(

1−
∑

f∈A(u,i)

κf,u

)
r0
u,i +

∑
f∈A(u,i)

κf,u ∗ rf,i (4.4)

To represent the user’s inner rating r0
u,i, we user one of the

state of art recommendation models, Probability Matrix Factor-
ization (PMF) method [81]. PMF model uses a small number of
factors to represent the preference of users and item character-
istics. The preference of users qu ∈ RK and item characteristics
pi ∈ RK are represented by low dimensional vectors in latent
space of dimensionality K. Then every rating is written as

r̂0
u,i = µ+ bi + bu + qTu · pi, (4.5)

where µ is average user-item rating, bi is item bias and bu is user
bias.

By substituting r0
u,i in Eq. (4.4) by r̂0

u,i from Eq. (4.5), we
finally have

r̂u,i =
(

1−
∑

f∈A(u,i)

κf,u

)
(µ+ bi + bu + qTu · pi)

+
∑

f∈A(u,i)

κf,u ∗ rf,i. (4.6)

4.3.3 Parameter Estimation

To learn the model proposed in previous section, we need to es-
timate the model parameters bi, bu, qu, pi, κf,u. Like the PMF
model, we construct the objective function such that it mini-
mizes the square of difference between observed user rating ru,i
and estimated rating r̂u,i. Additionally, all parameters are reg-
ularized to avoid over fitting on the train dataset. Thus, our
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objective function is

min
∑
u,i

(ru,i − r̂u,i)2

+ λ1

(∑
u

||bu||2 +
∑
i

||bi||2 +
∑
u

||qu||2 +
∑
i

||pi||2
)

+ λ2

∑
u

∑
f

κ2
f,u

subject to κf,u ≥ 0 ∀u, f ;
∑
f

κf,u ≤ 1 ∀u,

(4.7)

where λ1 and λ2 are the hyper-parameters which control the
amount of regularization. The objective function is minimized
by using the alternating minimization. In every first alternating
step, we minimize the function with respect to the PMF model
parameters bi, bu, qu and pi, using the steepest gradient decent
method. Then in the second alternating step, we minimize the
function with respect to κf,u. Given the estimate r̂0

u,i from first
step, the objective function in the latter step can be written as
the sum of small subproblem, each corresponding to one user.
That is

min
∑
u

(∑
i

(
ru,i −

(
1−

∑
f∈A(u,i)

κf,u

)
r̂0
u,i −

∑
f∈A(u,i)

κf,urf,i

)2

+ λ2

∑
f

κ2
f,u

)
subject to κf,u ≥ 0 ∀u, f ;

∑
f

κf,u ≤ 1 ∀u.

(4.8)

Since the set of parameters κf,u of every subproblem are dif-
ferent from the others, the objective function can be minimized
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by minimizing each of the sub problems separately. Thus, each
of the sub problem can be minimized in parallel, using the gra-
dient descent method.

Time Complexity. The computation time required to min-
imize the objective function is equal to the number of descent
steps times the time required to calculate the gradient in ev-
ery step. The time required to calculate the gradient in first
alternating step is same as that of PMF and is O(ρR), where
ρR is the number of nonzero entries in the training set. In the
second alternating step, gradient calculation for a subproblem
corresponding to a user u, takes O(dumu), where du is the de-
gree of the user and mu is number of items rated by the user.
Thus, the total complexity of gradient calculation in the second
alternating step is O(ndmmax), where n is number of users, d is
the maximum user degree and mmax is the maximum number
of ratings by any user. This complexity analysis shows that our
proposed approach is very efficient and can be used with very
large datasets.

The learned κf,u parameters give an estimate on the social
conformity. The higher value of κf,u indicates that user u tends
to conform friend f while zero value indicate that the rating of
user u are independent of its friends f .

4.4 Evaluation

Before exploring the characteristics of the social conformers, we
evaluate the goodness of the proposed approach. Since there is
no ground truth available about the social conformity of users, it
is not possible to directly test if the users with nonzero κf,u are
truly conformer. Hence, we indirectly evaluate the approach by
using two criterions. First criterion is to measure the improve-
ment in the rating prediction accuracy attained by the proposed
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rating model. Second criterion is to qualitatively analyze the list
of users who affect their friends rating by most amounts. These
users can be considered as the social influencer and are expected
to have high authority. For example, book authors, most pop-
ular users on Goodreads. For brevity, we refer to our proposed
Conformity Rating Model as CRM.

In this section, we seek to answer the following questions.

• Does incorporating the social conformity, help in improving
the prediction accuracy of users’ ratings?

• What is the effect of hyper-parameters λ2 and K on the
accuracy?

• How well does the list of social influencer, match with the
users with high authority on Goodreads?

4.4.1 Goodreads Dataset

We use the Goodreads dataset to explore the impact of social
opinions on users’ ratings. Goodreads is an online social books
cataloging website. It permits users to register books and pro-
vide their ratings. Also, it allows users to add friends and to
view their reading list. When a user rates a book, all her friends
get notification. Books’ ratings take values from 0 to 5 stars,
with 5 stars being the best. We use the dataset crawled by au-
thors in [41]. The dataset contains the friendship graph of users
and user item ratings. Every rating is also associated with its
time of rating (available at the date granularity).

Users Items Edges Ratings
55,654 120,703 1,757,568 9,462,016

Table 4.1: Data Statistics of Goodreads data
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We filter the items and users such that each item has at least
10 ratings and every user has rated at least 5 books and have
at least 10 friends. Further, users who have rated books on less
than 5 different dates are also removed from the dataset. This
is to make sure the selected users are active users of Goodreads.
The statistics of the two datasets is presented in Table 4.1. The
user-item rating matrix is very sparse and has density 0.0014.
The degree distribution (number of friends) and the distribu-
tion of popularity of items (number of times an item is rated)
are shown in Figure 4.2(a) and Figure 4.2(b). The degree dis-
tribution follows the power law. The average degree of users is
31.5 and the average popularity of items is 170.
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Figure 4.2: Goodreads data

In addition to this data, we also crawl the profile pages of
all the selected 55,654 users. Users who have also authored
books are marked as the authors. In our dataset, we have 5,078
authors which is approximately 9% of all the users. These users
are typically seen as the users with high authority among their
friends.
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Test ratings PMF CRM

K = 10
All ratings 1,789,663 0.8556 0.8520

Ratings with conf > 0.1 208,852 0.8476 0.8254

K = 5
All ratings 1,789,663 0.8472 0.8441

Ratings with conf > 0.1 196,855 0.8471 0.8280

Table 4.2: RMSE when λ1 = 1, λ2 = 0.1

4.4.2 Prediction Accuracy

Here we use the CRM to predict the users’ ratings and com-
pare its accuracy with the PMF method. The idea is to check
if considering social conformity can help in improving the pre-
diction accuracy of user ratings. For the same, we train the
model parameters of both the PMF and the CRM on a train
set and calculate their performance on a test set. The train and
test sets are constructed by splitting the user-item ratings in 4:1
ratio. Specifically, for every item, we select a user rating with
probability 0.8 and put it in the train set. Rest of the ratings
are used to construct the test set.

Performance Measure. We use the Root Mean Square Er-
ror (RMSE) metric to measure the prediction accuracy. RMSE
is defined as

RMSE =

√∑
u,i(ru,i − r̂u,i)2

m
, (4.9)

where m is the number of ratings in the test set.
Observations. The results are presented in Table 4.2. The

first row presents RMSE value over all test ratings when λ2 =
0.01, K = 10. It can be seen that RMSE improves by more than
0.4% when social conformity is taken into consideration. The
second row shows RMSE results when conf > 0.1. The reason
is to narrow the focus to only those ratings who are potentially
affected by the social influence. There are more than 11% such
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Figure 4.3: Improvement in RMSE over PMF, as λ2 changes, λ1 = 1

ratings in the test set for K = 10. It can be noticed that the
RMSE improves by more than 2.6% in such cases. This demon-
strates the importance of considering the social conformity and
effectiveness of our proposed formulation. Similar results can
be observed when K = 5 though improvement is slightly less as
compared to K = 10.

Sensitivity to λ2 and K. Next we study the impact of
λ2 (hyper-parameter to control the regularization) and K (di-
mensionality of the latent space) on prediction accuracy. It can
be noticed from Figure 4.3 that CRM consistently outperforms
over the PMF model. Further, the performance improvement is
larger when K = 10. Note that, for the PMF model, the RMSE
value at K = 10 is smaller than the RMSE value at K = 5. (as
can be seen in Table 4.2). This might be because a large value
of latent space dimensionality K, can lead to over fitting on the
training set. However, larger improvement in CRM performance
when K = 10, underlines the robust performance of CRM.
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Effect of λ2 on the RMSE values is as per the expectations.
The performance gets hurt if λ2 is too large (≥ 1) or when it
is too small (≤ 0.01). Higher value of λ2 forces the selection
of small social conformity factors κf,u and thereby under fits
the model. While very small value leads to over-fitting on the
training set. The best RMSE value is achieved when λ2 = 0.1,
though performance is reasonably robust around this value.

We also compare the proposed approach with one of the state
of art homophily based recommendation system proposed in
[43]. However we did not observe any improvement in RMSE
over the PMF model. We suspect that the strength of this
method lies in solving the cold start problem. However, in our
dataset, we do not have any user with less than 10 ratings.

4.4.3 Influencers Quality

Next we analyze the quality of the learned κf,u parameters which
denote the conformity of user u to its friend f . Since, there is
no direct ground truth present to evaluate them; we instead
qualitatively analyze the quality of most influential users. In
our setting, the users who have maximum effect on their friends’
ratings can be considered as the social influencers. We define
social influence of such users as

∑
f κu,f . Notice that it is defined

by reversing the conformity κf,u direction.
To evaluate the goodness of the quality of influencers found

by CRM, we rank the users based on their social influence and
study the authority and the degree of top most influential users.
We expect that the top influencers should have very high author-
ity and very higher number of social connections. The average
degree (number of friends) of top x most influential users as
function of x is plotted in Figure 4.4. It can be noticed that top
200 influential users have the highest average degree and as we
consider more and more top users as the influential ones, their
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Figure 4.4: Average degree of top influencer

average degree starts to fall.
We also validate the authority of the influential users by

checking if they have also authored the books. This is a rea-
sonable criterion as the book authors have higher perceived au-
thority among their friends. The plot of percentage of authors
among the top x most influential users is shown in Figure 4.5.
More than 45% authors appear in the top 200 influencers. It
can be noted that the percentage of authors falls sharply in the
beginning and there are only 12% authors among the top 5000
users. The entire dataset has approximately 9% authors. Thus,
we can see that as we keep widening the value of x, the ratio of
authors to non-authors approaches to the ratio of entire dataset.

The above two results clearly show that the proposed method
is effectively able to give high rank to the influencers with high
authority and high degree. Few of the most influential users’
profiles are shown in Figure 4.4.3 along with their rank. It can
be seen that all these authors are very socially active and have
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Figure 4.5: Percentages of authors among top influencer

very high authority.

4.5 Social Conformity Analysis

Having verified CRM model, in this section we explore the na-
ture of social conformity. We seek to answer following the ques-
tions.

1. How many users conform to their friends?

2. How many friends to a user conform to?

3. By how much amount the user’s ratings get calibrated be-
cause of the social opinions?

4. When does the conformity prevail the most?

We define the degree of conformity of a user u to be κu =∑
f κf,u. The distribution of user conformity κu is presented in



CHAPTER 4. IMPACT ON POSTERIOR EVALUATION 92

Figure 4.6: Users appeared in the top influencers list

Figure 4.7(a). In this plot, we have considered κu intervals of
size 0.1 and labeled each of the interval with its highest value.
Then for every interval, we plot the percentage of users whose
κu lie in that interval. It can be noticed that more than 76%
users have κu > 0. Among these users, most of them belong to
the 0.2 to 0.6 interval. That is, most of the users in the network
display some sort of conformity to their friends.

Next, we plot the distribution of number of friends a user
conforms to. Results are presented in Figure 4.7(b). On x-axis,
we plot the number of influencing friends x and on y-axis the
percentage of users with x number of influencing friends. It
can be seen that, when x is small, the number of users with x
influencing friends falls sharply as x increases and becomes less
than 2% when x > 9. Then it starts to decay at much slower
rate. Further, most of the users conform to only one friend and
less than 9% users conform to more than 14 friends.

To understand by how much amount the conformity can
change a user rating, we select those ratings for whom conf >

0.1 at the time of rating. Recall that conf is the sum of the
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social conformity of a user to her active friend. There are more
than 11% such ratings in the test set for K = 10, λ2 = 0.1.
For these ratings, we plot the distribution of change in ratings
caused by the social opinions. For the same, we calculate the dif-
ference between the ratings predicted by the CRM r̂u,i and r̂0

u,i.
Results are presented in Figure 4.7(c). We can note that, most
of the ratings change is between -0.5 and 0.5. Additionally, it is
interesting that more ratings change by positive factor than by
the negative factor. 15% rating changes by +0.1 amount while
only 12% ratings changes to -0.1 amounts. This is similar to
the results published in [41], where authors find that for recom-
mended items, the distribution of user ratings shifts in positive
direction.

We also check if there is any relation between conformers’
ratings and their friends’ rating. For the same, for every κu
interval, we plot the average difference between user’s rating
and user’s active friends’ rating. Note that, the average is not
weighted by κf,u and also includes the opinions of active friends
with κf,u = 0. Results are presented in Figure 4.7(d). It can be
seen that the difference decreases linearly as κu increases with
exception when κu > 0.7. In other words, users with high κu
values behave more similar to their friends.

Next we explore, when do the ratings with social conformity
appears during an item information cascade? An item informa-
tion cascade is the life cycle of the item since the first rating
is given to it. We want to understand if most of the ratings
with social conformity appear towards the end of the informa-
tion cascade? And how is their behavior different from other
ratings? For the same, for each item, we find the percentage
of social ratings with conf > 0.1 that appeared in between day
d and day d + 10 since first rating is posted. Then, we calcu-
late their average over all the items and plot them against day
d where d is incremented in steps of 10. Similarly we plot the
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ratings with conf ≤ 0.1. Results are presented in Figure 4.7(e).
The ratings with conf > 0.1 are shown by red colored line while
other ratings are shown by the blue line. It can be seen that
two kinds of ratings follow very different patterns. The ratings
with conf ≤ 0.1 have maximum presence during the start of
the information cascade and their percentage decays slowly as
the time passes by. While the ratings with conf > 0.1 have
relatively smaller presence at the start. As the time passes by
their percentage increases and peaks at around 300 days passed.
After that, their percentage falls with time and follows similar
pattern as the other ratings. This is similar to the pattern ob-
served by authors in [4], where authors discover on Yahoo! Go
dataset that early adopters are typically trend setters and other
users start adopting the product as social influence increases.

In general, we find that users with higher value of κu tend
to post their ratings during the later part of the item life-cycle.
The results are presented in Figure 4.7(f), where we plot the
average time of rating users for each of the κu interval. It can
be noted that as the κu increases, the average time of users in
that interval increases linearly, with exception when κu > 0.7.
We suspect such high values of κu are a result of over-fitting
over the train data.

To summarize, we find the following patterns.

• More than 76% users display some sort of conformity with
their friends. Additionally most of them do not conform to
more than 9 of their friends.

• Owning to social influence, most of the ratings change by
-0.5 to +0.5 amounts. However the effect is asymmetric.
More ratings change by positive factor than the negative
factor.

• The social conformity prevails the most approximately 300
days passed since the first item ratings. Then it starts to
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decay slowly.

• Users with high degree of conformity κu post their rating
relative late as compared to the users with smaller κu.

4.6 Summary

In this work, we propose a novel formulation for the user rat-
ings CRM that explicitly considers the social opinions. Specif-
ically, the CRM introduces a set of parameters to denote the
social conformity of each user with her friends. The CRM is
shown to be effective in both improving the prediction accuracy
of user’s rating and in accurately identifying the social influ-
encers. The prediction accuracy is found to improve by more
than 2% in presence of social influence. Based on the detailed
analysis of learned social conformity, several interesting patterns
have emerged. We find that most of the users show some degree
of conformity with their friends; however they do not tend to
conform to lots of their friends. The analysis also sheds light
on the change in ratings caused by the social opinions. To our
surprise, more number of user ratings become positive than neg-
ative in presence of social opinions. That is, our friends opinion
makes our posterior evaluation of the product more positive,
which is certainly a good news for the viral marketing strategy.
Further, similar to the item product adopters, the users with
high conformity tend to post their rating during the later part
of the information cascade.

� End of chapter.



Chapter 5

Summary & Future Work

5.1 Summary

In this work, we have reviewed the current state of research on
the information flow in social networks. We study the impact of
social opinions on both users’ product adoption behavior and the
posterior evaluation of the product. In particular, we observe
that the negative and positive opinions have asymmetric impact
on the product adoption behavior, while the positive opinions
encourage users to purchase a product, the negative opinions
discourage the people. The two kind of opinions also show dif-
ferent patterns of propagation, where negative opinions tend to
localize near the point of originations on social rating networks.
To capture this asymmetry, we propose models that explicitly
accounts for this asymmetry and thereby, improves the accuracy
of prediction of future opinions.

We also study the impact of social opinions on posterior prod-
uct evaluation of the product. In order to quantify this impact,
we extend the rating prediction models to explicitly account for
social conformity along with the users’ and products’ character-
istics. Using the proposed model, we discover various interesting
patterns of social conformity on a large real dataset.

97
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5.2 Future Work

We consider this work as a step towards understanding the social
behavior of users and hope that it would help in developing bet-
ter recommendation systems and information propagation mod-
els. We think following will be worthwhile directions for future
work.

• Our work studies one of the aspect of the opinion. In real
world, many times opinions are expressed at attribute level
of products (e.g. great story but bad direction) or opin-
ions are not binary (positive or negative) but a degree of
liking/disliking is associated with the polarity (e.g. good
movie, awesome movie). In such cases, considering only
polarity may not be sufficient and we would like to extend
our information flow model, to incorporate these aspects.

• Viral marketing is one of the main application of the infor-
mation flow in social networks. We would like to explore
algorithms where we can maximize the social influence in
the presence of polarity of opinions.

• Currently, we have assumed that a person has same social
influence over every topic. However, in general the person’s
perceived expertise over different topics, affect his social in-
fluence. In future, it will be worth incorporating the topical
expertise in the information flow models.

• It will be interesting to study if there is any difference be-
tween the characteristics of the users, with most influence
on product adoption and that of the users with most influ-
ence on product posterior evaluation.

• It has been observed that, as time passes by, friends become
more similar to each other. Thus, given users current pref-
erence and similarity, one can build models to predict the
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user similarity in future. These predictions can be given as
an input signal to the recommender systems.

� End of chapter.
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