
Quality Prediction for Component-Based
Software Development: Techniques and
A Generic Environment

Presented by: Cai Xia
Supervisor: Prof. Michael Lyu

Examiners: Prof. Ada Fu
Prof. K.F. Wong

Dec. 17, 2001

1

Outline

n Introduction
n Technical Background and Related Work
n A Quality Assurance Model for CBSD
n A Generic Quality Assessment Environment:

ComPARE
n Experiment and Discussion
n Conclusion

2

Introduction

n The most promising solution for large-scale,
complex and uneasily controlled modern software
system is component-based software
development (CBSD) approach

n The concept, process, life cycle and infrastructure
of CBSD are different from traditional systems

n Quality Assurance (QA) is very important for
component-based software systems

3

Introduction
n Component-based software development (CBSD)

is to build software systems using a combination
of components

n CBSD aims to encapsulate function in large
components that have loose couplings.

n A component is a unit of independent deployment
in CBSD.

n The over quality of the final system greatly
depends on the quality of the selected
components.

4

What is Component-Based Software
Development ?

Component
repository

Component 1

Component 2

Component n

Software
systems

select assemble

...

Commercial Off-the-shelf
(COTS) components

5

What is A Component?

n A component is an independent and
replaceable part of a system that
fulfills a clear function
n A component works in the context of
a well-defined architecture
n It communicates with other
components by the interfaces

6

System Architecture

Special business components

Common components

Basic components

App2
App1

App3
Application

Layer

Components
Layer

7

Problem Statement

n Due to the special feature of CBSD,
conventional SQA techniques and methods
are uncertain to apply to CBSD.

n We address the investigation of most
efficient and effective approach suitable to
CBSD

8

Our Contributions
n A QA model for CBSD which covers eight

main processes.
n A quality assessment environment

(ComPARE) to evaluate the quality of
components and software systems in CBSD.

n Experiments on applying and comparing
different quality predicted techniques to
some CBSD programs.

9

Outline

n Introduction
n Technical Background and Related Work
n A Quality Assurance Model for CBSD
n A Generic Quality Assessment Environment:

ComPARE
n Experiment and Discussion
n Conclusion

10

Technical Background and Related Work:
Development Frameworks

n A framework can be defined as a set of
constraints on components and their
interactions, and a set of benefits that
derive from those constraints.

n Three somehow standardized component
frameworks: CORBA, COM/DCOM,
JavaBeans/EJB.

11

Comparison of Component Frameworks

CORBA EJB COM/DCOM
Development
environment Underdeveloped Emerging

Supported by a wide range of
strong development
environments

Binary
interfacing
standard

Not binary standards Based on COM;
Java specific

A binary standard for
component interaction is the
heart of COM

Compatibility &
portability

Strong in standardizing
language bindings; but not
so portable

Portable by Java
language spec; but not
very compatible.

Not having any concept of
source-level standard of
standard language binding.

Modification &
maintenance

CORBA IDL for defining
component interfaces

Not involving IDL
files

Microsoft IDL for defining
component interfaces

Services
provided

A full set of standardized
services; lack of
implementations

Neither standardized
nor implemented

Recently supplemented by a
number of key services

Platform
dependency

Platform independent Platform independent Platform dependent

Language
dependency

Language independent Language dependent Language independent

Implementation
Strongest for traditional
enterprise computing

Strongest on general
Web clients.

Strongest on the traditional
desktop applications

12

Technical Background and Related Work:
QA Issues
n How to certify quality of a component?

o Size
o complexity
o reuse frequency
o reliability

n How to certify quality of a component-
based software system?

13

Life Cycle of A Component

 reject
 affirmed for affirmed for
 new construction delivery

 new release of
 change proposal component library

 delete mark for deletion

Proposal Under
Construction

Ready for
Distribution

To be deleted
(do not use)

Under use

14

§ Requirements analysis
§ Software architecture selection, creation,
analysis and evaluation
§ Component evaluation, selection and
customization
§ Integration

§ Component-based system testing
§ Software maintenance

Life Cycle of CBSD

15

n Case-Based Reasoning
n Classfication Tree Model
n Bayesian Belief Network
n Discriminant Analysis
n Pattern recoginition

Technical Background and Related Work:
Quality Prediction Techniques

16

Outline

n Introduction
n Technical Background and Related Work
n A Quality Assurance Model for CBSD
n A Generic Quality Assessment Environment:

ComPARE
n Experiment and Discussion
n Conclusion

17

A QA Model for CBSD
n Component
n System

Quality
Assurance
Model

Component
System

18

Main Practices
Requirement

Analysis
Component

Architecture
DesignSystem

Component
Development

Component
Certification

Component
Customization

System
Integration

System
Testing

System
Maintenance

19

Requirements
Gathering and
Definition

Requirement
Analysis

Component
Modeling

Requirement
Validation

Component
Development

System
Maintenance

Draft User Requirement
 Documentation (URD)

Format &
Structure

Component Requirement
 Document (CRD)

Updated CRD with
 model included

Current URD
 User Requirement
 Changes

Data
Dictionary

 Structure for
naming &
Describing

Current
URD

Requirement
Document
Template

Request for new development
 or change

Initiators (Users, Customers,
Manager etc.)

Process Overview:
Component Requirement Analysis

20

Developers

Implementation

Self-Testing
(Function)

Self-Testing
(Reliability)

Development
Document

Component
Certification

System
Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component

Reliable Component

Submit
 For Reference

Existing
Fault

Component
Requirement

Document

Process Overview:
Component Development

21

System Requirements

Component
Outsourcing

Component
Testing

Component
Selecting

Acceptance System
Maintenance

Specific Component
Requirements

 Component Released

Component
Functions

Well-Functional Component

 Component fit for the special
 requirements

Contract Signoffs,
Payments

Reject

Component
Development

Document

Process Overview:
Component Certification

22

System Requirements & Other
Component Requirements

Component
Customization

Component
Document

Component
Testing

Acceptance System
Maintenance

on

Specific System & Other
Component Requirements

 Component Changed

Component
Document

New Component Document

 Component fit for the special
 requirements

Component
Document

Reject

Component
Development

Document

System
Integration Assemble

Process Overview:
Component Customization

23

Initiators

System Requirement
Gathering

System Requirement
Analysis

System Architecture
Design

System
Specification

System
Integration

Requests for New Systems

 Draft System Requirements
 Document

Format &
Structure
Document

System Requirement Document

System Architecure

System Specification
Document

Current
Document

Requirement
Document
Template

System
Testing System

Requirement

System
Maintenance

Process Overview:
System Architecture Design

24

System
Requirement

System
Integration

Self-Testing

Component
Changing

Final
System

System
Maintenance

Requirements for New
Systems

 Draft System

Architecture

Fault Component

Selecting New Component

System Integration
Document

Current
Component

System
Architecture

System
Testing Final System

Component
Certification

Component
Requirement

Process Overview:
System Integration

25

System Design
Document

Testing
Strategy

System
Testing

User Acceptance
Testing

Test Completion
Activities

System
Maintenance

 Testing Requirements

 System Testing Plan

Test
Dependencies

System Tested

User Accepted System

System Integration
Document

System
Maintenance

(Previous
Software Life

Cycle)

Component
Development

Component
Document

System
Integration

Component
Document

System Test
Spec.

User Acceptance
Test Spec.

Process Overview:
System Testing

26

Users

Support
Strategy

Problem
Management

System
Maintenance

 Request and Problem Reports

User Support Agreement

 Documents,
 Strategies

Change Requests

All Previous
Phases

System
Testing

New Version

Process Overview:
System Maintenance

27

The Feature of Our QA Model
Compared with other existing models:
§ Simple, easy to apply
§ Design for local component vendors (small to

medium size)
§ Focused on development process, according

to the life cycle of CBSD
§ Not focused on the measure/predict the

quality of components/systems

28

Outline

n Introduction
n Technical Background and Related Work
n A Quality Assurance Model for CBSD
n A Generic Quality Assessment Environment:

ComPARE
n Experiment and Discussion
n Conclusion

29

ComPARE: A Generic Quality
Assessment Environment
n Component-based Program Analysis and

Reliability Evaluation
n Automates the collection of metrics, the

selection of prediction models, the validation
of the established models according to fault
data collected in the development process

n Integrates & encapsulate the quality control
for different processes defined in our QA
model

30

Objective of ComPARE

§ To predict the overall quality by using process
metrics, static code metrics as well as dynamic
metrics.

§ To integrate several quality prediction models
into one environment and compare the
prediction result of different models

§ To define the quality prediction models
interactively

31

Objective of ComPARE

§ To display quality of components by different
categories

§ To validate reliability models defined by user
against real failure data

§ To show the source code with potential
problems at line-level granularity

§ To adopt commercial tools in accessing software
data related to quality attributes

32

Architecture of ComPARE

Metrics
Computation

Criteria
Selection

Model
Definition

Model
Validation

Result
Display

Case Base

Failure
Data

Candidate
Components

System
Architecture

33

Combination of Metrics & Models

MetricsProcess
Metrics

Static
Metrics

Dynamic
Metrics

Models

BBN

CBR

Tree
LOC

CC
NOC

Coverag
e

Call Graph
Heap

Time
Effort

CR

Sub-metrics

34

Quality Control Methods
n Existing Software Quality Assurance

(SQA) techniques and methods have
explored to measure or control the
quality of software systems or process.
• Management/process control
• Software testing
• Software metrics
• Quality prediction techniques

35

Quality Assessment Techniques
n Software metrics:

• Process metrics
• Static code metrics
• Dynamic metrics

n Quality prediction model:
• Classification tree model
• Case-based reasoning method
• Bayesian Belief Network

36

Progress and Dynamic
Metrics

Metric Description

Time Time spent from the design to the delivery (months)

Effort The total human resources used (man*month)

Change Report Number of faults found in the development

Metric Description

Test Case Coverage The coverage of the source code when executing the given test cases. It may
help to design effective test cases.

Call Graph metrics The relationships between the methods, including method time (the amount
of time the method spent in execution), method object count (the number of
objects created during the method execution) and number of calls (how many
times each method is called in you application).

Heap metrics Number of live instances of a particular class/package, and the memory used
by each live instance.

37

Static Code Metrics
Abbreviation Description

Lines of Code (LOC) Number of lines in the components including the statements, the blank lines of code, the
lines of commentary, and the lines consisting only of syntax such as block delimiters.

Cyclomatic Complexity (CC) A measure of the control flow complexity of a method or constructor. It counts the number
of branches in the body of the method, defined by the number of WHILE statements, IF
statements, FOR statements, and CASE statements.

Number of Attributes (NA) Number of fields declared in the class or interface.

Number Of Classes (NOC) Number of classes or interfaces that are declared. This is usually 1, but nested class
declarations will increase this number.

Depth of Inheritance Tree (DIT) Length of inheritance path between the current class and the base class.

Depth of Interface Extension Tree
(DIET)

The path between the current interface and the base interface.

Data Abstraction Coupling (DAC) Number of reference types that are used in the field declarations of the class or interface.

Fan Out (FANOUT) Number of reference types that are used in field declarations, formal parameters, return
types, throws declarations, and local variables.

Coupling between Objects (CO) Number of reference types that are used in field declarations, formal parameters, return
types, throws declarations, local variables and also types from which field and method
selections are made.

Method Calls Input/Output
(MCI/MCO)

Number of calls to/from a method. It helps to analyze the coupling between methods.

Lack of Cohesion Of Methods
(LCOM)

For each pair of methods in the class, the set of fields each of them accesses is determined. If
they have disjoint sets of field accesses then increase the count P by one. If they share at
least one field access then increase Q by one. After considering each pair of methods,

LCOM = (P > Q) ? (P - Q) : 0

38

n Classfication Tree Model
n classify the candidate components into different

quality categories by constructing a tree structure

Quality Prediction Techniques

39

n Case-Based Reasoning
n A CBR classifier uses previous “similar”

cases as the basis for the prediction. case
base.

n The candidate component that has a
similar structure to the components in the
case base will inherit a similar quality level.

n Euclidean distance, z-score standardization,
no weighting scheme, nearest neighbor.

Quality Prediction Techniques

40

n Bayesian Network
n a graphical network that represents probabilistic

relationships among variables
n enable reasoning under uncertainty
n The foundation of Bayesian networks is the

following theorem known as Bayes’ Theorem:
 P(H|c)P(E|H,c)P(H|E,c) =

P(E|c)

where H, E, c are independent events, P is the probability
of such event under certain circumstances

Quality Prediction Techniques

41

Prototype
n GUI of ComPARE for metrics, criteria and tree

model
Metrics Tree Model Criteria

42

Prototype
n GUI of ComPARE for prediction display, risky

source code and result statistics

Statistics Display Source code

43

Outline

n Introduction
n Technical Background and Related Work
n A Quality Assurance Model for CBSD
n A Generic Quality Assessment Environment:

ComPARE
n Experiment and Discussion
n Conclusion

44

Experiment: Objective

n Apply various existing quality prediction
models to component-based programs to
see if they are applicable

n Evaluate/validate the prediction results to
CBSD

n Investigate the relationship between
metrics and quality indicator

45

Experiment: Data Description

n Real life project --- Soccer Club
Management System

n A distributed system for multiple clients to
access a Soccer Team Management Server
for 10 different operations

n CORBA platform
n 18 set of programs by different teams
n 57 test cases are designed: 2 test cases for

each operation: one for normal operation
and the other for exception handling.

46

Experiment: Data Description
Team TLOC CLOC SLOC CClass CMethod SClass SMethod Fail Maybe R R1

P2 1129 613 516 3 15 5 26 7 6 0.77 0.88

P3 1874 1023 851 3 23 5 62 3 6 0.84 095

P4 1309 409 900 3 12 1 23 3 12 0.74 0.95

P5 2843 1344 1499 4 26 1 25 2 1 0.95 0.96

P6 1315 420 895 3 3 1 39 13 10 0.60 0.77
P7 2674 1827 847 3 17 5 35 3 14 0.70 0.95

P8 1520 734 786 3 24 4 30 1 6 0.88 0.98

P9 2121 1181 940 4 22 3 43 4 2 0.89 0.93

P10 1352 498 854 3 12 5 41 2 2 0.93 0.96

P11 563 190 373 3 12 3 20 6 3 0.84 0.89

P12 5695 4641 1054 14 166 5 32 1 4 0.91 0.98

P13 2602 1587 1015 3 27 3 32 17 19 0.37 0.70

P14 1994 873 1121 4 12 5 39 4 6 0.82 0.93

P15 714 348 366 4 11 4 33 2 5 0.88 0.96

P16 1676 925 751 3 3 23 44 30 0 0.47 0.47

P17 1288 933 355 6 25 5 35 3 3 0.89 0.95

P18 1731 814 917 3 12 3 20 4 9 0.77 0.93

P19 1900 930 970 3 3 2 20 35 1 0.37 0.39

47

Experiment: Data Description

§ TLOC: the total length of whole program;
§ CLOC: lines of codes in client program;
§ SLOC: lines of codes in server program;
§ CClass: number of classes in client program;
§ CMethod: number of methods in client program;
§ SClass: number of classes in server program;
§ SMethod: number of methods in server program;

48

§ Fail: the number of test cases that the program fails
to pass

n Maybe: the number of test cases, which are
designed to raise exceptions, can not apply to the
program because the client side of the program
deliberately forbids it.

n R: pass rate, defined by .
n R1: pass rate 2, defined by ,
C is the total number of test cases applied to the programs (i.e., 57);
Pj is the number of “Pass” cases for program j, Pj= C – Fail – Maybe;
Mj is the number of “Maybe” cases for program j.

Experiment: Data Description

j
j
PR
C

=

1 j j
j
P MR
C
+

=

49

Experiment: Procedures

n Collect metrics of all programs: Metamata
& JProbe

n Design test cases, use test results as
indicator of quality

n Apply on different models
n Validate the prediction results against test

results

50

Experiment: Modeling Methodology

n Classification Tree Modeling
- CART: Classification and Regression
Trees

n Bayesian Belief Network
- Hugin system

51

CART

n Splitting Rules: all possible splits
n Choosing a split: GINI, gwoing, ordered

twoing, class probability, least squares,
least abosolute deviation

n Stopping Rules: too few cases
n Cross Validation: 1/10

for smaller datasets and cases

52

CART: Tree Structure
CMETHOD< 7

TLOC< 1495.5 TLOC< 638.5

TLOC< 2758.5

CMETHOD< 26

SLOC< 908.5

TLOC< 921.5

TLOC< 1208.5

1 2

4

7

8

9

3

5 6

53

CART: Node Information

Parent
Node Wgt Count Count Median MeanAbsDev Complexity

1 1.00 1 13.000 0.000 17.000
2 2.00 2 35.000 2.500 17.000
3 1.00 1 6.000 0.000 6.333
4 1.00 1 2.000 0.000 2.500
5 1.00 1 7.000 0.000 4.000
6 6.00 6 3.000 0.500 4.000
7 3.00 3 4.000 0.000 3.000
8 1.00 1 17.000 0.000 14.000
9 2.00 2 2.000 0.500 8.000

54

CART: Variable Importance

Relative Number Of Minimum
Metrics Importance Categories Category

CMETHOD 100.000
TLOC 45.161
SCLASS 43.548
CLOC 33.871
SLOC 4.839
SMETHOD 0.000
CCLASS 0.000

N of the learning sample = 18

55

CART: Result Analysis
Terminal Node Mean Faults CMethod TLOC SLOC

4 2 7~26 638.5~921.5 <=908.5

9 2 >7 <=638.5 -

6 3 7~26 1208.5~2758.5 <=908.5

7 4 7~26 638.5~921.5 >908.5

3 6 >7 <=638.5 -

5 7 7~26 638.5~921.5 <=908.5

1 13 <=7 <=1495.5 -

8 17 >26 638.5~921.5 -

2 35 <=7 >1495.5 -

56

Hugin Explorer System

n Construct model-based decision support
systems in domains characterized by
inherent uncertainty.

n Support Bayesian belief networks and
their extension influence diagrams.

n Define both discrete nodes and
continuous nodes

57

Hugin: Influence Diagram

58

Hugin: Probability Description

59

Hugin: Propagation
n The sum propagation shows the true

probability of state of nodes with the total
summation 1

n For the max propagation, if a state of a node
belongs to the most probable configuration it
is given the value 100, all other states are
given the relative value of the probability of
the most probable configuration they are
found in compared to the most probable
configuration.

60

Hugin: Propagation
n Using max propagation instead of sum

propagation, we can find the probability
of the most likely combination of states
under the assumption that the entered
evidence holds. In each node, a state
having the value 100.00 belongs to a
most likely combination of states.

61

Hugin: Run Result (sum prop.)

62

Hugin: Run Result (max prop.)

63

Hugin: Result Analysis

TestResu
lt

CCLASS CMethod SCLASS SMethod TLOC CLOC SLOC

0-5 1-5 10-50 1-5 10-50 1-2K 0-0.5K 0.5-1K

5-10 1-5 10-50 1-5 10-50 1-2L 0.5-1K 0.5-1K

64

Comparison

Modeling Advantage Disadvantage

Classification Tree Very accurate if the
learning sample is
large enough

Need large learning
data and data
description

Bayesian Belief
Network

Can suggest the
best combination of
metrics for the faults
in a specific range

Need expert
acknowledge in a
specific domain to
construct a correct
influence diagram

65

Discussion
n For testing result between 0-5, the

range of CMethod, TLOC and SLOC is
very close in the two modeling methods.

n For our experiment, the learning data
set is limited to 18 teams.

n The prediction results will be more
accurate and representative if the
learning data set is larger.

66

Discussion

n If more learning data and more metrics
are available, the results will be more
complex and hard to analysis.

n This will raise the need for an automatic
and thorough modeling and analysis
environment to integrate and
encapsulate such operations. That’s
exactly what ComPARE aims at.

67

Discussion

n Case-based reasoning is not applied in
our experiment because the lack of tool,
yet it can be simulated by the results of
the classification tree.

n Dynamic metric is not collected because
of the complex and confliction of the
CORBA platform and existing metric-
collected tool.

68

Conclusion
n Problem: conventional SQA techniques

are not applicable to CBSD.
n We propose a QA model for CBSD which

covers eight main processes.
n We propose an environment to

integrate and investigate most efficient
and effective approach suitable to CBSD.

69

Conclusion
n Experiments of applying and comparing

different quality predicted techniques to some
CBSD programs have been done.

n Not enough component-based software
programs and results collected for our
experiment

n Validation/evaluation of different models
should be done if learning data set is large
enough

Thank you!

