JARVIS: User-defined Postures Detection for Smart Home

Christopher Albert Priatko Theodore Fabian Rudy

Supervisor: Prof. Michael R. Lyu Computer Science and Engineering The Chinese University of Hong Kong

January 16, 2023

Table of Contents

1 Introduction

- 2 Implementation
- 3 EvaluationStage 1Stage 2
- 4 Conclusion
- 5 Q and A session

Do you have one of these?

Voice commands limitations

- Accessibility: Can only be accessible in a certain distance from device
- Control: Limited predetermined controls and language issues
- Privacy Issue: Reliance on major software providers

This semester, we aim to do our projects through different objectives that we have

- Research different aspects of computer vision that is viable for the the projects
- Compare the performance between those computer vision
- Implement a working prototype of action recognition with pre-determined gestures

Table of Contents

1 Introduction

2 Implementation

3 EvaluationStage 1Stage 2

4 Conclusion

5 Q and A session

Literature Review

Object Detection

YOLO, SSD, R-CNN,

EfficientDet, etc

Face Detection

Dlib, FaceNet, OpenFace,

VGG-Face, etc

Pose Estimation

HRNet, ViTPose, OpenPose,

AlphaPose, etc

Literature review (cont.)

Action Recognition

PoseConv3D, VideoMAE,

CTR-GCN, HD-GCN, etc

Multi-Task Learning

HRNet, PoseConv3D,

OpenPose, AlphaPose, etc

- High computational power needed for each library
- Our goal is to have everything run locally
- Performance is our most important aspect

Solution

Two stage framework

Solution

Table of Contents

1 Introduction

2 Implementation

5 Q and A session

Stage 1 - Overview

Object Detection

Face Detection

Table: Performance of Object Detection Models

Models	Object Detected	Average FPS	
YOLOv5	Person, TV	14	
YOLOv7	Person, TV, Chair	10	
	[†] Our conclusion:		

YOLOv5 due to higher FPS and insignificant accuracy difference YOLOv5 accuracy is still good for our use case (Single Person)

Stage 1 - Object Detection (cont.)

- YOLOv5 uses COCO for its pretrained model, which included 80 different classes (including person)
- Build our own dataset for our project (Explained in data collection)

Stage 1 - Face Recognition

Face Recognition using Dlib

Stage 1 - Data Collection

- Use Open Images dataset for training
- Limit to 2000 images, focusing on person and non-person

Stage 1 - Model

Figure: Model of Object Detection + Face Recognition network

Stage 1 - Training performance

 mAP

Recall

Stage 1 - Training Performance (cont.)

Table: Statistics

Phase	P	R	mAP50	mAP50-95
Validation	0.542	0.44	0.419	0.226
Training	0.5168	0.5818	0.5168	0.264

Stage 1 - Demo

Stage 2 - Overview

Pose Estimation

Action Recognition

Stage 2 - Pose Estimation - Sample Model

BlazePose

LitePose

Table: Performance of different algorithms

Method	CPU/GPU^{\dagger}	FPS
OpenPose	CPU	0
BlazePose	CPU	15
AlphaPose	CPU	3-4
LitePose	Phone	30-35
Lightweight Openpose	CPU	3-4
MoveNet	CPU	14-16

[†]Devices used:

Phone: Samsung Galaxy Note 10 with Snapdragon 855 CPU 1: AMD Ryzen 5 Pro 3500U with Radeon Vega 8 CPU 2: Intel Core i5-7300HQ with NVidia GTX 1050

Stage 2 - LSTM

Inference run of LSTM-based action recognition

Stage 2 - LSTM (cont.)

- Considering using other action recognition library: PYSKL, VideoMAE
- Problem encountered: High computational power is needed
- Decided to use basic LSTM since it is easier to run on low powered devices

Stage 2 - Data Collection

- Many public datasets available to use: UCF101, Kinetics, Moments
- Decided to build our own dataset with NumPy

Stage 2 - Model

model = Sequential()
model.add(LSTM(64, return_sequences-True, activation='relu', input_shape=(30,258)))
model.add(LSTM(64, return_sequences-False, activation='relu'))
model.add(Denpout(0.2))
model.add(Dense(54, activation='relu'))
model.add(Dense(22, activation='relu'))
model.add(Dense(22, activation='relu'))

Figure: Model of LSTM network

Stage 2 - Training performance

Figure: Training statistics on accuracy

Figure: Training statistics on loss

Table of Contents

1 Introduction

2 Implementation

3 EvaluationStage 1Stage 2

4 Conclusion

Conclusion

In this term, we have managed to:

- Researched and compared different computer vision related projects in terms of performance
- Implemented a prototype for object detection with face recognition and action recognition with pre-determined gestures
- In the next term, we are planning to:
 - Utilize Siamese face recognition instead of Dlib to achieve better performance
 - Combine Stage 1 and 2 model to a single, streamlined model
 - Optimize the model to achieve best performance

Table of Contents

1 Introduction

2 Implementation

3 EvaluationStage 1Stage 2

5 Q and A session

