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- Supervised learning

Classification

Setup
o L= {(xi, yi)}i1.
X, € X C Rd,y,' € {—1, 1}
o Objective: seek fiy(x) = W/ ¢(x) + b, 9 = (W, b),
to classify x into —1 or +1

[lustration

Error Rate=0.05, d=1 Error Rate=0.015, d=2 Error Rate=0.015, d=3
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- Supervised learning

Regression

Setup
o L ={(xi, yi)}i=1»
XiEXng,yiER

o Objective: seek fy(x) = w/¢(x) + b, 9 = (w, b),
to make fig(X) ~ y;

I1lustration

MSE=0.27, d=1 MSE=0.14, d=1 MSE=0.13, d=7
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Tikhonov regularization-ridge regression

History and definition

v Developed by Andrey Tychonoff in 1940’s

v' The most commonly used method of regularization of ill-posed problems
v’ In statistics, named ridge regression
Definition:

min  [Xw —Y[*+  |[Tw|?
w ) S —— N —

loss Regularizer
I is the Tikhonov matrix, usually I' = 1.
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Support vector classification

History and definition

v' Theories mainly developed by Vapnik in 1970’s
v’ First introduced in COLT 1992 by Boser, Guyon Vapnik
Definition: 5
ZHI yif (%)) —||W||
i=1
H,(z) = max{0, 1 — z} : hinge loss
[llustration
Hinge loss SVM lllustration
2
1
92 -1 0 1 2
Signed output X1
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Support vector machines

Support vector regression

History and definition
v First introduced in NIPS 1996, by H. Drucker, et al. (1997)

Definition:
min Zle vi —f(%:)) + —||w||2
W
i=1
I(z) = max{0, |z| — €} : e-insensitive loss
[llustrations
e-insensitive loss (e=0.1) SVR lllustration
2
15
21
-
0.5
92 -1 0 1 2

Signed output x
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- Ly -norm regularization

Lasso

History and definition

v Find a least-squares solution with the L;-regularizer
v' Mainly developed by R. Tibshirani (1996)

Definition: min || Xw — Y| + \|w|,
w

I1lustrations

v
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Group lasso

History and definition

v Do variable selection in a group manner
v’ First proposed by Yuan, M. and Lin, Y. (2006)

Definition: ¢
Group Lasso: min || Xw — Y||? + A E V|| W2
w
g=1

G
Sparse Group Lasso: min || Xw — Y||? + A Z(\/dg||wg||2 + 1| |WE|[1)
w
g=1

I1lustrations

w2l ece w

m - “Hm

(a) Group Lasso (b) Sparse Group Lasso

GT

w2l eoe w
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Lists

Localized support vector regression

Multi-task learning models

Tri-class support vector machines

Sparse generalized multiple kernel learning method

Online learning models

o Group Lasso
o Multi-task learning models
e ...
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Background

SVM-nonlinear extension

Data: D = {x;,yi}[,,
Decision: f(x) = w' ¢(x) + b,

B(x) : RI - RS

Ilustration
N 9 ° .
o %% u S
X
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Kernelized version

2
A={acRY, a'y=0, a <Cly}
Decision: f(x) = 27:1 o K(x, x;) + b*,

Objective: max 1y — i(aoy) K(aoy)
acA

Kernels

Definition:  k(x;,%;) = ¢(x1) " @(x2)
Polynomial k(x;,x;) = (x/ xo + 1)¢
RBF  k(x1,%2) = exp(—]lx1 — %)

Constru& 'Ker'rie;ls
K, c.. . Kq

How to select optimal kernel?
Cross-validation or learn from data based on some criteria
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Li-norm MKL

Formulation
Objective: ming ;950 C Y| R(fape0(X:),y:) + 1w W+ 2T (),

0
Dual: min max D0, a) =1ya — 1(aoy)’ (El HqKq> (aoy)
0={0cR?:|0]: <1}
A={acRY a’y=0, a <Cly}

Decision: f(x) = Zivzl of <Z§:1 QJK‘I(X’ Xi)) PO

Research on this framework

Speed-up methods: Semi-definite programming
Semi-infinite linear programming
Gradient descent
Extended level method
Model extensions: L,/L,-norm MKL
Mixed norms
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Our generalized MKL

Motivations

V' Lj-norm MKL may discard useful information when kernels are
orthogonal or with correlation characterizations
V' L,-norm MKL yields non-sparse solutions for p > 1

Formulation

0cO acA
©={6 RS :v|8]l + (1 -6, < 1}

A:{QER{\,‘_, a'y=0, a < Cly}
Here, we consider p = 2

Q
min max 1j o — i(aoy)’ <Z GqKq> (xoy)
=1
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Properties

o V|67l + (1 = v)[|67]|3 < 1

o For K,‘ = Kj,
v#1 0F = max {O, 2(1—;) (+(aoy) K (aoy) — v)}
v=1 §; and 0; are not unique

(a*oy) TKi(a*oy)

(@) Klaroy 1= 07 = 0]
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Algorithm-level method

Given: predefined tolerant error 6 > 0 @ The convergence rate of
Initialization: Let = 0 and 6° = cl1,, the level method is
Repeat 0672

Solve the dual problem of an SVM @ DualGap

with 25:1 0, K, to get a;

Construct the cutting plane model, =D(6'.a")—1y o' max @,

h'(0) = max D(0, a');
1<i<t . :(l(a‘oy)TK (aloy)c)
Calculate the lower bound and the ARy
. (1-v £2_ (02 +1
upper bound of the cutting plane = mtoner
and the gap, A’;
Project 8" onto the level set by
solving a QCQP;
Update t =1+ 1;
until A’ < 4.
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Experiments I

Algorithms
o SimpleMKL for L;-norm MKL
@ [,-norm MKL
o GMKL

Platform
@ Mosek to solve the QCQP

@ Matlab on a a PC with Intel Core 2 Duo 2.13GHz CPU and 3GB
memory.
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- Sparse generalized multiple kernel learning

Experiments II

Datasets

| Dataset || #Classes | # Training (N) | #Test | #Dim | # Kernel (Q) |
Toyl 2 150 150 20 273
Toy2 2 150 150 20 273
Breast 2 341 342 10 143
Heart 2 135 135 13 182
Ionosphere 2 175 176 33 442
Liver 2 172 173 6 91
Pima 2 384 384 8 117
Sonar 2 104 104 60 793
Wdbc 2 284 285 30 403
Wpbc 2 99 99 33 442
Colon 2 31 31 2,000 2,000
Lymphoma 2 48 48 4,026 4,026
Plant 4 470 470 69
Psort+ 4 270 271 69
Psort- 5 722 722 69
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- Sparse generalized multiple kernel learning (,A;Ir bt =5

Experiments III
Schemes on generating toy data
o Toyl o The outputs (labels) are
v ) 3 dominated by only some features
i = SIEn J;fl (xy) + € o Each mapping acts on three
o Toy2 features ec!ually, implicitly
incorporating grouping effect
o Each mapping is with zero meat
Y; = sign ( ] fl(x,-,-)+§6: flxg) on the corresponding feature,
= =t which yields zero mean on the
) D f4(x,~,~>+ef) output
=0 j=10
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Experimental results I
Toy data results
Dataset Method Accuracy | #Kernel | Times (s)
GMKL 71.6£1.2 | 43.0£3.3 | 2.840.7
Toy 1 Li-MKL || 67.3+1.1 | 20.5+£2.1 | 4.2£0.9
L,-MKL || 69.2+1.0 273 2.6+1.0
GMKL 76.5+1.2 | 48.543.3 | 3.64+0.2
Toy 2 Li-MKL || 73.1+£24 | 25.3+2.5 | 6.7£2.4
L,-MKL || 74.2+1.8 273 3.34+0.3




Experimental results II

L;-MKL on Toy 1

T

E)

L,-MKL on Toy 2

0

Our Work
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Selected kernels on toy data

GMKL on Toy 1

L,-MKL on Toy 1

GMKL on Toy 2

03

L,-MKL on Toy 2

s 00 s 20 %0 w0
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Experimental results ITT
Results on UCI data
Dataset Method Accuracy # Kernel Times (s)
GMKL T9734+03 | 497421 [51403
Breast L,-MKL 96.8F0.8 T43E35  [36.1F41
L,-MKL 970506 3 87E0.5
GMKL 84.6£06 405E35 | 1.6£04
Heart L,-MKL $46E12 280F48 [ 34E03
L,-MKL $4.6L0.7 82 29E02
GMKL 92411 647E25 | 73E10
t L;-MKL 920F26 350836  [140%23
L, MKL 933E1.0 42 6.6£0.5
GMKL Tes.6+20 | 303422 [1.2402
Liver L;-MKL 65.4FE49 T1.0E£2.6 [ 27E07
L,-MKL || T68.642.5 91 23402
GMKL _|[ T79.4405 [ 805+78 [3.1+04
Pima L -MKL 775F09 177E12 _ [470E79
L, MKL 773E0.7 17 T1.8£0.7
GMKL T843+238 80.04+7 193408
Sonar L,-MKL 79.6E76 64301 [97E23
L,-MKL ST1E5.7 793 6.0£0.2
GMKL 96.6£0.2 765F45 [108F0.7
Wdbe L -MKL 965E12 T8ET0 545E04
L, -MKL 96.7E0.7 203 177E18
Wb GMKL 77.74+2.0 [379.0460.1 [ 1.7£04
I L-MKL || 77.1£21 | 450£82 [42F09
L,-MKL UKETR] 2 25%07
.
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Experimental results I'V

Results on microarray data

Accuracy on microarray datasets

# kernels for microarray datasets

eeuracy (%6)
o

=}

Colon Lymphoma
Dataset

Accuracy No. of selected kernels

Colon Lymphoma
Dataset
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Experimental results V

Selected kernels on microarray data
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L;-MKL on Colon GMKL on Colon L,-MKL on Colon
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Experimental results VI

Results on protein subcellular localization data

MCC on protein datasets # kernels for protein datasets

o Hkerngls
o o o

=
1S)

0 [
plant psort+ psort— plant psort+ psort—
Dataset Dataset

Accuracy No. of selected kernels

26
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- Sparse generalized multiple kernel learning

Summary
@ A generalized multiple kernel learning (GMKL) model by imposing
Li-norm and L,-norm regularization on the kernel weights
@ Properties, e.g., sparse solutions, are discussed

@ Model is solved by the level method, convergence rate and optimal
conditions are provided.

@ Experiments on both synthetic and real-world datasets are provided.
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Questions ?
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