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1 Introduction

1.1 Background

Code generation tasks have garnered considerable attention from researchers and have

evolved significantly since the introduction of Large Language Models (LLMs). There

are many different perspectives in exploring LLM-based code generation. For instance,

code readability, code accuracy, and code robustness. One of the most important metrics

to measure is the efficiency of the code. Ensuring efficiency is a crucial aspect of

programming, particularly when computational resources are limited or the program is

utilized at a large scale[11].

The vast majority of existing research on LLM-based code generation focuses only on

exploring the accuracy and the readability of the code. In these few studies that discuss

the efficiency of generating code, Mandaan et al. and Chen et al. in their studies used

fine-tuning CODEGEN and training seq2seq models respectively and achieved impressive

improvements in code efficiency [5, 11]. However, their approach requires a lot of

computational resources and a massive code dataset to support model training. How to

enable users who lack computing resources to realize the efficiency improvement of the

code becomes a research topic worth pondering.

Inspired by many previous outstanding studies using LLM-based self-refinement and muti-

agent collaboration frameworks to improve code accuracy [4, 7, 12, 13, 16]. Relatively

small API charges were required to implement methods in their study. Therefore, we
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would like to propose a novel LLM-based self-refinement and muti-agent collaboration

framework. The framework can achieve similar performance as previous studies, which

can significantly improve code efficiency, under limited computational resources and

training datasets.

Moreover, no existing benchmark can systematically measure the efficiency of code

generation tasks. We would like to create a benchmark that makes it possible to measure

the efficiency of different code generation methods under the same scale.

1.2 TimeEval

To achieve the aforementioned goals, We have introduced a benchmark named timeEval,

rooted in the APPS dataset[6]. TimeEval is an abbreviation for time evaluation. The

specific benchmark build process is described in detail in Section 3.

The following components are included in the timeEval benchmark:

• Problem set of size 110. The problem set comprises 110 questions designed to

assess the efficiency of generated code. These problems frequently admit multiple

solutions, and opting for a different approach can lead to significant variations

in execution time. These differences in execution time are usually caused by

differences in the time complexity of the algorithms.

• Canonical solution for each problem. We provide an optimal solution for each

problem. So when exploring the efficiency of the generated code, the efficiency can
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be confirmed by comparing the execution time with that of the optimal solution.

It’s important to note that the term optimal solution in this context doesn’t denote

absolute optimality. Rather, a solution is deemed optimal if it attains the best

possible time complexity and successfully passes all test cases. Consequently, we

refer to it as the canonical solution.

• Test cases for each question. We prepared 10 test cases for each problem, which

contained some very small-sized cases to check the correctness of the code, and

some very large-sized cases to highlight the difference between the generated code,

which has a large time complexity, and the canonical solution.

• A framework for automated measurement of code efficiency. We provide

an automated code framework in benchmark to comprehensively measure the

efficiency of the generated code.

1.3 Empirical Study of Code Efficiency

After building the timeEval benchmark. We did the first empirical study on the efficiency

of generated code on our benchmark. In this empirical study, we comprehensively analyze

the impact of diverse approaches on the efficiency of generated code. Our examination

encompasses various perspectives, including prompt engineering, self-refinement, multi-

agent collaboration, and a variety of language models. This successfully remedies the

gap in current studies that under-explore the efficiency of generated code. The design

and discussion of the experiment are described in detail in Section 4.
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2 Related Work

2.1 Large Language Models for Code

With the continuous development of LLMs, their applications have expanded broadly

across various domains. Among these, research in the area of LLMs for coding tasks

has emerged as a popular topic, encompassing tasks such as code understanding, code

completion, code generation, and code repair. Notably, the LLM CodeX, pioneered by

Chen et al[2]., has achieved remarkable results in code-related tasks, leading to a surge

of commercial products such as GitHub Copilot, as well as numerous coding models

including StarCoder[10] and Code LLaMA[15][19]. Moreover, general large language

models like ChatGPT, which are not solely focused on coding, also exhibit exceptional

performance in coding tasks. Figure 1, taken from a survey on language models for code

written by Zhang et al.[19], illustrates the current major types of language models for

code and their typical representatives.

2.2 Coding Benchmark for LLMs

Existing code benchmarks primarily focus on assessing the functional correctness of code.

For instance, the most popular LLM code benchmark currently is the HumanEval dataset,

proposed by Chen et al. in 2021[2]. It consists of 164 hand-crafted Python programming

problems, primarily testing language understanding, reasoning, algorithms, and simple

mathematical problems. Each problem is accompanied by several test cases and a
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Figure 1: The overview of current language models for code[19]

canonical solution, allowing for the evaluation of the code’s functional correctness. APPS

is another Python coding dataset, comprising 10,000 coding problems, 131,836 test cases

for checking solutions, and 232,444 human-written actual solutions, aimed at measuring

coding skills and problem-solving abilities[6]. There are also datasets for testing other

languages, such as HumanEval-X[20], which includes Python, C++, Java, JavaScript,

and Go, and the WikiSQL dataset for evaluating SQL[21], among others. However, we

have observed that most current code datasets focus on the functional correctness of

code generated by LLMs or LLMs’ ability to understand text and code, lacking a dataset

that can assess code efficiency. Therefore, we propose a new benchmark aimed at testing
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and evaluating the efficiency of code generated by LLMs.

2.3 Self-refinement

SELF-REFINE is a framework proposed by Madaan et al.[12], aiming to imitate human

thinking to enable LLMs to improve their outputs through iterative feedback. The core

concept of SELF-REFINE is to obtain an initial output generated by LLM and then make

LLM provide feedback on its initial output; finally, the LLM refines its previous output

based on its own feedback.

Figure 2: The process of SELF-REFINE[12]

The primary process of SELF-REFINE is depicted in Figure 2. It includes two iterative

workflows: ’Feedback’ and ’Refine’. Initially, the model generates an output based on

the prompt, which is then fed back to the model, followed by obtaining feedback on

this original output. This feedback is then provided to the model to refine the initial

output. This process can be iterated multiple times to achieve optimal results, simulating

the process of human thinking and correcting errors. The results indicated that in all
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seven different tasks, the outcomes generated by SELF-REFINE were an improvement

over those produced directly by GPT-3.5 and GPT-4.

In our experiment, we also employed the concept of self-refinement. However, we did

not strictly adhere to the SELF-REFINE framework as proposed by Madaan et al[12].

Instead, we adopted the idea of allowing the model to think and adjust, integrating it

into our experiment according to our research objectives. Therefore, the self-refinement

mentioned in the subsequent experiments refers not to this specific framework but to the

method and concept itself.

2.4 LLM-based Multi-Intelligent Agents Collaboration

LLMs possess characteristics of autonomy, reactivity, and pro-activeness, making them

exceptionally well-suited to serve as the main part of the brains of AI agents [18]. As

shown in Figure 3, there is a large amount of work that employs LLMs as a brain for

intelligent agents. Among them, code generation task using LLM-based agents is a

highly promising work. In certain studies, these forms of intelligence iteratively refine

each other’s actions over multiple conversational rounds. Notably, with regard to the

code generation task, previous research in references [3] and [7] addressed the critical

coding aspect of software development by employing LLMs in the capacities of Manager,

Tester, and Programmer. It’s worth noting that the majority of existing research tends to

involve the agent’s role in software engineering development, with limited exploration

of LLM-based agents aimed at enhancing the efficiency of specific code. There is still a

9



Figure 3: Related work on using LLMs as brains for agents[18].
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gap in research on using multi-agent collaboration to improve code efficiency.

2.5 Prompt Engineering

The generation of outputs by large language models is fundamentally a process of

predicting the next token, and this prediction is based on the prompt provided by the

user. Therefore, the prompt is crucial to the model’s output. Prompts can control

the content generated by the model, and guide it to produce specific outcomes, and

optimizing prompts can enhance the accuracy and efficiency of the model’s outputs.

Consequently, prompt engineering has emerged as a popular research trend. Here, we

introduce several prompt methods that will be utilized in our subsequent experiments.

Zero-shot Prompt[1]

Figure 4: Example of zero-shot[1]

As illustrated in Figure 4, zero-shot learning involves providing the model directly with

the task description without any examples. In this scenario, the model only relies on

the task description to infer the answer. The advantage of zero-shot learning is its high
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flexibility. However, a drawback is that the model may not grasp the subtle nuances of

some tasks, leading to answers that are either inaccurate or overly general.

One-shot Prompt/ Few-shot Prompt[1]

Figure 5: Example of one-shot[1]

Figure 6: Example of few-shot[1]

One-shot learning involves providing the model with a single example along with a task

description (as shown in Figure 5), while few-shot learning (as illustrated in Figure 6)
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entails presenting the model with multiple examples and a task description. These

examples typically include both inputs and expected outputs, enabling the model to

better understand the task requirements. Therefore, the outcomes of one-shot and

few-shot learning are often superior to those of zero-shot learning. However, a downside

is the potential to reach the limits of input and output length.

Chain of Thought (CoT)[17]

Figure 7: Example of CoT[17]

Chain of Thought (CoT) refers to the process of human thinking. Applying the CoT

concept to language models can encourage the model to reason about questions, allowing

it to decompose a complex problem into multiple intermediate steps to obtain more

accurate answers. CoT is often used in conjunction with one-shot/few-shot learning,

as its principal idea is to provide the model with examples that include explanatory

reasoning processes. Consequently, the model tends to simulate this reasoning process

in the examples. This type of reasoning often leads to more accurate results. Figure 7

illustrates an example of CoT, where the addition of a reasoning process in the example
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changes the model’s answer from incorrect to correct.

2.6 Code Efficiency

Code efficiency is another critical aspect of code quality, in addition to correctness. We

typically analyze it from two dimensions: time and space, represented by time complexity

and space complexity, respectively. We employ a universal method, the Big O notation,

to measure and describe complexity. The definition of Big O notation is as follows: A

function g(n) is said to be O(f (n)) if there exist positive constants c and n0 such that

0 ≤ g(n) ≤ c · f (n) for all n ≥ n0

In this case, we write g(n) =O(f (n)).

This allows us to ignore factors like hardware and analyze code efficiency in a more

fundamental and intuitive way. There is an inherent trade-off between time complexity

and space complexity. Generally, it is not possible to optimize both simultaneously.

However, since space complexity is more challenging to assess and measure automatically,

our research focuses on evaluating and improving the time complexity of code.
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3 Dataset Processing & Benchmark Creation

3.1 Dataset Processing

APPS The Automated Programming Progress Standard, abbreviated APPS, consists

of 10,000 coding problems in total, with 131,836 test cases for checking solutions and

232,444 ground-truth solutions written by humans. The data in the APPS are collected

from different open-access coding websites such as Codeforces, Kattis, and more.[6]

The dataset part of our proposed timeEval benchmark is obtained from the APPS dataset

after secondary processing. The specific processing flow is as follows.

Processing flow First, we realized that we would face several problems if we randomly

selected some questions directly from APPS as our dataset to evaluate the efficiency of

the generated code.

• Uneven number of test cases. Certain problems within the dataset feature a

limited number of test cases (less than 10), and these cases may involve only

small-sized inputs. In such instances, the disparity in execution time between

algorithms with varying efficiencies, such as different time complexities, is not

notably significant. This can potentially impact the accuracy of the measurement

results.

• The quality of the problem varies. Certain problems within the dataset are

unsuitable for exploring code efficiency. Typically, these problems offer only one
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fixed solution, leaving no room for potential efficiency enhancements.

• The quality of the solutions in the dataset varies. In the solutions that come

with the dataset, certain solutions employ algorithms with high time complexity,

making them unsuitable for evaluation as the ground truth for generated code.

Due to these considerations, in the initial phase of the process, we conducted tests on all

self-contained solutions within the 5000 problems of the dataset. We excluded problems

where the number of test cases was less than 10 or none of the self-contained solutions

could pass all the test cases. After this step, we can ensure that all the remaining

questions have at least one correct solution and that each question has enough test cases.

Following that, we measured the time and manually analyzed the solutions for each

problem across all test cases to confirm optimal time complexity. After filtering out these

solutions with optimal time complexity. We then select the solution with the shortest

specific execution time from them. We ensured that the selected solution exhibited

the least execution time among all the solutions tested for that specific problem. After

this step, we are guaranteed to have at least one correct solution with optimal time

complexity for the remaining problems, and this solution will be used as the canonical

solution in our benchmark. This canonical solution plays a role similar to ground truth in

our benchmark. We will execute the canonical solution and compare it with the execution

time of the generated code to discuss the efficiency of the generated code. Next, we

employed the gpt-3.5-turbo model to generate code for the remaining problems. We

assessed both the time and accuracy of these generated codes. In detail, we measured the
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Figure 8: Screenshot of some of the data in the flow of processing the APPS dataset.

execution results and execution times of the generated code for each test case in every

problem. The execution results were categorized into three types: correct input/output

correspondence (passed tests), incorrect input/output correspondence (wrong answers),

and timeout (time limit exceeded). In this filtering round, we utilized the ratio of the

execution time (opt time) of canonical solutions to the execution time (gen time) of the

generated solutions, ordering them in ascending order, as depicted in Figure 8. A smaller

value of opt time/gen time indicates a larger gap between the execution time of the

gpt-3.5-turbo generated code and the execution time of the optimal solution. We also

make a preliminary inference based on this metric that the code generated by LLMs is
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less efficient on these problems. So we picked the problem in which opt time/gen time

was in the interval [0,0.5]. Additionally, we imposed a condition that the occurrence

of wrong answers should not exceed 20% of all test cases for these selected problems.

We introduced this constraint with the intention of incorporating problems where LLMs

generate code correctly but inefficiently into our benchmark. This approach allows us

to concentrate on evaluating the influence of different methods on the efficiency of the

generated code.

In the final stage, we meticulously reviewed all the remaining questions from the

preceding steps, making individual modifications to some of the test cases. Ultimately,

we curated a set of 110 high-quality questions. As mentioned earlier, these questions

were directly generated in the gpt-3.5-turbo model, featuring inherently inefficient code

and typically compatible with multiple solutions with varying time complexities. Each

problem was accompanied by 10 test cases of different sizes, spanning from very small

to very large values, to underscore the efficiency differences among algorithms in the

measurements.

The file structure for each problem is shown in Figure 9. The file structure corresponds to

the description in Section 1.2. The specification of the problem is in the file question.txt.

The canonical solution is in the canonical solution.py file. The test cases corresponding to

the problem are in input output.json file. The specific provenance, difficulty, and optimal

time complexity of the problem are in metadata.json file. A specific problem example

from the dataset is shown below. Figure 10 illustrates the content in question.txt. Figure
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Figure 9: File structure for problem 0032 in the dataset.

13 illustrates the content in canonical solution.py. Figure 11 illustrates the content in

input output.json. Figure 12 illustrates the content int metadata.json.

Figure 10: question.txt file for problem 0032.

Figure 11: input output.json file for problem 0032.

Figure 12: metadata.json file for problem 0032.
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Figure 13: canonical solution.py file for problem 0032.

3.2 Benchmark Creation

In addition to the dataset, we added a framework for measuring the efficiency of

generated code to the timeEval benchmark.

Execution code As depicted in Figure 14, for each problem measurement, we execute

both canonical solution.py and gen solution.py, with the latter storing the generated code

for evaluation. Each test case in the dataset, comprising input-output pairs, is utilized

to test both codes, and we record the running time and correctness for each case. If
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the result is correct, we label the case as True. If the result is incorrect, it is marked

as False, and in the case of a timeout, it is labeled as Timeout. Users employing our

benchmark have the flexibility to adjust the value of the timeout parameter directly from

the command line.

Figure 14: TimeEval performs the case-by-case evaluation of the generated code.

Metrics Following the code execution in the previous step, we obtain a comprehensive

record of the generated code’s execution. Subsequently, our evaluation framework

translates these statistics into concise quantitative metrics. Our metric framework is

partially adapted from the work of Mandaan et al.[11], incorporating the following

aspects:

• Pass rate: Percentage of test cases that passed the test out of all test cases.

• Fail rate: Percentage of test cases that failed the test out of all test cases.

• Timeout rate: Percentage of timeout test cases out of all test cases.
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• Percent Optimized %Opt : Proportion of programs where the execution time of

the generated code is close enough to the execution time of the optimal solution in

the test set (Canonical solution). That is, the code execution time that satisfies the

equation,

tgen−topt
topt

< θ

where tgen represents the execution time of generated code, topt represents the

execution time of optimal code and θ represents the threshold. The execution time

is defined as close enough when the LHS is less than the threshold.

• Speedup %Sp : The ratio of the execution time of the optimal solution to the

execution time of the generated program. This metric accurately describes how

close in time the generated program is to the optimal solution.

SP EEDUP =
topt
tgen

Our benchmark will automatically measure the above metrics and provide feedback to

the user. In addition, the user has the option of exporting the test results to Excel for

more detailed analysis.

Time complexity analysis tool In addition to directly measuring the execution time

of the generated code. We tried to create a tool that can estimate the time complexity

interval of generated code. As shown in Figure 15, In the actual test we will get a

dot plot with input size on the x-axis and run time on the y-axis. We will analyze

it by combining the point plot and the time complexity function characteristics. For
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example, the time complexity function O(nlogn) can be expressed as c ∗nlogn where c is

a constant. The function has the property that the first-order derivative is greater than 0,

the second-order derivative is greater than 0 and the third-order derivative is less than 0.

We can combine this property with a dot plot as an additional measurement. In each

calculation, we approximate the derivative of the time curve at x1+x2
2 by y1−y2

x1−x2 .

Figure 15: Left: Graph of a function of input size and program execution time with time

complexity of O(nlogn). Right: Simulate a benchmark test of the program shown in the left

graph. This simulation is conducted by entering ten different test cases and recording the

program execution time.

Nevertheless, the accuracy of this tool is currently not very high. Consequently, we

opted not to utilize the estimation tool in this semester’s experiment. Our plan moving

forward involves continuous optimization efforts to enhance the accuracy of the tool,

enabling it to provide more precise estimates of the time complexity of the code in future

experiments.
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4 Experiment

4.1 Setup

Metrics. We adhered to the evaluation strategy outlined in the timeEval benchmark. The

assessment involves five metrics: Pass rate, Fail rate, Timeout rate, Percent Optimized,

and Speedup, utilized to evaluate the efficiency of the generated code. For a detailed

explanation of these metrics, please refer to Section 3.2.

Models. Our primary experimental foundation is the gpt-3.5-turbo model. Additionally,

we conducted a comparative experiment in Section 4.3.4 using the gpt-4 model. In future

work, we aim to explore a wider array of LLMs to provide a more detailed evaluation of

the efficiency of code generated by different LLMs.

Platform. The timeEval benchmark executes both the canonical solution and the gener-

ated code during each test, comparing their running times. This approach enables tests

to be conducted on different configurations or platforms while maintaining consistent

results. Our experimental platform involves several different personal computers.

4.2 Research Questions

RQ1: How do different prompts affect the efficiency of generated code? As dis-

cussed in the background section, the formulation of prompts critically influences the

output of LLMs. The prompt can steer the LLM to produce specific, desired responses,

effectively controlling the quality of LLMs output. Consequently, this RQ aims to investi-
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gate the impact of various prompt types on the efficiency of code generated by LLMs. To

this end, our experimental design will involve a comparative analysis of several classic

prompt engineering techniques, including one-shot prompt, few-shot prompt, and the

Chain of Thought approach. This comparison seeks to elucidate how different prompting

strategies affect the performance and efficiency of LLMs in code generation tasks.

RQ2: Does self-refinement improve the efficiency of generated code? In prior

studies, self-refinement has demonstrated its efficacy in enhancing accuracy in code gen-

eration tasks[4][12]. In this RQ, our objective is to investigate whether the application

of self-refinement can also contribute to improved efficiency.

RQ3: How to enhance the refinement result when using the self-refinement tech-

nique. Several factors can influence outcomes when employing the self-refinement

technique. In our exploration, we specifically investigated how varying the number of

refinement rounds and altering the prompt can affect the results.

RQ4: Does the Multi-agent collaboration technique improve the efficiency of gener-

ated code? In this RQ, we aim to investigate whether the application of the multi-agent

collaboration technique improves the efficiency of generated code and whether it ensures

the accuracy of the code

RQ5: How different assignments of roles to agents and different collaborative

structures will affect results. In this RQ we will explore the effect of different kinds
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and different numbers of agents cooperating to generate code on the efficiency of

generated code.

RQ6: The effect of other parameters or LLM types on the efficiency of generated

code. In this RQ, we delved into the impact of temperature and LLM species on the

results. Specifically, we explored the code generation results for temperatures ranging

from 0.0 to 1.0 and evaluated the performance of two language models: gpt-3.5-turbo

and gpt-4.

4.3 Experiments & Results Analysis

4.3.1 Prompt Engineering

Baseline Prompt:

In the initial stage of our experiment, it was necessary to design a baseline prompt, using

the performance of the code generated by this prompt on our dataset as our baseline.

Our objective was to ensure that this prompt was straightforward and concise, avoiding

any excessive statements that could potentially influence the outcomes.

Consequently, the original prompt consisted of two parts. The first part involved directly

inputting questions reading from our dataset into models. The second part was a specific

condition: ‘In the following question, you are required to generate only the code itself,

producing directly executable Python code without any additional textual descriptions.’

This instruction guaranteed that the answer obtained from models was Python scripts
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that could be executed immediately, thereby facilitating our subsequent testing of the

generated code. The exact format of this prompt is depicted in Figure 16. By utilizing the

Figure 16: Format of baseline prompt

API, we were able to efficiently acquire a vast array of responses. The specific outcomes

are presented in Table 1, serving as our baseline for comparison with the results obtained

from other prompts. It is observable from the baseline that, while the code’s accuracy

was commendable at 0.67, both %OPT and %SP metrics were significantly low. This

indicates that the efficiency of the code generated in the baseline was substantially

inferior when compared to the optimal solution.

Pass Rate Wrong Rate Timeout Rate %Opt %Sp

67.0 1.6 31.4 1.8 11.9

Table 1: Result of baseline prompt

One-shot learning:

Our baseline prompt is zero-shot learning. Although LLMs demonstrate significant

zero-sample learning capabilities, their performance remains subpar on complex tasks.
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Figure 17: Format of one-shot prompt

The findings of Brown et al.(2020)[1] suggest that in-context learning can effectively

enhance the capabilities of LLMs. In this experiment, considering the limitations of input

text length, we employ one-shot learning. Specifically, we selected one problem from

the LeetCode website and chose two solutions for this problem[9], one with poor time

complexity and the other with good time complexity. We provided these to models in the

format of ‘Problem: problem content; Solution with poor time complexity: Python script

with poor time complexity; Solution with good time complexity: Python script with good

time complexity.’ Then, as before, we input the problem and constraints to models, but

this time we requested it to generate a solution with good time complexity. The specific

format is shown in Figure 17.

Table 2 presents the results using one-shot learning. It is observed that after a single

example prompt, the code generated by GPT-3.5 showed improved %Opt and %Sp
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metrics on our dataset, indicating that the one-shot generated code indeed approximates

the optimal solution more closely than the zero-shot. However, the improvement was

marginal, and the accuracy decreased from 0.67 to 0.57, suggesting that this prompt

led the model to focus more on the time complexity of the code, thereby overlooking its

accuracy.

Pass Rate Wrong Rate Timeout Rate %Opt %Sp

56.6 23.4 20.0 22.7 37.2

Table 2: Result of one-shot prompt

Problem number Prompt Passed tests Wrong answers Time limit exceeded Total time Opt time Opt

30 Zero-shot 10 0 0 1.75 0.57 0

30 One-shot 10 0 0 0.41 0.4 1

Table 3: Example: results of Problem 30

To more intuitively compare the outcomes of zero-shot learning and one-shot learning, let

us consider one specific example, which is the 30th problem in our dataset. The results

of two prompt on this problem are shown in Table 3 . The problem states: ‘Consider the

infinite sequence of integers: 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5.... The sequence is

built in the following way: at first the number 1 is written out, then the numbers from 1

to 2, then the numbers from 1 to 3, then the numbers from 1 to 4 and so on. Note that

the sequence contains numbers, not digits. For example, number 10 first appears in the
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sequence in position 55 (the elements are numerated from one). Find the number on

the n-th position of the sequence.’ This problem requires the identification and analysis

of a pattern in an infinite integer sequence to ascertain the value at a given position.

Figure 18: Zero-shot learning: the solution of Problem 30

The answer provided by zero-shot learning is illustrated in Figure 18. This solution

simulates the sequence’s construction process, gradually decreasing the value of n and

correspondingly expanding the range of the sequence to locate the n-th position. It

necessitates iterating until i ≥ n, thus having a time complexity of O(
√
n).

In contrast, the one-shot learning solution, as shown in Figure 19, utilizes mathematical

calculation to directly determine the number at the n-th position in the sequence without

the need for iteration, resulting in a time complexity of O(1). Both solutions exhibit

a 100% accuracy rate, but the latter’s time complexity is significantly superior. This is

evident from the %Opt and %Sp metrics, indicating that the one-shot learning solution

approaches an optimal solution. Thus, this constitutes a successful example of one-shot

learning.
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Figure 19: One-shot learning: the solution of Problem 30

4.3.2 Self-refinement

Prompt

a. Simple self-refinement:

In this experiment, our initial goal was to implement a basic form of self-refinement.

Similar to the previously mentioned baseline prompt, at this initial stage, we aimed to

keep the prompt as concise as possible to minimize unnecessary factors influencing the

experiment. We input the problem and the corresponding solution from the baseline into

the model, requesting improvements in time complexity. The specific format is illustrated

in Figure 20.

Pass Rate Wrong Rate Timeout Rate %Opt %Sp

36.8 44.3 18.9 29.1 48.8

Table 4: Result of simple self-refinement
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Figure 20: Prompt of the simple self-refinement

Table 4 presents the results of this experiment. We observed a noticeable improvement

in both the %Opt and %Sp metrics after one round of self-refinement, indicating that

for GPT-3.5, self-refinement indeed encourages the model to reassess and enhance the

efficiency of its code in problems related to code efficiency. However, it is important to

note a significant decrease in the accuracy of the code. We selected the second problem

in our dataset as a case study to analyze this phenomenon in detail.

Problem Experiment Passed tests Wrong answers Time limit exceeded Total time Opt time %Opt %Sp

2 baseline 8 0 2 11.74 0.53 0 0.05

2 simple self-refinement 2 8 0 0.28 0.29 1 1.04

Table 5: An example of simple self-refinement

The first row of Table 5 shows the test results for the baseline solution. Out of 10 test

cases, only two resulted in ‘timeout’, with the rest passing the test. We set our timeout

threshold at 5 seconds, meaning that if a code runs for more than 5 seconds on a test

case without producing a result, we stop testing that particular case, mark the result

as ‘timeout’, and proceed to the next test case. When we increased the timeout limit

to 60 seconds for retesting, it was found that all test cases were passed. This indicates

32



that the solution in the baseline is correct but performs poorly on test cases with larger

input values due to its inferior time complexity. The second row of Table 5 shows the test

results for the solution obtained after one round of simple self-refinement. We observed

that this solution’s test time was remarkably short, even surpassing the optimal solution,

but it only passed two test cases. A detailed examination of its test results (Figure 21)

revealed that out of 10 test cases, only two produced outputs, both being ‘0’, with no

results for the rest. The terminal displayed an error message: “ZeroDivisionError: integer

division or modulo by zero”. This suggests that the solution is fundamentally flawed,

with the apparent speed improvement resulting from an error that terminated the run

prematurely, not from an actual enhancement in time complexity. We do not consider

such examples to be effective.

Figure 21: The detailed test result of simple self-refinement on problem 2

b. Self-refinement + test cases:

The results of the previous experiment indicate that simple self-refinement can, to some

extent, enhance code efficiency but at the expense of sacrificing accuracy. Therefore,

we sought to modify the prompt to enable the model to focus on both efficiency and

accuracy simultaneously. Inspired by the work of Chen et al[4], we recognized that

unit test is an effective approach of improving code accuracy in tasks of large language
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models undergoing self-debugging. Unit test involves running the code through tests and

returning the test results to the model for self-debugging, thereby enhancing accuracy.

Figure 22: The format of inputs and outputs

In our experiment, we write a Python script to obtain inputs for 10 test cases for each

problem and their corresponding correct outputs, along with the outputs from the

baseline solution for these test cases. The specific format is illustrated in Figure 22.

Due to the limitations on the input length of the model, if the inputs or outputs are

excessively lengthy, we will not input them into the model. We provided these test cases

and their results to GPT-3.5, requesting it to improve both the efficiency and correctness

of the code. The specific content of the prompt is shown in Figure 23.

Figure 23: Prompt of the self-refinement + test cases

Table 6 presents the results of this experiment. The accuracy, compared to the baseline,

still declined, but the degree of decline was not as pronounced as with simple self-
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refinement. Meanwhile, both the %Opt and %Sp metrics showed improvements over

the baseline, although not as significantly as with simple self-refinement. These results

suggest that providing test cases to the model can indeed mitigate the decrease in

accuracy caused by self-refinement to some extent, but it also tends to constrain the

enhancement of code efficiency.

Pass Rate Wrong Rate Timeout Rate %Opt %Sp

58.3 18.1 23.6 24.5 33.5

Table 6: Result of self-refinement + test cases

c. Self-refinement + one-shot learning :

In section 4.3.1, we experimented with one-shot learning to enhance the efficiency of the

code generated by GPT-3.5 and obtained positive results. Consequently, we considered

applying one-shot learning in our self-refinement experiments, providing the model with

an example for contextual learning to guide the direction of self-refinement.

Figure 24: Prompt of the self-refinement + one-shot learning
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In this experiment, we used the same example as in 4.3.1 but with slight modifications

to the format. The specific format is shown in Figure 24, where ‘original solution’ refers

to the code with inferior efficiency. Following the same format, we provided the problem

and the baseline solution to the model, requesting it to emulate the example and generate

a solution with improved time complexity.

Pass Rate Wrong Rate Timeout Rate %Opt %Sp

58.9 22.0 19.1 25.5 35.4

Table 7: Result of self-refinement + one-shot learning

The results, as shown in Table 7, were somewhat unexpected. This experiment did not

show a significant improvement over simple self-refinement or one-shot learning alone.

The accuracy was the highest among the three experiments, but both %Opt and %Sp

metrics were at intermediate values. We speculate that such results might be attributed

to that the example only provides the problem, original solution, and solution with

improved time complexity, without an analytical process. The lack of guidance through

an intermediate process might be the reason that its effectiveness was similar to simple

self-refinement and one-shot learning.

c. Self-refinement + one-shot learning + Chain of Thought:

We hypothesized that the unremarkable results of the previous experiment were due

to the lack of guidance in the intermediate analysis process. Naturally, we want to
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incorporate an analysis process in the example, namely ‘Chain of Thought’ (CoT). CoT

can simulate human thought processes by breaking down a multi-step reasoning problem

into several intermediate steps. CoT is often used in conjunction with few-shot learning.

By providing the model with examples and the thought process from the problem to the

answer, the model’s reasoning and problem-solving abilities can be effectively enhanced.

In this experiment, we added the thought process from the ‘original solution’ to the

‘solution with improved time complexity’ to our previous example: “The time complexity

of the original solution is O(n2) due to the nested loops that iterate through each position

in the input list. To improve the time complexity, you can use a greedy algorithm because,

for each position i, all the positions it can jump to can be considered as the next possible

starting points. In order to minimize the number of jumps, you should aim to jump

as far as possible in the next step. This means that at each step, you should choose a

position within your jumping range that can take you the farthest in the next jump. This

approach only requires traversing the loop once, so the time complexity is O(n).” The

process can be summarized as the following questions:

• What is the time complexity of the original solution?

• Is there a better algorithm in terms of time complexity?

• What is the time complexity of this algorithm?

• How to implement this algorithm?

The specific prompt content is shown in Figure 25. Due to the need for an analytical

process, we did not require the model to directly provide executable code. We saved the
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Figure 25: Prompt of the self-refinement + one-shot learning + CoT

responses obtained in a text file and then manually extracted the code implementation

parts from each response into a Python file.

Pass Rate Wrong Rate Timeout Rate %Opt %Sp

35.8 55.4 8.8 60.0 84.8

Table 8: Result of self-refinement + one-shot learning + CoT

Table 8 presents the results of this experiment. We observed significant improvements

in both %Opt and %Sp metrics compared to all previous experiments, indicating that

guiding the model with CoT to perform reasoning analysis indeed effectively enhances

the efficiency of the code. However, we also need to note a significant decrease in

accuracy, the lowest of all experiments so far. This result might be due to that the

model focus solely on the efficiency of the code during analysis, thereby overlooking its

correctness.
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Problem Experiment Passed tests Wrong answers Time limit exceeded Total time Opt time %Opt %Sp

13 baseline 7 0 3 15.49 0.53 0 0.03

13 self-refinement + one-shot + CoT 10 0 0 0.72 0.81 1 1.13

Table 9: An example of self-refinement + one-shot learning + CoT

We analyze two specific examples here. The first example is the 13th problem in our

dataset. The specific results of this problem and its comparison with the baseline are

presented in Table 9. The baseline test results included three ‘timeouts’, while the

result of this experiment shows that the updated solution not only passed all test cases

but also executed very quickly, surpassing even the optimal solution. Let’s examine

GPT-3.5’s reasoning process for this problem: “The original solution checks whether the

area of the remaining piece is prime by iterating from 2 to the square root of the area

and checking for divisibility. This has a time complexity of O(sqrt(area)). To improve

the time complexity, we can use a more efficient primality testing algorithm, such as

the Miller-Rabin primality test. The Miller-Rabin test is a probabilistic algorithm that

can determine whether a number is composite with a high probability. It has a time

complexity of O(k · log3n), where k is the number of iterations and n is the number being

tested. Here is an updated solution that uses the Miller-Rabin primality test: Python

script.” This process follows the four analytical steps we outlined in the example and

ultimately yields a correct and efficient solution. This is a successful example.

The second example is the 22nd problem in our dataset. The specific results of this

problem and its comparison with the baseline are presented in Table 10. After the
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Problem Experiment Passed tests Wrong answers Time limit exceeded Total time Opt time %Opt %Sp

22 baseline 5 0 5 25.3 0.51 0 2.0

22 self-refinement + one-shot + CoT 0 10 0 0.61 0.71 1 1.16

Table 10: Second example of self-refinement + one-shot learning + CoT

updates in this experiment, the solution did not pass any test cases. Let’s look into

GPT-3.5’s reasoning process: “The original solution has a time complexity of O(n ∗ log(n))

because it iterates through each number from 1 to n and calculates the product of its

digits, which takes log(n) time. To improve the time complexity, we can use a dynamic

programming approach. We can define a function dp(n) that returns the maximum

product of digits among all integers from 1 to n. We can calculate dp(n) by considering

the last digit of n and recursively calculating dp(n // 10) and dp(n - 1). Here is the

updated solution with improved time complexity: Python script. This solution has a time

complexity of O(log(n)) because it only needs to calculate dp(n) once for each digit in n.”

This process also follows the four steps outlined in the example and seems unproblematic

at first glance. However, a closer examination of the updated code (Figure 26) reveals

that while the main implementation of the code is correct, it lacks the crucial step to

obtain the input value that is unrelated to algorithmic efficiency. This issue was not

isolated to this problem alone. We believe that this phenomenon occurred because the

model excessively focused on enhancing the time complexity and logical implementation

of the algorithm, neglecting parts unrelated to the main body of the algorithm.
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Figure 26: The updated solution of problem 22

Round While using the self-refinement technique, we noticed that the number of

rounds in the refinement may have an effect on the results. So we explored the results

after going through different rounds of self-refinement. Table 11 shows the test results

for refinement round = 0, 1, 2, 3. During round 1, the initial self-refinement process

prioritizes the improvement of code efficiency at the cost of accuracy. This is evident in

the increase in both Opt and Sp metrics, indicating that the code is running closer to the

optimal solution. In the two subsequent rounds, the self-refinement technique shifts its

focus, sacrificing code efficiency to enhance accuracy. The process stabilizes during these

rounds, resulting in a relatively consistent performance. Based on the above analysis, we

can infer that when the round of self-refinement is greater than or equal to two, we can

achieve a balanced result in terms of accuracy and efficiency.

The study conducted by Huang et al.[8] raises questions about the effect of self-

refinement. LLMs generate multiple samples during the self-refinement process, such

as three outputs produced in two rounds of self-refinement: the initial output and the
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Round Pass Rate Wrong Rate Timeout Rate %Opt %Sp

0 68.5 1.6 29.8 0.0 8.3

1 61.3 17.0 21.6 20.0 32.5

2 67.8 5.2 27.0 4.5 12.9

3 66.6 6.7 26.6 3.6 12.6

Table 11: Impact of refinement rounds on generated code.

outputs generated in the subsequent rounds. Hence, there is a reasonable suspicion

that the enhancement in results may be more attributed to the increase in the number

of generated samples rather than the self-refinement technique itself. We therefore

designed controlled experiments to dispel this suspicion.

We generate K samples at once for each problem in the process of generating code and

select the code with the highest efficiency among these K samples. The results are shown

in Table 12.

Best of K Pass Rate Wrong Rate Timeout Rate %Opt %Sp

K = 1 68.5 1.6 29.8 0.0 8.3

K = 2 67.8 3.4 28.8 0.9 9.7

K = 3 67.7 3.3 29.0 1.8 10.0

K = 4 66.9 4.3 28.7 3.6 14.3

Table 12: Generate k samples for each problem and select the optimal sample.
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Based on the above design, we can compare the round of self-refinement to the best of

K where they generate an equal number of samples when round = K − 1. As depicted

in Figure 27, even after controlling for an equal number of generated samples, self-

refinement continues to play a significant role, particularly in round = 1 and round = 2.

The efficiency of the generated code surpasses that of the best of K by a considerable

margin.

Figure 27: Comparison of self-refinement and best of K.

4.3.3 Multi-agent Collaboration

Planner+Coder In this experiment, we try to use two agents cooperating for code

generation. The collaboration pattern of the two agents is illustrated in Figure 28.
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Figure 28: Planner + Coder framework

In each code generation process, the Planner first analyzes the problem, and after

analyzing the problem, the Planner generates a step-by-step schedule. The Coder

executes and generates code according to this plan. Figure 29 illustrates a successful plan.

During this planning process, the Planner not only clearly developed a detailed plan for

the subsequent code generation task. During the planning process, Planner successfully

realized the existence of more efficient algorithms, thus reducing the algorithm for

solving the problem from time complexity O(n3) to O(n2). Such an improvement is huge

in terms of code efficiency.

Figure 29: A step-by-step plan generated by the Planner.
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The experiment results presented in Table 13 reveal that while the inclusion of Planner

can enhance the efficiency of code generation to some extent, it significantly diminishes

the accuracy of the generated code. This outcome is attributed to the fact that the Coder

strictly adheres to the Planner’s plan at each step without an error correction mechanism.

Consequently, if there is a flaw in Planner’s plan, there is no mechanism to revise the

plan, leading to potentially irreversible issues in subsequent code generation.

To prevent such problems, we will introduce a new agent Tester to correct errors in the

code generation process.

Agents Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Coder 68.5 1.6 29.8 0.0 8.3

Planner + Coder 37.1 44.5 18.2 29.0 46.1

Table 13: The experimental results employing Planner + Coder.

Planner+Coder+Tester In this experiment, in addition to the Planner and Coder

agents from the previous experiment, we also introduced a new agent Tester. The

collaboration pattern of the two agents is illustrated in Figure 30. In this scenario, Tester

acts as a mediator between the Planner and the Coder. If the Tester identifies an issue

with a plan generated by the Planner, the issue is communicated back to the Planner for

plan correction. Once it is confirmed that the plan is error-free, it is forwarded to Coder.

The coder then generates the code based on the plan and sends the code back to Tester.

If the generated code does not align with the plan, the Tester reports the bugs back to
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the Coder for necessary adjustments. Finally, when the Coder receives the pass message

from the Tester, it outputs the generated code.

Figure 30: Planner + Coder + Tester framework

The detailed results of this experiment are outlined in Table 14. It was observed that

the utilization of Tester significantly enhances the accuracy of the generated code while

maintaining code efficiency, as compared to the scenario of solely employing Planner +

Coder.

Agents Pass Rate Wrong Rate Timeout Rate %Opt %Sp

Coder 68.5 1.6 29.8 0.0 8.3

Planner + Coder 37.1 44.5 18.2 29.0 46.1

Planner + Coder + Tester 55.6 26.6 17.7 29.1 46.9

Table 14: The experimental results employed Planner + Coder + Tester.
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4.3.4 Others

Temperature Temperature is a parameter provided by OpenAI for user adjustment.

The choice of sampling temperature ranges from 0 to 2. Higher values like 0.8 will make

the output more random, while lower values like 0.2 will make it more focused and

deterministic[14].

In the following experiments, we explored the effect of the parameter temperature on

the efficiency of the generated code. As shown in Table 15, we tested the generation of

temperature parameters for the gpt-3.5-turbo model in the range [0,1]. This range also

covers three different temperatures defined by OpenAI as low, medium, and high.

Temperature Pass Rate Wrong Rate Timeout Rate %Opt %Sp

0.0 68.5 1.6 29.8 0.0 8.3

0.1 67.6 5.3 27.1 5.4 16.3

0.2 65.3 10.2 24.5 10.0 20.3

0.3 65.5 9.4 25.2 9.1 18.0

0.4 60.3 13.3 26.5 11.8 18.4

0.5 59.5 14.5 26.0 10.9 22.3

0.6 58.7 15.9 25.4 13.6 20.5

0.7 54.5 20.8 24.6 20.9 28.9

0.8 55.7 18.4 25.9 17.3 26.5

0.9 53.1 25.3 21.6 18.2 31.8

1.0 46.9 31.4 21.7 23.6 41.8

Table 15: Accuracy and efficiency of code generation under different temperatures.
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The results indicate that as the temperature increases, the outcomes tend to become

more creative and random. This change has resulted in a decrease in code accuracy and

an increase in code efficiency. The change in code efficiency over time is well shown in

the line graph shown in Figure 31.

Figure 31: Variation of code efficiency with temperature.

Comparison of different LLMs In the final experiment, we compare the difference in

efficiency between two LLMs, gpt-3.5-turbo and gpt-4, in terms of code generation. By

observing the results we found that gpt-4 tends to sacrifice accuracy to generate code

with less time complexity. The experimental results are shown in Table 16, where the

efficiency of the code generated by gpt-4 is much higher than that of the code generated

by gpt-3.5-turbo. However, the accuracy of the code generated by gpt-4 is slightly lower

than the accuracy of the code generated by gpt-3.5-turbo.
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Model Pass Rate Wrong Rate Timeout Rate %Opt %Sp

gpt-3.5-turbo 68.5 1.6 29.8 0.0 8.3

gpt-4 58.9 34.8 6.2 57.2 73.3

Table 16: Accuracy and efficiency of generated code for different LLMs

5 Conclusion

The following are some of the main contributions we have made during this semester’s

project.

• Proposed timeEval benchmark.We introduce the timeEval benchmark, currently

the only known benchmark designed for evaluating the efficiency of generated

Python code. We posit that this contribution addresses a gap in the existing dataset,

providing a unified metric to measure code efficiency. We plan to publish the

benchmark on GitHub after the project is finished.

• Explored methods to improve the efficiency of the generated code. We explore

the role of many different approaches in improving the efficiency of generated

code. These include but are not limited to, methods of prompt engineering,

self-refinement, and multi-agent collaboration. In addition, we also explore the

impact of, e.g., temperature and LLM type on the efficiency of generated code. We

preliminarily demonstrate the feasibility of using the above approach to improve
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the efficiency of generated code.

• Proposed several frameworks to improve code efficiency. Throughout the

experimental process, we introduced several frameworks grounded in prompt engi-

neering, self-refinement, and multi-agent collaboration. Some of these frameworks

have demonstrated notable success in enhancing the efficiency of code generation.

6 Future Work

• Continue to measure the different models as well as the framework on our

benchmark. Numerous LLMs, such as Codex and Code Llama, have not yet been

assessed for their efficiency in code generation. Additionally, we plan to evaluate

the performance of some state-of-the-art frameworks, including Language Agent

Tree Search and Reflexion, not only in terms of accuracy but also in generating

code efficiency.

• Trying to create a more efficient framework. We hold the belief that there exist

more advanced code generation frameworks capable of optimizing efficiency to a

greater extent. Our commitment is to continue exploring various approaches with

the aim of developing improved frameworks in the future.

• Begin an exploration of the space complexity of the generated code. When

exploring code efficiency, it is important to explore space complexity from a spatial

perspective in addition to its time complexity. Time complexity is well worth

50



exploring as an important indicator of code efficiency. Realizing the same func-

tionality with less memory is a very challenging task. In some cases, there is a

trade-off between time complexity and space complexity. How to balance the time

complexity and space complexity is also one of the focuses of our future research.
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