
JARVIS: User-defined
Postures Detection for Smart Home

Term 1 Final Report

Theodore Fabian Rudy
Christopher Albert Priatko

Supervised by

Prof. Michael R. Lyu

Computer Science and Engineering
The Chinese University of Hong Kong

January 16, 2023

Contents

Acknowledgement 3

1 Introduction 4
1.1 Overview . 4
1.2 Background . 4
1.3 Objectives . 7
1.4 Glossary . 8

2 Related Work 11
2.1 Object Detection . 11

2.1.1 Two-Stage Detection Framework 12
2.1.2 One-Stage Detection Framework 13
2.1.3 Other Methods . 15

2.2 Face Recognition . 15
2.3 Pose Estimation and

Keypoints Analysis . 16
2.4 Action Recognition . 19
2.5 Long Short-Term Memory . 20

3 Implementation 22
3.1 General Framework . 22

1

CONTENTS 2

3.2 Stage 1: Object detection and
Face Recognition . 25
3.2.1 Object Detection . 25
3.2.2 Face Recognition . 26

3.3 Stage 2: Pose Estimation and
Action Recognition . 26
3.3.1 Pose Estimation . 26

3.4 Problem encountered . 27
3.4.1 Action Recognition . 28

4 Evaluation 29
4.1 Stage 1 . 29

4.1.1 Object Detection . 29
4.1.2 Face recognition . 30

4.2 Stage 2 . 31
4.2.1 Pose Estimation . 31
4.2.2 LitePose . 32
4.2.3 Movenet . 33
4.2.4 BlazePose . 34
4.2.5 LSTM Model . 35

4.3 Overall evaluation . 38
4.3.1 Accuracy evaluation . 38
4.3.2 Speed evaluation . 40

5 Conclusion 42
5.1 Summary . 42
5.2 Future Work . 42

Bibliography 44

Acknowledgement

We would like to express our deepest gratitude to Professor Michael R. Lyu for
giving us the opportunity to be our supervisor for our Final Year Project. We
would also like to express our deepest gratitude to Mr. Huang Jen-tse for giving
us invaluable knowledge, advice and guidance during our Final Year Project.

3

Chapter 1

Introduction

1.1 Overview

The focus of this final year project is to utilize different aspects of computer
vision to process human gestures and/or poses captured by video feed and turn
it into command preset in the computer. This report describes the introduction
to the topic, the work done in the first semester, and all the implementation
challenges that was faced.

1.2 Background

With the development of technology, more of the things that are faced in daily
life has become easier. One of the example of that aspect is smart technology.
This mechanism turn traditional sensors and actuators to be connected through
network, enabling it to increase the capability of achieving centralised control
over devices, which brings increase in life quality, well-being, safety, productiv-
ity, energy efficiency and many more [56]. Not only that this mechanism allow
it to be connected through network, the devices connected to the network will
also have the capability to have computing-like functionalities [58].

4

CHAPTER 1. INTRODUCTION 5

The evolution of this smart technology happens with more integration of
artificial intelligence (AI) into the system. Bowes et al. (2012) described that it
was in the second generation smart home technology that artificial intelligence
started to be used. They mentioned that the implementation of smart home
technology in the generation uses AI-based devices, where it is able to detect
changes of environment, monitor health condition and many more [11]. In
general, AI was mostly used for analytical functionality and was more described
as ’reactive’ to a predefined trigger actions. Only in the third generation of
smart home technology that AI is more utilised to have the capability to inter-
operate with other devices and have multiple functionalities. Not only limited
in the usage of behavioural analysis to predict user needs and optimization, but
this also enable integration with other devices, making it possible to capture,
process and transmit data among devices within network [43]. This generation
also mark the emerging system of voice-over interface bringing life to home
automation system, enabling it to be more interactive.

With the usage of voice-over interface for smart home system being made
available for public by different providers. Google Nest and Amazon Echo
being two examples of speech recognition in a form of virtual assistant being
implemented. As mentioned in the previous sentence, the functionalities of
virtual assistant reduces things that is needed to do by the users, but also to
enable people who are disabled or elderly to access and dynamically operate
and put control over smart things in the home [76]. Despite its power and
capability to control centralised system for smart home, the development for
interface for this interaction is pretty much stopped here.

Along with the development of voice controlled smart home system, there
are others subjects that earn recognition over its progress and evolution. A
subject in particular that has gotten much attention is is computer vision.

CHAPTER 1. INTRODUCTION 6

Traditionally a subject where the task involved in it are mostly tasks like fea-
ture extraction engineered by human in a specific algorithm, its capability of
computer to process images and videos, increases significantly. Rather than
defining the features and analysis of the input and output, the involvement of
deep learning in the subject automate the tasks of feature engineering, extrac-
tion and classification into one process involving neural network. The neural
network learns the value of features that differentiate one image to another,
and automatically adjust the weight and parameter for it to recognise the gen-
eralised features and pattern for the thing detected. Figure 1.1 explains more
of the work flow and the difference between them.

Figure 1.1: Difference in flow of traditional computer vision and modern (deep
learning) computer vision, adopted from (Walsh et al., 2019) [69].

With more tasks and applications that are implemented using modern com-
puter vision, the growth of computer vision is formidable. This growth enables
a lot of enterprises to implement computer vision tasks, such as autonomous
vehicles or so we call it self-driving car. Similar to what was mentioned in the
third generation of smart home technology earlier, autonomous vehicles uses
different sensors and AI as a part for them to enable the interaction between
them with the whole system without human intervention. However, Computer
Vision plays a huge part in it, where some of smaller tasks that is able to be

CHAPTER 1. INTRODUCTION 7

solved through modern computer vision. Despite all this, there are a lot of
potential that Computer Vision has to offer, and more methods and techniques
used to increase performance, accuracy, precision, and others.

1.3 Objectives

The goal of our project is to utilize computer vision to make virtual assistant to
be controllable by gestures, which is customizable by user. By that, we will not
only be needing feature limited to gesture detection or in other words, action
recognition, but to also employ person detection to understand if a person gets
into a frame of the camera. With that too, two stage detection will be needed in
this area, for person detection to pass the face detection to the face recognition
system. Once the user is recognized, then the user gestures can be detected.

In semester 1, the main focus will be on research and prototype demo.

1. Research different aspects of computer vision that is relatable to the
project, including the state of the art methods

2. Comparing the performance of the frameworks

3. Developing a working prototype for action recognition with the frame-
works that are known to have the best performance on edge devices,
where the model for detecting sequence of poses is also embedded to the
framework

At the end of the semester one, we have made the simplified overall archi-
tecture for the project, where it is explained too in Figure 1.2

CHAPTER 1. INTRODUCTION 8

Figure 1.2: Overall architecture design of the project

1.4 Glossary

Terminologies that are not used as much and more specific in term of computer
vision or AI explained in Table 1.1

Table 1.1: Terms in the papers that are used

Terms Explanations

Action Recognition A task in computer vision to identify actions of a
person identified in the video or image.

Artificial Intelli-
gence

Systems or machines that mimic human intelligence
to perform tasks and can iteratively improve them-
selves based on the information they collect.

Bounding Box A rectangle determined by coordinates of a certain
object detected on an image. Usually used in object
detection task to describe the spatial location of an
object.

Continued on next page

CHAPTER 1. INTRODUCTION 9

Table 1.1 – Continued from previous page
Terms Explanations

Computer Vision A field with the focus of enabling computers to pro-
cess and understand visual side, including videos and
images.

Convolutional
Neural Network

A Deep Learning that assume input as images, with
the capability to differentiate the objects that con-
tained in the image.

Deep Learning A part of artificial intelligence and machine learning
where neural networks are designed to learn and im-
proving on its own by examining the algorithm. This
remove the need to supervise the training process in
machine learning.

LSTM A recurrent neural network that has the ability to
not only process a single frame of image or a single
data point, but also entire sequences of data.

Machine Learning A part of artificial intelligence utilizing the use of
data for the algorithm to learn a certain task, grad-
ually improving its accuracy in the task.

Neural Network A computing system that have the resemblance of
human brain, mimicking the way brain send neural
signal to one another. Each signal passed in the sys-
tem will adjust the weight on each neurons. This
weight output from one neuron will affect the next
node in the connection.

Continued on next page

CHAPTER 1. INTRODUCTION 10

Table 1.1 – Continued from previous page
Terms Explanations

Object Detection A task in computer vision designed to detecting in-
stances based on the features available to classify the
class in digital images and/or videos.

Pose Estimation A task in computer vision designed to predict and
track the location of a person or object. For hu-
man pose estimation, the things that are tracked are
keypoints of human joint, where its unity will resem-
blance of a human pose.

Recurrent Neural
Network

A type of neural network where the architecture al-
low it to have a cycle in between. This allows output
of the network to depend on the prior elements within
the sequence. This technique is used for ordinal or
temporal problem, such as natural language process-
ing, image captioning, language translation, etc.

YOLO An abbreviation for You Only Look Once, a revo-
lutionary object detection system that utilize deep
learning to achieve real-time object detection.

Chapter 2

Related Work

2.1 Object Detection

The interest in object detection started in 2012, during the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [38]. This competition focused
on building an efficient object detection algorithm using the ImageNet database
as the training dataset for the algorithm. In this competition, Krizhevsky et al.
(2012) has decided to approach the challenge by building an object detection
method using Convolution Neural Network (CNN), called AlexNet. With CNN,
AlexNet manage to perform much better compared to its rivals, hence the rise
of CNN on object detection algorithm.

Furthermore, research on Deep Neural Networks has accelerated after ILSVRC
2012, and one improvement they have made is on the training. Since deep neu-
ral networks are harder to train, Kaiming et al. [29] has developed a residual
learning framework to ease the training of deeper neural networks. Also, the
residual networks manage to gain accuracy from the increase depth. The frame-
work has helped on development of deep neural network, especially for many
visual recognition tasks.

11

CHAPTER 2. RELATED WORK 12

2.1.1 Two-Stage Detection Framework

There are two famous framework on CNN-based object detection algorithm.
The first one is two-stage detection framework. Two-stage detection framework
works by using region proposals to create Region of Interest (ROI) [25]. These
ROIs then converted to feature maps using CNN, which then resize to extract
the features that will be used by SVM for object detection and bounding box
regressor to adjust the bounding box size. This method is more time efficient
since the algorithm does not need to detect all parts of an image; instead, it
focuses on parts that have high chance of an object present. This method
created a model family called R-CNN model family. In this project, we are
analyzing two examples from the family, which are R-CNN and Fast R-CNN.

R-CNN is the first CNN-based object detection algorithm after Krizhevsky’s
algorithm. [24]. The algorithm works in 3 different modules. The first module
generates around 2000 region proposals. After that, for each region proposal,
the algorithm extracts a dimensional feature vector using CNN. Finally, the
algorithm utilize SVM to classify the object present in the region proposal.
This algorithm achieved better accuracy than Krizhevsky’s algorithm; however,
R-CNN still has several drawbacks, mainly in the training and testing speed.
Since it uses feature extraction from each object proposal and we have around
2000 region proposals, it consumes a lot of space, roughly hundreds of gigabyte
of storage. Furthermore, during testing, the algorithm is slow to detect the
object in an image, taking around 47 seconds per image.

Due to these issues present in R-CNN, Ross Girshick, the creator of R-
CNN, decided to modify parts of R-CNN to improve the performance and make
the algorithm more time efficient, which he called Fast R-CNN (Fast Region-
based CNN) [23]. Fast R-CNN utilize similar object detection algorithm as

CHAPTER 2. RELATED WORK 13

R-CNN; however, with Fast R-CNN, instead of using 2000 region proposals
to extract feature vectors with CNN, Fast R-CNN only uses one fixed-size
region that has been through Region of Interest (RoI) pooling to extract feature
vectors. Furthermore, Fast R-CNN uses a more optimized softmax classifier and
bounding box regressors in one stage instead of a softmax classifier, SVM, and
regressors in three different stages. Because of this, Fast R-CNN manages to
reduce the time for object detection and model training, going from 84 hours to
9.5 hours, while simultaneously keeping similar or in some cases better accuracy
when compared to R-CNN.

Besides aforementioned algorithms, there are other algorithms that is de-
rived from the R-CNN family. Algorithms such as Faster R-CNN[52] and T-
CNN[34] aims to improve the performance of R-CNN based algorithms. Faster
R-CNN improves the performance on Fast R-CNN algorithm by using deep
convolutional network[28] to determine the region proposals instead of selective
search[65], used in Fast R-CNN. Whereas T-CNN focuses on utilizing tempo-
ral and contextual information such that it improve the algorithm performance
when applied to videos.

2.1.2 One-Stage Detection Framework

Although Fast R-CNN manage to greatly improve the performance of R-CNN,
it still struggles with lengthy training time. With that, a new architecture for
object detection has arised, in the form of one-stage detection framework. While
two-stage detection framework has two stages for the object detection (using
region proposals, object classification, and bounding box regression), one-stage
detection framework only uses feature extraction network and convolution layers
for predicting the object and adjusting the bounding box. This meant that
one-stage detection framework uses less stages for object detection, and thus

CHAPTER 2. RELATED WORK 14

improve the performance of the algorithm. However, there are problems in
one-stage detection framework, mainly in its inability to detect smaller objects.
In this project, we are analyzing two of the most famous one-stage detection
framework model, Single Shot Multibox Detector (SSD) and You Only Look
Once (YOLO).

Single Shot Multibox Detector (SSD) is one of the object detection algo-
rithm that utilize one-stage detection framework [40]. It uses VGG16 Network
for feature extraction and several convolution layers for detections, predictions,
and bounding box adjustments. By using feature extraction and convolution
layers for its model, SSD manages to achieve higher mAP in PASCAL VOC2012
and COCO dataset compared to any R-CNN model family. At the same time,
SSD manages to achieve higher performance than Faster R-CNN (46 FPS vs 7
FPS).

Another famous one-stage detection framework model is You Only Look
Once (YOLO) [51]. The model is designed based using 24 convolutional layers
followed by 2 fully connected layers. It also utilize DarkNet during training.
The model used in YOLO is similar R-CNN, where it proposes potential bound-
ing boxes and score it using convolutional features. However, unlike R-CNN,
YOLO only uses 98 bounding boxes instead of 2000. Furthermore, YOLO
model has spatial constraints to help mitigate multiple detections of the same
object and it combines individual components to a single optimized model, un-
like R-CNN. This means that YOLO manages to achieve higher performance
than Faster R-CNN (45 FPS vs 7 FPS); however, it comes at slightly lower ac-
curacy, with around ten percent lower mAP compared to Faster R-CNN (73.2
vs 63.4).

CHAPTER 2. RELATED WORK 15

2.1.3 Other Methods

Although two-stage and one-stage detection framework model are mostly used
for object detection, there are some popular object detection algorithms that
uses neither framework. Yang et al. [74] propose a new method of using
multi-task learning [53] to improve the performance of existing object detection
method. To demonstrate that, the research uses YOLOv5 as the base of this
model, with the addition of multi-task learning such that this model is able to
perform object detection and semantic segmentation at the same time. This
model manages to achieve higher accuracy (around 9 - 11 percent higher) com-
pared to other semantic segmentation algorithm such as PSPNet [78], BiSeNet
network [75], and ASPP network [15].

2.2 Face Recognition

Face recognition (FR) is a method of detecting and identifying a person with
their face and it has been used in many areas[71]. Interest of FR started with
the introduction of Eigenface approach [64]. It developed to research of FR in
multiple areas, from low-dimensional representation to local-feature based [71].
However, in 2012, a new approach of FR using deep learning has started with the
winning of AlexNet [38]. Several famous Deep-learning based FR [7, 49, 62, 57,
36, 55, 5] are reviewed in this paper. BlazeFace [7] develops its’ model from [40]
with additional modifications such as enlarging receptive field size compared to
other neural network architectures (such as MobileNet [[32],[54]]), using feature
extractions B lazeBlocks, reducing the Pooling Pyramid Network architecture
[33], and implement suppresion algorithm to reduce error from larger spatial
resolution. YOLO5Face [49] redesign YOLOv5 to be used for face recognition
with modifications to the architecture such as the use of SPP, PAN, and SILU

CHAPTER 2. RELATED WORK 16

activation function. DeepFace [62] implements a deep neural network and affine
transformation to the align and represent step in typical FR framework to
reduce error. LightFace [57] implements the typical face recognition framework
in the background in TensorFlow and Keras to make it lightweight. It also
provides mainstream face detection models [36, 55, 5] for users to use. Dlib [36]
is a toolkit developed to build machine learning models with functions such as
classifications and regressions. It also has several functions for FR and face
detection in Python. FaceNet [55] removes the intermediate bottleneck layer
used in previous deep-learning based FR and uses a trained deep convolutional
network to optimize, improving the performance of the model. OpenFace [5]
uses CLNF [4] as the base of OpenFace model, with some changes. These
changes include: adding a validation step using CNN, using separate point
distribution set for eyes, lips, and eyebrows, and additional features such as
head pose and eye-gaze estimation.

2.3 Pose Estimation and
Keypoints Analysis

Pose Estimation and Keypoints Analysis has been an interest in computer vi-
sion. This subject focuses on how to predict and track the position of a person,
either in an image or a video. During the last few years, there have been many
advances in this subject and new pose estimation algorithms are being made, ei-
ther to improve the performance or accuracy of pose estimation. Currently, the
most famous approach of pose estimation are top down approach and bottom
up approach. We will discuss both strengths and weaknesses of both approach
in this paper, and show some examples of it.

The top down approach relies on the model detecting the presence of hu-

CHAPTER 2. RELATED WORK 17

man being in a frame, then determines the keypoints to outline the pose, with
the advantage in accuracy but suffers in performance. Examples of top down
approach in pose estimation [21, 20, 70, 2, 42, 26, 50, 6, 60] are reviewed in
this paper. RMPE [21] utilize CNN for pose estimation and Pose NMS for pose
redundancy elimination, which is implemented and improved in AlphaPose [20]
by using SIKR to accurately localize keypoints and Pose-aware Identity Em-
bedding to simultaneously track poses. HRNet [70] focuses on making a pose
estimation and object detection using high-resolution images by making high-
resolution convolution stream. YOLOPose [[2],[42]] build their model by using
YOLO [51] as the object detection framework; however, both differ in their
pose estimation. Amini, et al. [2] utilize a 6D Transformer to perform pose
estimation and keypoints regression [1], whereas Maji, et al. [42] utilize loss
function to perform pose and keypoints estimation. Both algorithm shows no-
ticeable accuracy improvements compared to similar algorithms, although both
are incomparable to each other due to their objective and dataset difference.
DensePose [26], tackles the same issue with a different approach. Where most
models focus on developing their framework first, DensePose focus on gathering
a dataset, consisted of dense correspondences between SMPL model [41] and
person appearing in COCO dataset, then use the resulting dataset to build a
CNN object detection model, based on Mask R-CNN [27]. Improvements were
made in another version of DensePose [50] where they create a lighter, less layer
R-CNN model, which resulted in increase in model performance. BlazePose [6]
differs from typical top down approach models by detecting the torso or face
instead of whole body. To complement this approach, Bazarevsky et al. utilize
a fast face detector[7] and design a pose estimation model partly inspired by
Stacked Hourglass approach [46]. Pose Estimation Transformer (POET) [60]
extends the work done in DETR [14] with the addition of a transformer-based

CHAPTER 2. RELATED WORK 18

architecture to predict human poses in parallel and a set prediction loss that
is a linear combination of simple sub-losses for classes, keypoint coordinates,
and visibilities. It contains three main elements, a CNN backbone using ResNet
[29], a encoder-decoder transformer based on [14, 67], and pose prediction head.

Bottom up approach relies on the model detecting human keypoints, then
classify which keypoints belong to the same person and connect them. The
method has an advantage of performance compared to top down approach, but
suffers from accuracy. Examples of bottom up approach [17, 72, 3, 22, 12] are
reviewed in this paper. HigherHRNet [17] uses similar backbone as HRNet
[70] with addition of high-resolution feature pyramid to predict high-resolution
heatmaps that are beneficial for detecting small person, which is more efficient
compared to HRNet. LitePose [72] provide more improvements to HRNet [70]
and HigherHRNet [17] by converting multi-branch architecture in HigherHRNet
to single-branch architecture using gradual shrinking, removing redundancies
found in HigherHRNet. Furthermore, LitePose also use fusion deconv head and
large kernel convolution to enhance its’ capacity. MoveNet divides the model
into three parts: encoder, mapper, and decoder, and uses a combination of Con-
volution, Max Pooling, Dense, and Upsampling layers in the model. Further-
more, it utilizes LeakyReLU as the activation function after each convolution
layer. Disentangled Keypoint Regression (DEKR) [22] utilize disentangled rep-
resentations [8] for the representation to accurately learn the keypoint region,
therefore the predicted keypoints are inside the keypoint regions. OpenPose
[12] utilize Part Affinite Fields (PAF) for body parts associationin pose estima-
tion. The research is based on [13], with the modifications on the model mainly
in PAF, by increasing network depth but removing body part refinement stage,
improving performance and accuracy of the algorithm.

With the massive amount of research conducted around pose estimation, it

CHAPTER 2. RELATED WORK 19

is noted that the models made are getting increasingly more complex. Because
of this, Xiao et al. [73] researched the possibility of making simple baselines for
pose estimation models by using a simpler model, consisting of a few decon-
volutional layers added on a backbone network, ResNet, similar to the one in
[29]. The research showed that the simple model is capable of pose estimation
with a promising result, managed to perform slightly better than the winner of
COCO2017 keypoint Challenge’s models. The result of this result showcased
that a simple model can be as effective as a complex one in pose estimation,
which our research will keep in mind during building our model. Furthermore,
another research [45] compares two popular pose estimation model from top
down and bottom up approach, BlazePose [6] and OpenPose [12], and found
out that BlazePose manage to surpass OpenPose in terms of real world per-
formance. This research demonstrate that, even though bottom up approach
are generally has better performance compared to top down approach, with the
right architecture, a top down model can surpass bottom up model in terms of
performance.

2.4 Action Recognition

Action recognition in computer vision focuses on the ability to identify hu-
man action in videos [30]. This task is challenging due to the need to deter-
mine when the action started and ends. The interest started with the usage of
holistic features [10], then progressed to local features, and finally with deep
learning with [38] popularize the technique. Recent works of deep learning-
based action recognition [16, 19, 39] are discussed in this paper. Channel-wise
Topology Refinement Graph Convolution Network (CTR-GCN) [16] improves
on Graph Convolution Network model by simultaneously learning the topolo-

CHAPTER 2. RELATED WORK 20

gies and channel-specific correlations using channel-wise topologies. PYSKL
[19] is a open-source toolbox, based of PyTorch, and designed to support differ-
ent action recognition models from GCN and CNN, such as CTR-GCN [16] and
3D Convolutional Networks [63]. Hierarchically Decomposed Graph Convolu-
tional Network (HD-CGN) [39] creates sets of joint nodes for edge extraction,
highlights the dominant edge sets, and apply a new ensemble method that uses
only joint and bone stream.

Some researches [37, 61] focus on hand gesture detection and recognition as
part of action recognition. Kopuklu et al. [37] create a hand gesture detection
using lightweight CNN and hand gesture classification using deep CNN. Sung
et al. [61] improves on an existing hand skeleton tracker model, M ediaPipe
Hands [77], with modifications to improve keypoint accuracy and the ability
to do a 3D keypoints estimation. And for classification, it combines heuristic
methods and neural networks to classify gestures.

2.5 Long Short-Term Memory

Unlike the other sections discussed in this material, Long short-term Memory
(LSTM) is not a part of computer vision. LSTM is a neural network, part of AI.
Rather than continuously passing input that is processed in the previous layer,
LSTM as the part of Recurrent Neural Network, allows feedback connection.
This feedback connection allows the network to process entire sequences of data,
with example of speech or video. The architecture of this neural network also
allows the unit to protect memory content, while also processing activation
pattern step-by-step and add them to the memory after processing [31]. This
behaviour allows the network to process short-term memory that can last for
a lot of steps. LSTM network are well suited for issues that can be solved

CHAPTER 2. RELATED WORK 21

by gradient-based approaches, such as classification, prediction on time series
and many else. Despite it’s older age compared to most techniques, LSTM is
proved to be effective, even for the recent implementations. In 2018, one team
consisted of five neural network trained on a single layer, 1024-units LSTM
model is trained to play a game of Dota 2, a game that is well known for a
complex mechanics and strategies and is able to beat teams of amateur human
teams [47, 9]. In 2019, an Artificial Intelligence called AlphaStar, built on
LSTM network beats one of the world strongest professional player in one of
the most complex video game, Starcraft 2, won convincingly with the score of
5-0 [68]. This prove that this network is still well used in the industry. Not only
that this model is able to be used in time series prediction, but it is also used
in human action recognition, speech recognition, rhythm learning and music
composition, handwriting recognition, market prediction and more tasks that
is able to be solved through artificial intelligence, especially healthcare.

Chapter 3

Implementation

3.1 General Framework

With the object detection and pose estimation model sorted, we have decided
on a general framework for the model we use on our project, shown in Figure
3.1. The flow of the model will go as follow

1. A person enters the Field of View of a camera-equipped smart home
device, making them the input for our model

2. The model will detect the person and using object detection, it will create
a bounding box around them

3. The model will scan the image inside the bounding box and using facial
recognition, it will search for a face inside and match it to a database

4. When the person’s face match with the face in database, the model will
use pose estimation to extract keypoints

5. With the extracted keypoints, the model uses LSTM for action recogni-
tion

22

CHAPTER 3. IMPLEMENTATION 23

6. With the action recognize, the program will do the command related to
the action

Figure 3.1: Sequence Diagram of the General Framework

From Figure 3.1, initially, we are planning to create a single stage model,
with all components of the model (Object detection, Face recognition, Pose
estimation) in one, streamline pipeline. The problem comes during combining
of these components. Previous researches combines either object detection and
face recognition [49] or object detection and pose estimation [[42],[2]], but not
both of them at the same time. Here, we began the research more on multi-task

CHAPTER 3. IMPLEMENTATION 24

learning, as a part that is often used by different researcher to solve this issue.
Multi-task Learning in itself is a subsidiary of machine learning, where mul-

tiple task are learnt together in parallel through a shared model. This approach
reduces the data that are needed to train machine learning tasks, reducing over-
fitting and allows optimization on training on related tasks. Not only that, but
multi-task learning also allows model for different tasks to be trained faster, and
has the capability to reuse the previously known to augment the model for more
complex tasks. There are different methods of multi-task learning, with some of
the most used one named task grouping and overlap, and transfer of knowledge.
Because of its flexibility, multi-task learning are used in different tasks that are
solvable through deep learning. In Computer Vision, multi-task learning are
mostly used in changing the architecture, for the architecture to partition the
network into task-specific and allows generalization while minimizing negative
transfer [18].

In some cases, multi-task learning can hinder the performance of the model.
Depending on the tasks, multi-task learning can be outperformed by single-task
learning. Furthermore, tackling a large and diverse task at the same time can be
a challenge for multi-task learning, shown in [66]. This meant that depending
on the tasks, using multi-task learning might be less efficient than just relying
on single-task learning. Furthermore, research that involve multi-task learning
applies it only on the the head of the architecture, consisting of at most 2 or 3
tasks. Because of that, it is not yet possible for us to build a whole architecture
using multi-task learning, that is capable to accommodate every task inside the
architecture.

With multi-task learning not as efficient and more time-consuming than we
first thought, we decided to split the framework into 2 stages, as shown in Figure
3.2. The 2 stages mentioned are: Object Detection and Face Recognition in

CHAPTER 3. IMPLEMENTATION 25

stage 1, and Pose Estimation and Action Recognition in stage 2.

Figure 3.2: General framework of our project

3.2 Stage 1: Object detection and
Face Recognition

3.2.1 Object Detection

With the goal of human detection, we have selected potential object detection
models that is suitable for our research, which are YOLO, Faster R-CNN, and
SSD. Furthermore, since our objective is to implement the model on smart
home devices, our main goal is to find the most efficient model that is available
for real-time detection. Based on previous research, we have decided to utilize
YOLO for object detection due to the its’ performance. Compared to R-CNN,
YOLO is much more suitable and provides much better real-time performance.
Whereas with SSD, although SSD provides slightly higher accuracy compared
to YOLO, we ultimately chose YOLO due to better performance. In the middle
of our research time, we also discovered that there is a newly published paper
and repository on the newest iteration of YOLO, YOLOv7. Before, we have
been doing trials on YOLOv5, which is the current iteration of YOLO with the
most update and community support, despite not having an official paper. This
means there are 2 versions of YOLO that we can use in this project and because
of that, we have decided to do inference runs on both models, YOLOv5 and

CHAPTER 3. IMPLEMENTATION 26

YOLOv7, and we will evaluate which model suits our project the most based
on speed and accuracy.

3.2.2 Face Recognition

Face recognition is necessary to identify the person. There are a few face
recognition models we are able to choose for our project [55, 49, 36, 5]. In the
end, we decided to implement dlib [36] to our framework as the face recognition
model. We implement face recognition system that is available in dlib due to
its’ simple model, which is beneficial for our performance-minded framework,
and the built-in face recognition functions is sufficient for our project.

3.3 Stage 2: Pose Estimation and
Action Recognition

3.3.1 Pose Estimation

Another crucial part of our model is pose estimation. Similar to object detec-
tion, we began to find different papers and implementations that are available
on GitHub. Our criteria in choosing the libraries of implementations and papers
are

1. Performance in Low Performance Device (using CPU)

2. Accuracy and Precision

3. Maturity of the model

4. Existing paper and conference entry of the paper

5. Community support on the model

CHAPTER 3. IMPLEMENTATION 27

Ultimately, we managed to get several pose estimation models that suits our
criteria, such as AlphaPose, OpenPose, LitePose, Yolo-Pose, BlazePose, HR-
Net, HigherHRNet, Mo0veNet, PoseResnet, and Lightweight Openpose. The
models chosen have different arch9itecture, with a good combination of top-
down approach and bottom-up approach, as shown in Table 3.1. This proves
that, contrary to popular belief regarding bottom-up approach has better per-
formance than top-down approach, there are top-down approaches that can
match the performance of bottom-up approaches. To mimic the goal of this
research, we have decided to run inference of the aforementioned models on our
machines. However, in that stage, we encounter some issues about some of the
models.

Table 3.1: Approaches of different pose estimation tools

Method Model architecture

HRNet Top-down
HigherHRNet Bottom-up
BlazePose Bottom-up
AlphaPose Top-down
LitePose Top-down
Openpose Bottom-up
PoseResnet Top-down
YOLO-Pose Top-down
Lightweight Openpose Bottom-up
Movenet Bottom-up

3.4 Problem encountered

During our inference testing, we encounter several issues with some of the pose
estimation models. HRNet, HigherHRNet, and LitePose utilize similar archi-

CHAPTER 3. IMPLEMENTATION 28

tecture for their models, and from their research paper and GitHub page, they
develop their models using multiple NVidia GPUs. This meant it is impossible
for us to do an inference testing of their models on our machine. We have
tried to do inference run of the models on CUHK CSE GPU Server, and the
issue still persists. Although LitePose has a mobile version, we could not find
a source code for it, hence we could not replicate it to run on our machine.
Furthermore, some models are unable to run inference on our machine, hence
we remove it from our inference testing. For models that manage to run, we
have done an inference run and use their pre-trained model to measure the per-
formance. From these constraints, we have decided in testing the performance
of 6 models [12, 6, 20, 72, 48, 3].

3.4.1 Action Recognition

Lastly, action recognition is important for our project since it gives the machine
ability to understand human’s movement. Although there are several action
recognition models researched and available to use on GitHub, we found that it
is insufficient to fulfill our main objective due to the limitations in the models.
Because of that, we have decided to build our own action recognition model,
using LSTM to accurately track and predict the movement. Besides that, we
also provide some pre-determined poses for LSTM to predict it, using numpy
file to store the pre-determined poses.

Chapter 4

Evaluation

4.1 Stage 1

4.1.1 Object Detection

With our concerns regarding YOLOv5 and YOLOv7, we decided to do inference
testing on both models to determine which model suits the best for our use case.

Figure 4.1: Inference testing using YOLOv5

Figure 4.2: Inference testing using YOLOv7

From Figure 4.1 and Figure 4.2, we can see that YOLOv7 manages to

29

CHAPTER 4. EVALUATION 30

pick up a detail that YOLOv5 miss (A chair), which indicates that YOLOv7
has higher precision than YOLOv5. However, it is slower when compared to
YOLOv5 (70ms vs 100ms, both models are using smallest possible pre-trained
model) during inference testing. Because our project mainly focus on the per-
formance of the models instead of precision or accuracy, we decided to use
YOLOv5 for our project.

4.1.2 Face recognition

Early on, we figured out that the face recognition that is based on dlib is really
easy to use. What we need to do is only to put a picture of a person into a
known list, then the algorithm will draw similarities that is read on the camera
through OpenCV. From there, it is able to the compare it and give annotations
on the face that is detected on the camera.

Table 4.1: Sample of Face Recognition

One issue that we found on this part is that the face encoding that is
detected might delay the performance of the framework in stage 1, since it
takes some time to detect the face. Not only that, but this face detection is
pretty inconsistent in time given too. One idea that might be viable for the
next development is to just take a picture of someone’s face and return the
name directly rather than giving bounding box to someone’s face, as it would

CHAPTER 4. EVALUATION 31

lighten the weight of stage 1.

4.2 Stage 2

4.2.1 Pose Estimation

For models that manage to run, we have done an inference run and use their
pretrained model to measure the performance. Table 4.2 shows the perfor-
mance of these models, with Frames per Second (FPS) as the measurement
of performance (Higher FPS equals to better performance). We notice that
OpenPose, Lightweight OpenPose, and AlphaPose are not suitable for our use
case due to the low real-life performance (0 and 3-4 FPS) and all three models
are more suitable for devices with a dedicated GPU, which is not the intended
target of our research. Because of that, for our research, we have decided to
focus on the remaining 3 models, LitePose, BlazePose, and MoveNet.

Table 4.2: Performance of different algorithms

Method CPU/GPU† FPS

OpenPose CPU 0
BlazePose CPU 15
AlphaPose CPU 3-4
LitePose Phone 30-35
Lightweight Openpose CPU 3-4
MoveNet CPU 14-16

†
Devices used:

Phone: Samsung Galaxy Note 10 with Snapdragon 855

CPU 1: AMD Ryzen 5 Pro 3500U with Radeon Vega 8

CPU 2: Intel Core i5-7300HQ with NVidia GTX 1050

CHAPTER 4. EVALUATION 32

4.2.2 LitePose

LitePose [72] is the most efficient architecture when it comees to pose estima-
tion. Originally inspired by HRNet, this pose estimation architecture is able
to remove redundant parts and improving the overall architecture, through Fu-
sion Deconv and Large Kernel Convs, enabling it to perform in low computing
devices. This also allows the architecture to perform with much lower latency
compared to its predecessor while not sacrificing its accuracy.

Table 4.3: Litepose inference run on mobile

From Table 4.3, we can see that Litepose manages to estimate the poses
correctly. However, with Litepose, there are moments where the model inaccu-
rately estimate the poses, especially in regards to detecting background objects
as part of a pose, shown in Table 4.3.

CHAPTER 4. EVALUATION 33

4.2.3 Movenet

MoveNet, released in 2022, is another architecture that is suitable for our
project. The model offers great performance for real-time video, easy to use
(offered as part of TensorFlow Hub), and it has different models for different
goals. MoveNet uses a combination of Convolution layer, Max Pooling, Dense
layer, and Up sampling layer.With Movenet, we manage to do an inference run
on local device, and it manages to locate the keypoints correctly, as shown in
Table 4.4. Compared to Litepose, it doesn’t perform as smooth; however, pose
estimation accuracy is better in Movenet compared to Litepose.

Table 4.4: Movenet inference run on CPU

CHAPTER 4. EVALUATION 34

4.2.4 BlazePose

Built for low end devices, BlazePose is another architecture fit for our project.
Not only that it doesn’t require a high computational device to operate it, it
also has some perks, which are customizable through python, supports more
keypoints and many others. However, we also find that there are times where
this tool fall short, especially when handling pollution, where it is not able to
determine correctly the keypoints on the body. This happens because of its
nature of approach on bottom-up.

Table 4.5: BlazePose inference run on CPU

In conclusion, we found that LitePose, although have the best performance
from Table 4.2, it suffers from slightly in accuracy, mentioning that the model
is designed to be simpler than the original HRNet in favour of performance.

CHAPTER 4. EVALUATION 35

However, the biggest problem that LitePose have is the lack of support for
non NVidia GPU machine, which makes it not suitable for our project. Mean-
while, BlazePose and Movenet perform very similar between each other; but,
BlazePose manage to do this with more keypoints plotted (33 in BlazePose vs
17 in Movenet). Because of that, for our project, we are leaning towards using
BlazePose as our pose estimation model, although we still keep Movenet as a
second option.

4.2.5 LSTM Model

Succeeding in finding different pose estimation tools that are available to use,
we began to find more on how to process those poses in a sequence where the
poses detected connect together to form an action. Different researches points
out that we are able to use and integrate Long Short-term Memory to our
existing pose estimation. This is possible since the pose estimation system that
we use enables us to only extract the keypoints from different body parts that
are detected in the frame. In addition to that, for each and every single one
of keypoints that are used in BlazePose are in form of arrays, this enables us
to do concatenation for unification through numpy and thus enables us to have
the structure to do training.

Data Collection & Preparation

No model is able to be run in anything without the data. That is the real-
ization that we had as we thought of this solution. Now that the keypoints
are collected in form of numpy array, it is easier for us to collect sequences of
image. Initially there are several datasets that are available and well known for
action recognition, namely UCF101[59], Kinetics[35], Moments [44] and many
more. However, we decided not to use those datasets for several reasons. First,

CHAPTER 4. EVALUATION 36

those dataset takes very long time to train, as the length / sequence that each
dataset have are varying from 1 sec to 15 minutes. With the amount of data in
one dataset, we believe that it will take some time to train all of them. Second,
we envision that the actions that are to be detected in the model is simple
gestures used in our daily lives, such as raising hand, swiping and rotating. As
we look at the datasets, most of them contains obscure actions that we don’t
need and would be weird instead if implemented, such as breakdancing, high
kick, tai chi.

Because of this reasons, we decided to take our own data. This could be
done by recording 30 videos of 30 frames for each movements. This way, we
would have sufficient data to train the activity for it to be recognizable. In a
single frame, it contains the coordinates of keypoints extracted from that frame,
in total 258 coordinates (x, y, z) for keypoints on pose, right hand and left hand
captured through BlazePose. This frame by frame recording will imitate as if
there are a certain movement done through the keypoints.

There is not much to be done for the data preparation before the model
training, apart from splitting the data collected to be training and testing data.

Model Designing

For us to have the machine learning model that has the capability to use every
frame, it means that we need to use an algorithm that allows the training to
go through the whole sequence that are available in the dataset we collected.
Hence, we decided to use LSTM as the machine learning algorithm. Not only
to just use one layer in the infrastructure, but also to use two layers to im-
itate multi-step forecasting for the movements. The rest of the architecture
is explained through the Figure 4.3. Also, the architecture explained through
Tensorboard would also help explain on the more detail on the graph, which

CHAPTER 4. EVALUATION 37

is shown in figure 4.4. For this model, Adam is utilized in this model as the
optimization technique since it can give one that can manage difficulties with
sparse gradients and noise.

Figure 4.3: LSTM Model

CHAPTER 4. EVALUATION 38

Figure 4.4: Architecture of the LSTM model

4.3 Overall evaluation

4.3.1 Accuracy evaluation

On the training for the model, we thought that we need a lot of epochs for
the model to learn., so we set it to around 1000 epochs. However, the training
categorical accuracy reaches 99% accuracy pretty quickly. We decided to finish
the training early in 60 epochs, so the model won’t overfit. This decision is

CHAPTER 4. EVALUATION 39

not just a hunch, as it is revealed in more iterations of model building that
overfitting prone to happen quite quickly, and thus it is wise to use enough
epoch for it to train. Figure 4.5 and Figure 4.6 describe the graph produced
on the accuracy and loss on the training.

Figure 4.5: Training statistics on accuracy

Figure 4.6: Training statistics on loss

As seen on the figures above, we can see that there are a significant drop in
the accuracy in around 20 epochs. This drop is however, without any reason
whatsoever since from there it will increase with stability and hitting constant
accuracy above 95 percent.

CHAPTER 4. EVALUATION 40

Figure 4.7: Confusion Matrix on the testing data

After the model is built, the thing that is needed to test is the accuracy.
The way to test this accuracy is through a method called confusion matrix, to
test whether the result of the model and expected value are the same. As we
can see on Figure 4.7, our model is able to hit accuracy score of 1.0. This prove
that the model that was built had a good performance in detecting the gesutres
correctly.

4.3.2 Speed evaluation

Now that the part of stage 2 is ready, then the speed or the performance of
the integration is able to be tested. Initially, it was pretty hard to determine
accurately on the speed, since the speed varies a lot on whether a certain part
is detected or not (it varies if only keypoints are detected, or when a motion
that form the gesture trained in the model is detected). Most of the time a
motion is registered in the camera, the system will print out the latest gesture
that the user made. So in Figure 4.7, it can be seen that the latest motion that
is made by the user is Swipe Right (SwipeR), and the FPS shown on user’s
CPU (AMD Ryzen 5 PRO 3500U) is showing 4 FPS. Despite its low number,

CHAPTER 4. EVALUATION 41

the interaction with camera shows that it is smoother than 4 FPS that was
achieved in comparison done in Table 4.2. Trial on another CPU (Intel Core i5
7300HQ) shows that the performance of the model improves a lot, reaching 12
FPS.

Figure 4.8: Stage 2 evaluation on speed (FPS is shown on top left corner)

Chapter 5

Conclusion

5.1 Summary

In this semester, we have done research on object detection, face recognition,
pose estimation, and action recognition. We have chosen several models for
those components and do inference run on these models to determine the model
best fitted to our purpose. Furthermore, for action recognition, we have built
an LSTM-based action recognition with 4 poses as the trial poses. Our LSTM-
based action recognition manages to achieve accuracy of 95 percent and average
of 8 FPS, when combined with BlazePose. This indicates how efficient our
model is despite the limitations of our devices.

5.2 Future Work

In the next term, there are 2 main goals that we would like to achieve for this
project:

1. We would like to combine both stages of the model into one code and
optimize the models such that we can obtain a good performance and
accuracy result

42

CHAPTER 5. CONCLUSION 43

2. Add more poses to be recognized and if possible, the ability for users to
add their own poses and faces

Bibliography

[1] A. Amini, A. S. Periyasamy, and S. Behnke. T6d-direct: Transformers for
multi-object 6d pose direct regression. CoRR, abs/2109.10948, 2021.

[2] A. Amini, A. S. Periyasamy, and S. Behnke. Yolopose: Transformer-based
multi-object 6d pose estimation using keypoint regression, 2022.

[3] R. Bajpai and D. Joshi. Movenet: A deep neural network for joint profile
prediction across variable walking speeds and slopes. IEEE Transactions
on Instrumentation and Measurement, 70:1–11, 2021.

[4] T. Baltrusaitis, P. Robinson, and L.-P. Morency. Constrained local neural
fields for robust facial landmark detection in the wild. In Proceedings of
the IEEE international conference on computer vision workshops, pages
354–361, 2013.

[5] T. Baltrušaitis, P. Robinson, and L.-P. Morency. Openface: an open source
facial behavior analysis toolkit. In 2016 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 1–10. IEEE, 2016.

[6] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and
M. Grundmann. Blazepose: On-device real-time body pose tracking, 2020.

[7] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grund-

44

BIBLIOGRAPHY 45

mann. Blazeface: Sub-millisecond neural face detection on mobile gpus,
2019.

[8] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[9] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[10] A. F. Bobick and J. W. Davis. The recognition of human movement using
temporal templates. IEEE Transactions on pattern analysis and machine
intelligence, 23(3):257–267, 2001.

[11] A. Bowes, A. Dawson, and D. Bell. Ethical implications of lifestyle mon-
itoring data in ageing research. Information, Communication & Society,
15(1):5–22, 2012.

[12] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. Openpose: Re-
altime multi-person 2d pose estimation using part affinity fields, 2018.

[13] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7291–7299, 2017.

[14] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko. End-to-end object detection with transformers. In European
conference on computer vision, pages 213–229. Springer, 2020.

BIBLIOGRAPHY 46

[15] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017.

[16] Y. Chen, Z. Zhang, C. Yuan, B. Li, Y. Deng, and W. Hu. Channel-wise
topology refinement graph convolution for skeleton-based action recogni-
tion. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 13359–13368, 2021.

[17] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang. High-
erhrnet: Scale-aware representation learning for bottom-up human pose
estimation, 2019.

[18] M. Crawshaw. Multi-task learning with deep neural networks: A survey.
arXiv preprint arXiv:2009.09796, 2020.

[19] H. Duan, J. Wang, K. Chen, and D. Lin. Pyskl: Towards good practices
for skeleton action recognition. arXiv preprint arXiv:2205.09443, 2022.

[20] H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y.-L. Li, and C. Lu. Al-
phapose: Whole-body regional multi-person pose estimation and tracking
in real-time, 2022.

[21] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. Rmpe: Regional multi-person
pose estimation, 2016.

[22] Z. Geng, K. Sun, B. Xiao, Z. Zhang, and J. Wang. Bottom-up human pose
estimation via disentangled keypoint regression, 2021.

BIBLIOGRAPHY 47

[23] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1440–1448, 2015.

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
580–587, 2014.

[25] T. Grel. Region of interest pooling explained. https://deepsense.ai/

region-of-interest-pooling-explained/, 2017.

[26] R. A. Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human
pose estimation in the wild. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7297–7306, 2018.

[27] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn, 2017.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep
convolutional networks for visual recognition. In Computer Vision – ECCV
2014, pages 346–361. Springer International Publishing, 2014.

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition, 2015.

[30] S. Herath, M. Harandi, and F. Porikli. Going deeper into action recogni-
tion: A survey. Image and vision computing, 60:4–21, 2017.

[31] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural com-
putation, 9:1735–80, 12 1997.

[32] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural

BIBLIOGRAPHY 48

networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

[33] P. Jin, V. Rathod, and X. Zhu. Pooling pyramid network for object detec-
tion. arXiv preprint arXiv:1807.03284, 2018.

[34] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang,
R. Wang, X. Wang, and W. Ouyang. T-CNN: Tubelets with convolutional
neural networks for object detection from videos. IEEE Transactions on
Circuits and Systems for Video Technology, 28(10):2896–2907, oct 2018.

[35] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[36] D. E. King. Dlib-ml: A machine learning toolkit. The Journal of Machine
Learning Research, 10:1755–1758, 2009.

[37] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll. Real-time hand ges-
ture detection and classification using convolutional neural networks. In
2019 14th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2019), pages 1–8. IEEE, 2019.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

[39] J. Lee, M. Lee, D. Lee, and S. Lee. Hierarchically decomposed graph con-
volutional networks for skeleton-based action recognition. arXiv preprint
arXiv:2208.10741, 2022.

BIBLIOGRAPHY 49

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. SSD: Single shot MultiBox detector. In Computer Vision – ECCV
2016, pages 21–37. Springer International Publishing, 2016.

[41] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. Smpl:
a skinned multi-person linear model. ACM Trans. Graph., 34:248:1–248:16,
2015.

[42] D. Maji, S. Nagori, M. Mathew, and D. Poddar. Yolo-pose: Enhancing
yolo for multi person pose estimation using object keypoint similarity loss,
2022.

[43] D. Marikyan, S. Papagiannidis, and E. Alamanos. A systematic review of
the smart home literature: A user perspective. Technological Forecasting
and Social Change, 138:139–154, 2019.

[44] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal,
T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al. Moments in
time dataset: one million videos for event understanding. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pages 1–8, 2019.

[45] S. Mroz, N. Baddour, C. McGuirk, P. Juneau, A. Tu, K. Cheung, and
E. Lemaire. Comparing the quality of human pose estimation with
blazepose or openpose. In 2021 4th International Conference on Bio-
Engineering for Smart Technologies (BioSMART), pages 1–4, 2021.

[46] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human
pose estimation, 2016.

[47] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

BIBLIOGRAPHY 50

[48] D. Osokin. Real-time 2d multi-person pose estimation on cpu: Lightweight
openpose. arXiv preprint arXiv:1811.12004, 2018.

[49] D. Qi, W. Tan, Q. Yao, and J. Liu. Yolo5face: why reinventing a face
detector. arXiv preprint arXiv:2105.12931, 2021.

[50] R. Rakhimov, E. Bogomolov, A. Notchenko, F. Mao, A. Artemov, D. Zorin,
and E. Burnaev. Making densepose fast and light, 2020.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

[52] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks, 2015.

[53] S. Ruder. An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098, 2017.

[54] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–
4520, 2018.

[55] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015.

[56] S. Sepasgozar, R. Karimi, L. Farahzadi, F. Moezzi, S. Shirowzhan,
S. M. Ebrahimzadeh, F. Hui, and L. Aye. A systematic content review

BIBLIOGRAPHY 51

of artificial intelligence and the internet of things applications in smart
home. Applied Sciences, 10(9), 2020.

[57] S. I. Serengil and A. Ozpinar. Lightface: A hybrid deep face recognition
framework. In 2020 Innovations in Intelligent Systems and Applications
Conference (ASYU), pages 23–27. IEEE, 2020.

[58] M. Shafiq, Z. Gu, O. Cheikhrouhou, W. Alhakami, and H. Hamam. The
rise of “internet of things” review and open research issues related to de-
tection and prevention of iot-based security attacks. Wireless Communi-
cations and Mobile Computing, 2022:12, 08 2022.

[59] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

[60] L. Stoffl, M. Vidal, and A. Mathis. End-to-end trainable multi-instance
pose estimation with transformers. arXiv preprint arXiv:2103.12115, 2021.

[61] G. Sung, K. Sokal, E. Uboweja, V. Bazarevsky, J. Baccash, E. G. Baza-
van, C.-L. Chang, and M. Grundmann. On-device real-time hand gesture
recognition. arXiv preprint arXiv:2111.00038, 2021.

[62] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
1701–1708, 2014.

[63] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In Proceedings of

BIBLIOGRAPHY 52

the IEEE international conference on computer vision, pages 4489–4497,
2015.

[64] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of cognitive
neuroscience, 3(1):71–86, 1991.

[65] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders. Selective search for
object recognition. International Journal of Computer Vision, 104:154–
171, 09 2013.

[66] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans, D. Dai,
and L. Van Gool. Multi-task learning for dense prediction tasks: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2021.

[67] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[68] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg,
W. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds,
D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard,
D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden,
T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, D. Yogatama,
J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,
K. Kavukcuoglu, D. Hassabis, and D. Silver. AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/,
2019.

[69] J. Walsh, N. O’ Mahony, S. Campbell, A. Carvalho, L. Krpalkova,

BIBLIOGRAPHY 53

G. Velasco-Hernandez, S. Harapanahalli, and D. Riordan. Deep learning
vs. traditional computer vision. 04 2019.

[70] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu,
M. Tan, X. Wang, W. Liu, and B. Xiao. Deep high-resolution representa-
tion learning for visual recognition, 2019.

[71] M. Wang and W. Deng. Deep face recognition: A survey. Neurocomputing,
429:215–244, 2021.

[72] Y. Wang, M. Li, H. Cai, W.-M. Chen, and S. Han. Lite pose: Effi-
cient architecture design for 2d human pose estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 13126–13136, 2022.

[73] B. Xiao, H. Wu, and Y. Wei. Simple baselines for human pose estimation
and tracking, 2018.

[74] L. Yang, L. Lou, X. Song, J. Chen, and X. Zhou. An improved object
detection of image based on multi-task learning. In 2022 3rd International
Conference on Computer Vision, Image and Deep Learning & Interna-
tional Conference on Computer Engineering and Applications (CVIDL &
ICCEA), pages 453–457, 2022.

[75] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In Proceedings
of the European conference on computer vision (ECCV), pages 325–341,
2018.

[76] C. Z. Yue and S. Ping. Voice activated smart home design and imple-

BIBLIOGRAPHY 54

mentation. In 2017 2nd International Conference on Frontiers of Sensors
Technologies (ICFST), pages 489–492, 2017.

[77] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L.
Chang, and M. Grundmann. Mediapipe hands: On-device real-time hand
tracking. arXiv preprint arXiv:2006.10214, 2020.

[78] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017.

