

REALTIME MORSE CODE REALTIME MORSE PROJECT FALL 2013 LYU 1305

Supervisor: Prof. LYU Rung Tsong Michael

Students: LUO Xin (1155026046)

ZOU Lei (1155026057)

AGENDA

AGENDA

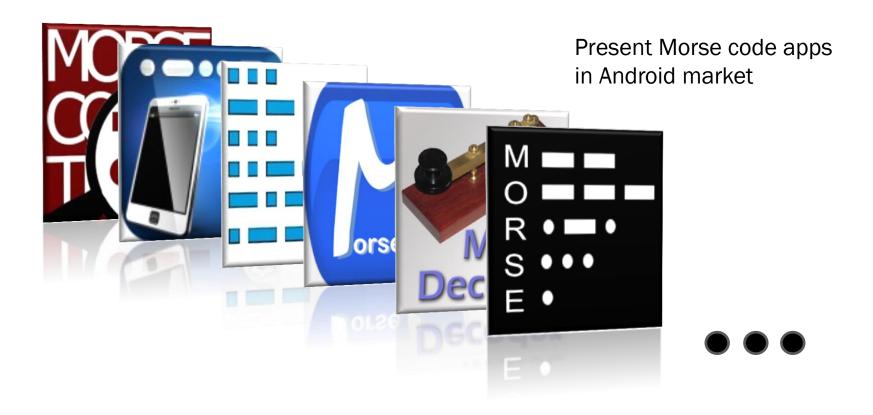
Introduction

Relative topics study

Design and Implementation

Experiments and testing

Conclusion


Project demo

Introduction study

Design and Implementation

Experiments and testing

MOTIVATION

Relative topics study

Design and Implementation

Experiments and testing

Conclusion

OBJECTIVES

- Encoding Morse code and playing it by flashlight;
- Decoding Morse code of light pattern;
- Allowing users to change transmission rates;
- Decoding messages with any transmission rate in some range;
- Bi-directional communication in the standard way;
- Template database in case of emergency, for example, SOS;
- Saving words or sentences used frequently to the template database.

AGENDA

AGENDA

Introduction

Relative topics study

Design and Implementation

Experiments and testing

Conclusion

Project demo

Introduction study

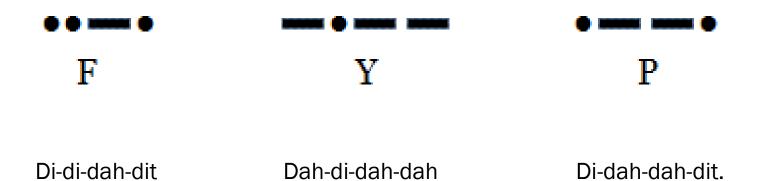
Design and Implementation

Experiments and testing

Conclusion

INTRODUCTION TO MORSE CODE

Coding rule


Element	Time
Dot (●)	1 time unit
Dash ()	3 time units
Inter-element gap	1 time unit
Short gap between letters	3 time units
Medium gap between words	7 time units

Introduction Relative topics Design and Experiments Conclusion Project demonstration

INTRODUCTION OF MORSE CODE

Example:

Introduction

Relative topics study

Design and Implementation Experiments and testing

In the past

Human eyes to see things

Image processed in our brain

Now

Machine eyes to see things

Real time image processed in machine

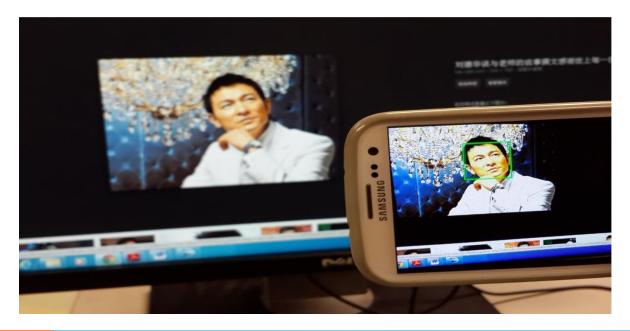
Open source library

- Computer Vision algorithms
- Machine learning algorithms

Usage

- Face detection
- Camera's movements trace
- Human actions' classification

Design and Implementation

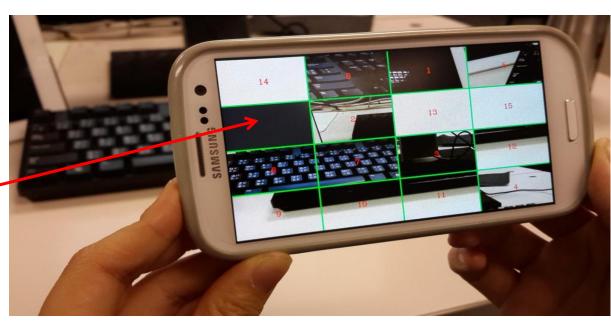

Experiments and testing

Conclusion

Simple Android application

Face Detection

study


Design and Implementation Experiments and testing

Conclusion

Simple Android application

Puzzle game

Empty slot

study

Design and Implementation Experiments and testing

Conclusion

OpenCV and our App

- Detection part mainly depends on OpenCV
- Real time image
- High speed image processing

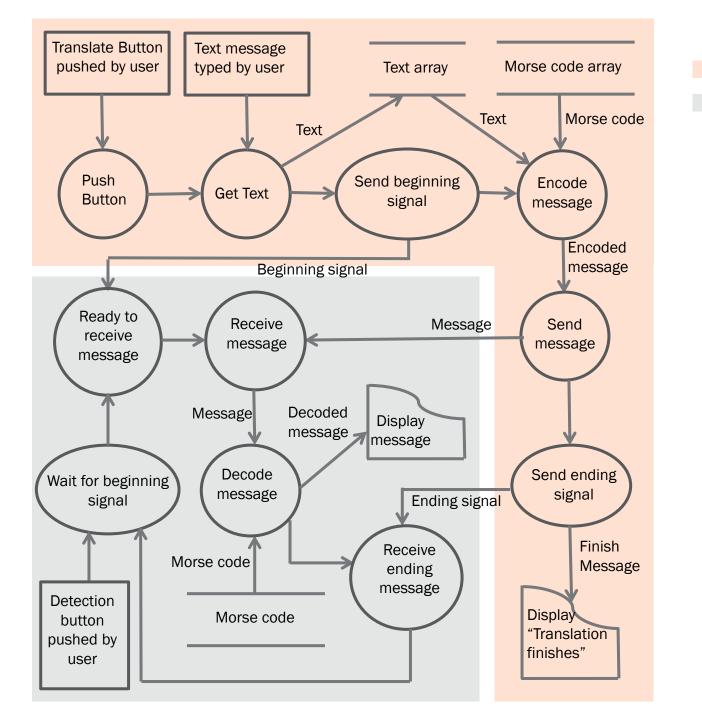
AGENDA

AGENDA

Introduction

Relative topics study

Design and Implementation

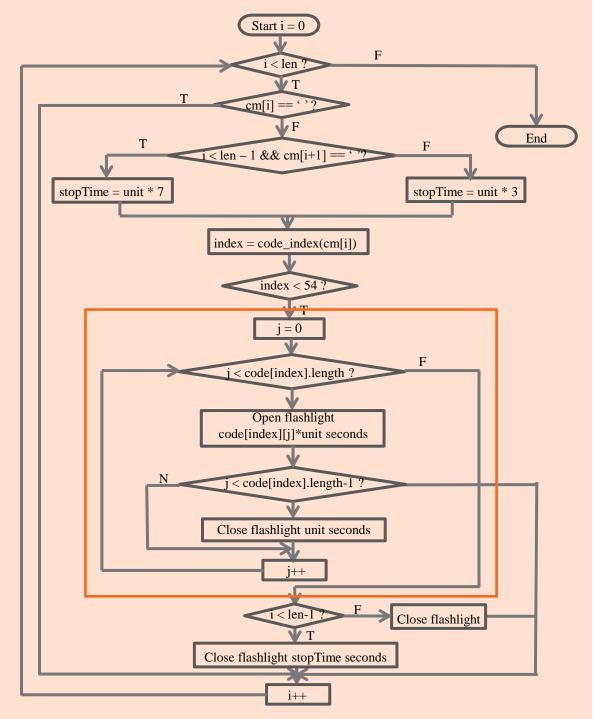

Experiments and testing

Conclusion

Project demo

Introduction study

Design and Implementation Experiments and testing


Encoding

Decoding

ENCODING

Index	Code[index]	Correspon- ding symbol	Index	Code[index]	Correspon- ding symbol
0	{1, 3}	A/a	27	{1, 3, 3, 3, 3}	1
1	{3, 1, 1, 1}	B/b	28	{1, 1, 3, 3, 3}	2
2	{3, 1, 3, 1}	C/c	29	{1, 1, 1, 3, 3}	3
3	{3, 1, 1}	D/d	30	{1, 1, 1, 1, 3}	4
4	{1}	E/e	31	{1, 1, 1, 1, 1}	5
5	{1, 1, 3, 1}	F/f	32	{3, 1, 1, 1, 1}	6
6	{3, 3, 1}	G/g	33	{3, 3, 1, 1, 1}	7
7	{1, 1, 1, 1}	H/h	34	{3, 3, 3, 1, 1}	8
8	{1, 1}	l/i	35	{3, 3, 3, 3, 1}	9
9	{1, 3, 3, 3}	J/j	36	{1, 3, 1, 3, 1, 3}	
10	{3, 1, 3}	K/k	37	{3, 3, 1, 1, 3, 3}	,
11	{1, 3, 1, 1}	L/I	38	{1, 1, 3, 3, 1, 1}	?
12	{3, 3}	M/m	39	{1, 3, 3, 3, 3, 1}	,
13	{3, 1}	N/n	40	{3, 1, 3, 1, 3, 3}	!
14	{3, 3, 3}	0/0	41	{3, 1, 1, 3, 1}	/
15	{1, 3, 3, 1}	P/p	42	{3, 1, 3, 3, 1}	(
16	{3, 3, 1, 3}	Q/q	43	{3, 1, 3, 3, 1, 3})
17	{1, 3, 1}	R/r	44	{1, 3, 1, 1, 1}	&
18	{1, 1, 1}	S/s	45	{3, 3, 3, 1, 1, 1}	:
19	{3}	T/t	46	{3, 1, 3, 1, 3, 1}	;
20	{1, 1, 3}	U/u	47	{3, 1, 1, 1, 3}	=
21	{1, 1, 1, 3}	V/v	48	{1, 3, 1, 3, 1}	+
22	{1, 3, 3}	W/w	49	{3, 1, 1, 1, 1, 3}	-
23	{3, 1, 1, 3}	X/x	50	{1, 1, 3, 3, 1, 3}	_
24	{3, 1, 3, 3}	Y/y	51	{1, 3, 1, 1, 3, 1}	"
25	{3, 3, 1, 1}	Z/z	52	{1, 1, 1, 3, 1, 1, 3}	\$
26	{3, 3, 3, 3, 3}	0	53	{1, 3, 3, 1, 3, 1}	@

Introduction Relative topics Design and Implementation Experiments and testing Conclusion Project demonstrated Project demonstration Project demonstrated Pr

cm[]: the array of message inputted.
len: length of cm[].

": space

index: the index of Morse code array.

Code[][]: The Morse code array.

Example: "A E"

Morse code: "- - "

cm[] = {'A', ' ', 'E'}

len = 3

$$i = 1$$

index = 54

$$i = 2$$

index = 4, code[2][] = {1}

DECODING

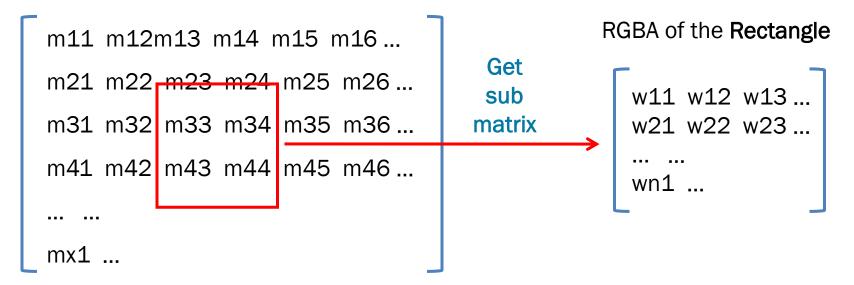
Open the camera

- Create the preview
- Get each frame of the real time image
- Convert frame to RGBA32

Set parameters for camera

- Keep the screen on
- Enable the view

Process frame values


Relative topics Introduction study

Implementation

Experiments and testing

Draw rectangle in the image

RGBA of the input frame

Relative topics study

Design and Implementation

and testing

Conclusion

Threshold value of each pixel's Light ON/OFF

Step1: Light fully fill the rectangle

Step2: Sum of all elements in the rectangle

Step3: Average value

Threshold value for each channel:

$$T(R) = 210$$
 $T(G) = 210$

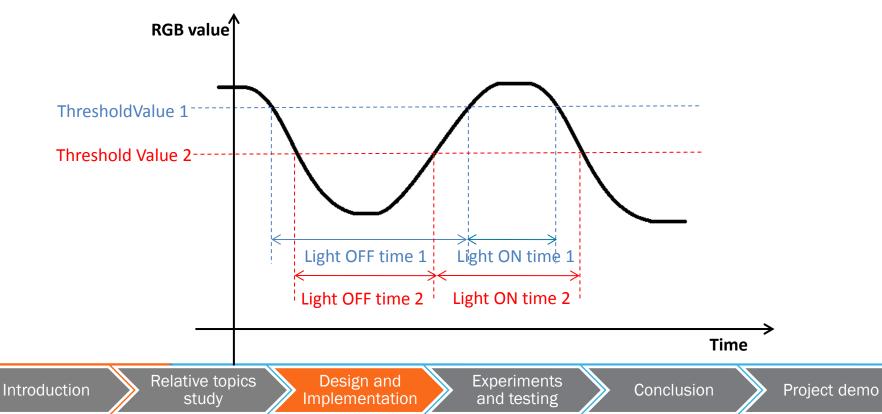
$$T(G) = 210$$

$$T(B) = 210$$

Pixel is Light ON

(Light ON pixels) / (all the pixels in the rectangle) > 10%

Rectangle is Light ON


Relative topics study

Implementation

Experiments and testing

Conclusion

Duration of Light ON/OFF

Duration of Light ON/OFF

newTime =
$$\begin{cases} dot & 0.7 * dot < realTime < 1.3 * dot \\ 3 * dot & 2.5 * dot < realTime < 3.5 * dot \\ 7 * dot & 6.5 * dot < realTime < 7.5 * dot \end{cases}$$

• Decode

Make use of duration of Light ON/OFF

Match them to the Morse code pattern

AGENDA

AGENDA

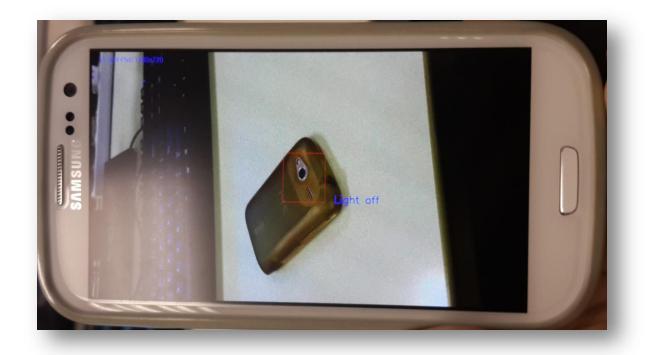
Introduction

Relative topics study

Design and Implementation

Experiments and testing

Conclusion

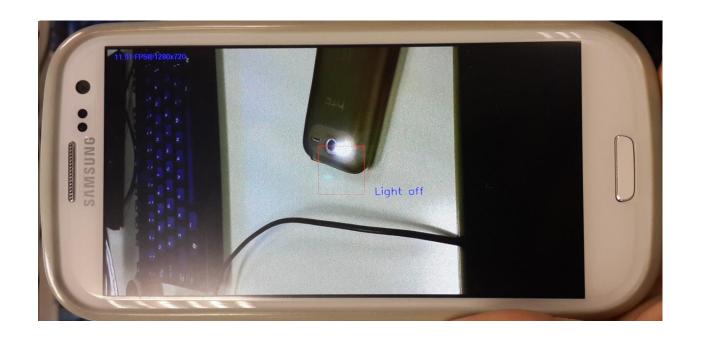

Project demo

Introduction study

Design and Implementation Experiments and testing

EXPERIMENTS AND TESTING — LIGHT ON/OFF

Actual Light OFF condition


Introduction study

Design and Implementation Experiments and testing

Conclusion

EXPERIMENTS AND TESTING — LIGHT ON/OFF

Actual Light ON condition while...

Relative topics Introduction study

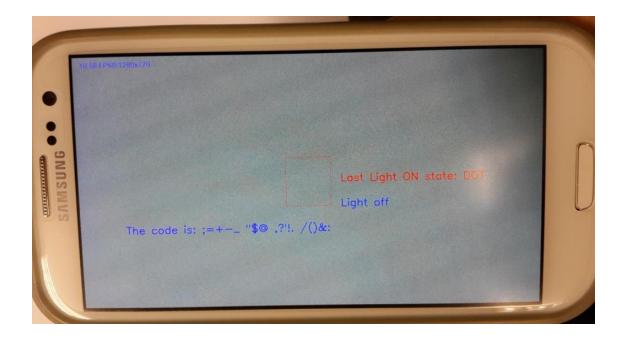
Design and Implementation Experiments and testing

Conclusion

Light ON duration testing

Introduction study

Design and Implementation Experiments and testing


Conclusion

Symbol testing: 26 letters and numbers

Introduction Relative topics Design and Experiments and testing Conclusion Project demonstration

Symbol testing: Punctuations

Introduction study

Design and Implementation Experiments and testing

Conclusion

Minimum emitting rate --- determined by dot duration

Dot duration < 0.5 s === > errors happened in decoding

Rule: emitting rate < receiving rate / 2

Suppose receiving frequency = FPS

Emitting rate = 1 / (Dot duration) Hz

The max(emitting rate) = FPS / 2.

Our camera FPS = 8 fps

max(emitting rate) = 8 / 2 Hz

min(dot duration) = 2 / 8 s = 0.25s

AGENDA

AGENDA

Introduction

Relative topics study

Design and Implementation

Experiments and testing

Conclusion

Project demo

Introduction study

Design and Implementation

Experiments and testing

CURRENT LIMITATIONS

- Separated apps
- Unchangeable transmission rate
- Nonautomatic decoding
- Disturbance of environmental light
- Low accuracy under high transmission rate.
- Unchangeable parameters of the environmental light, e.g. exposure value

DIFFICULTIES

- For the whole project:
- Without any knowledge about Android programming and Java
- For the encoding part:
- Flashlight control
- Timing control

Introduction

- For the decoding part:
- No idea about OpenCV
- **RGBA** values process
- ON/OFF duration process

Relative topics study

Implementation

Experiments and testing

Conclusion

FUTURE DEVELOPMENT

- For the whole project:
- Combination of the two apps
- User Interface optimization
- Accuracy improvement
- Bi-directional communication in the standard way

FUTURE DEVELOPMENT

- For the encoding part:
- Changeable transmission rate
- For the decoding part:
- Longer distance decoding
- Higher transmission rate decoding
- **Auto-detection**
- Changeable parameters, e.g. brightness, exposure

Introduction study Implementation

Experiments and testing

Conclusion

AGENDA

AGENDA

Introduction

Relative topics study

Design and Implementation

Experiments and testing

Conclusion

Project demo

Relative topics Introduction study

Design and Implementation

and testing

Conclusion

FINAL YEAR PROJECT FALL 2013 LYU1305

Supervisor: Prof. LYU Rung Tsong Michael

Students: LUO Xin (1155026046)

ZOU Lei (1155026057)