
Improving the Quality of

Adversarial Examples via

Contrastive Learning and

Pretraining

Final Year Project Second Term Report

by

Yung-chieh Huang

Supervised by

Professor Michael Rung-Tsong Lyu

Department of Computer Science and Engineering

The Chinese University of Hong Kong

i

Contents

1 Introduction 1

1.1 Adversarial Attack . 1

1.2 Motivation . 5

1.3 Objective . 6

1.4 Contribution . 7

2 Related Work 8

2.1 Adversarial Attack for Text . 8

2.2 Pretraining . 9

2.3 Contrastive Learning . 10

3 Methodology 12

4 Experiments 16

4.1 Baselines . 16

4.2 Datasets . 17

4.3 Set up . 17

4.4 Results . 19

4.4.1 Pretraining Only . 19

4.4.2 Contrastive Learning and Pretraining 22

4.4.3 CLINE Contrastive Sentences Augmentation 23

4.4.4 Iterative Contrastive Learning and Pretraining 28

ii

4.4.5 Batch-sorted Contrastive Sentences 32

4.4.6 Merged Contrastive Learning and Pretraining 33

5 Conclusion and Future Work 38

1

Chapter 1

Introduction

Deep learning has gained great success in the past few years. From image recognition to

virtual assistant, it is undeniable that deep learning has made our lives more convenient

than ever such as autonomous driving and medical diagnosis. Deep learning has also

greatly influenced the field of natural language processing (NLP), brought about many new

applications such as machine translation and sentiment analysis. Yet recently, researchers

have found that several seemingly robust language models are vulnerable to adversarial

attacks that replacing a token by other synonyms can dramatically mislead the output of

language models.

1.1 Adversarial Attack

Adversarial attack is an approach to test the robustness of machine learning models. There

are generally two kinds of attacks in the literature. One is the white-box attacks, which

consider the white-box setting where attackers can access the architectures and parameters

of the victim models. The other is the black-box attacks, which focus on the black-box

situation where attackers fail to get access to the specifics of the victim models. Black-box

attacks are more applicable than white-box counterparts for real-world systems, and there

exist two basic attacking methodologies: query-based and transfer-based attacks. Query-

based attacks interact with the victim model to generate adversarial examples and may

2

incur excessive queries. In contrast, transfer-based attacks craft adversarial examples with

a local source model and do not need to query the victim model. In the NLP community,

researchers focus more on query-based black-box attacks, because of a high attack success

rate compared with transfer-based attacks.

Adversarial examples are the generated test cases by adversarial attack methods to test

victim models. An adversarial example is created by intentionally applying perturbations

to an original sentence such that a victim model correctly classifies the original sentence

but misclassifies the adversarial example with high confidence. Furthermore, the adversar-

ial example should satisfy the constraint that humans cannot differentiate the difference

between the adversarial example and the original one. Therefore, a well-crafted adversarial

example should have minimum perturbations and preserve the structure and characteris-

tics of the original to be as close to the original sentence as possible.

The field of adversarial attack has been well explored in image recognition, yet only until

recently do researchers start looking into adversarial attack in NLP. This is due to the

challenges in generating text adversarial examples. The image domain is continuous that

image adversarial examples can be created by simply perturbing pixel values utilizing

the gradient information of the victim models. Those changes in pixel values are hardly

distinguishable to human perception but are effective in fooling machine learning models

(Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy 2014). However, the data in the

natural language processing community are texts, which are a combination of discrete

words. Therefore, gradient descent is not applicable to generate adversarial examples. In

addition, altering a word in a sentence can change the whole semantic drastically, which

increases the difficulty of generating textual adversarial examples.

In general, adversarial attacks in the NLP field can be roughly divided into three cate-

gories: character-level, token-level, and sentence-level. Character-level adversarial attacks

3

perturb the characters of the original sentences by replacing, removing, or inserting char-

acters. The generated adversarial examples can be viewed as adding typos to the original

sentences. Character-level attacks can successfully mislead the language models, but the

generated adversarial examples are extremely hard to read and understand. Token-level

adversarial attacks perturb the tokens of the original sentences by replacing, removing,

or inserting tokens. The whole adversarial example is more readable than character-level

attacks, but improper substitution of a token can drastically change the whole semantics.

Sentence-level adversarial attacks rephrase one sentence to mislead the language models

while keeping the semantics of the original sentence. Sentence-level adversarial attacks can

generate syntactic and semantic adversarial examples, but it suffers from large quantities

of computation complexity. In this project, we mainly focus on the research of token-level

adversarial attacks.

A token-level adversarial attack method can be treated as a composition of four com-

ponents, namely a goal function, a transformation method, a search method, and a set of

constraints (Roth et al. 2021).

Goal Function

Goal function specifies what result the attack model intends to achieve. For classification

tasks, the goal functions are usually either targeted or untargeted classification. Targeted

classification tries to fool the victim model to classify an example to a specific class different

to the correct class, while untargeted classification only aims to make the victim model

misclassify to any other classes. In general, the goal function is the cross entropy loss to

measure the difference between the prediction of the adversarial examples and real labels.

Transformation

Transformation is how the attack method generates adversarial examples by transforming

the original sentences. For character-level adversarial attacks, One type of transformation

4

is to randomly replace characters in a word or mimic typos (J. Gao et al. 2018; J. Li et al.

2018). These character-level attacks are useful in everyday life applications in a sense that

character errors can easily occur. However, they don’t actually test the victim model’s

ability to capture sentiment.

For token-level adversarial attacks, the transformations are often done by replacing to-

kens, inserting tokens, deleting tokens, or changing token orders. One common type of

transformation is to replace a word with a nearby word in a word embedding space (Jin

et al. 2020). The intention of such transformation is to find a synonym replacement. How-

ever, in word embedding, synonyms and antonyms are clustered together due to improper

word embedding function, Therefore, the semantic of the output adversarial example may

be opposite to the original sentence. In addition, this method does not take the context

and fluency into consideration, resulting in replacements that do not fit in well.

To solve the problem, the latest trend of transformation is to use language models such

as BERT (Devlin et al. 2018) and RoBERTa (Liu et al. 2019) to do masked language

modelling and generate replacements (Garg and Ramakrishnan 2020; L. Li et al. 2020).

The advantage of this approach is that language models take the sentence context into

account, so the output adversarial examples will be more natural.

Search Method

Search method aims to find the important tokens to be perturbed in the original sentences

and compute the order of replacing tokens in a sentence, in other words, the sequence of

applying transformation to tokens. It could be in document order, in random order, or

in importance ranking from most important to least important. The search method is

relevant to the efficiency of the attacking method. If the search method is effective, the

query number of the adversarial attack can be reduced.

5

Constraints

Constraints is a set of rules for generated adversarial examples, which guarantees the per-

turbation is imperceptible for human. Part of Speech (POS) constraint requires replace-

ments to have the same POS tag as the replaced tokens to ensure correct grammar, which

keeps the generated adversarial examples are readable and understandable by human. Se-

mantic similarity constraint aims to maintain the semantic of the original sentence, which

guarantees the true label of the adversarial examples is the same as the original one. There

are also edit distance constraint, performance constraint, to name a few for regularizing

the imperceptibility.

1.2 Motivation

The adversarial examples that state-of-the-art attack methods generate are of low quality,

though they utilize user studies to verify the quality of their generated examples. De-

spite the superior attacking performances shown in the papers, after running the attack

models ourselves, we observe that most of the adversarial examples the models generate

are inconsistent and cause semantic loss. We regard the two main problems are opposite

semantic replacements and irrelevant replacements.

Opposite semantic replacements are antonyms of the original word that alter the semantics

of the sentence. Take a look at the examples in Table 1.1 generated by BAE (Garg and

Ramakrishnan 2020) attacking victim model BERT-base. Here, ”triviality” is replaced

with ”beauty”, which totally changes the semantics of the original sentence from nega-

tive to positive. Therefore, even though this is a successful attack on the system, we say

this is an invalid attack. The true label of the adversarial example is not the same as

that of the original example and the label is flipped as the semantics change. Although

the prediction of the model is varied, it is coherent with the true label of the adversarial

example, which does not cause a prediction error. Therefore, we conclude that opposite

semantic replacements will not cause an error contributing to a false positive, so we should

6

Original
sentence

no amount of good intentions is able to overcome the triv-
iality of the story

Negative
(100%)

Adversarial
example

no amount of good intentions is able to overcome the
beauty of the story

Positive
(99%)

Table 1.1: Examples of attacking the BERT-base classifier by BAE.

Original
sentence

watching spirited away is like watching an eastern imagi-
nation explode

Positive
(99%)

Adversarial
example

watching spirited away is like watching an eastern maga-
zine explode

Negative
(100%)

Table 1.2: Examples of attacking the BERT-base classifier by BAE.

eliminate opposite semantic replacements.

Irrelevant replacements are replacements that have nothing to do with the original word

or the sentence context. Irrelevant replacement makes it hard to understand the meaning

of the adversarial example because the replaced token is not readable or improper in the

sentence. The adversarial examples containing irrelevant replacements are actually the

sentences out of the domain of the tasks or the domain of natural language. In this other

example in Table 1.2, ”imagination” is replaced with an out-of-context word ”magazine”.

The two words are not synonyms, and ”magazine” disrupted the semantics of the original

sentence. Such an unnatural sentence does not appear in real-life applications, thus this is

also viewed as an invalid attack. The generated adversarial examples are out of a domain

that is hard to read and understand for humans, which is hard to give a clear label of

the adversarial example. Therefore, irrelevant replacements also does not cause an error

contributing to a false positive, so we should eliminate irrelevant replacements as well.

1.3 Objective

The goal of this project is to overcome the flaws in previous works and generate high-

quality adversarial examples. That is to say, we want our attack method to generate

examples to be free from opposite semantic or out-of-context replacements and at the

7

same time maintain fluency. Furthermore, we expect our attack model to have a higher

successful attack rate and lower perturbation than other state-of-the-art attack models.

We want to emphasize that this work is designed to improve the quality of generated adver-

sarial examples, but we should also improve the ability to attack other models. Therefore,

we design an attacking method to achieve both of the objectives by elaborate algorithm

designs. In order to overcome irrelevant replacements, we pretrain the language model to

generate replaced tokens on the task-related datasets to learn the distribution on the task

domain. In order to overcome opposite semantic replacements, we utilize the concept of

contrastive learning to retrain the language model so that it learns a better representation

to distinguish the synonym and antonym in the embedding space. Furthermore, we deploy

an iterative training framework to balance the quality of generated adversarial examples

and the attack success rate to achieve a high-quality and effective attacking method.

1.4 Contribution

In this project our contributions are three-folded. First, we figured out that the reason why

opposite semantic replacements exist is due to the embedding space of language models,

and why out-of-context replacements are so difficult to avoid is because attack methods

are too general. Unlike previous works which only emphasize exterior factors such as

adding more constraints, we go further and alter the interior components, which is the

language model used in transformation. Secondly, we are the first to generate adversarial

examples via a combination of contrastive learning and pretraining. Through pretraining,

our attack model is domain-specific, so that instead of generating general replacements,

it generates replacements that are related to the sentence context. With the help of

contrastive learning, our attack model is capable of separating synonyms and antonyms

in the embedding space, which will contribute to generating adversarial examples that

are semantically similar to the original sentence. Finally, we develop an iterative training

method that can largely improve the performance. That is, not only do we have better

adversarial examples, but our results also outrun state-of-the-art baselines.

8

Chapter 2

Related Work

2.1 Adversarial Attack for Text

Adversarial attack in NLP has only started to gain its popularity recently due to the diffi-

culty of generating adversarial text examples caused by the nature of text. As mentioned

in the previous section, different attack methods have different compositions according to

their needs, while they mainly differ in transformation. Our project is inspired by two

works: BERT-Attack (L. Li et al. 2020) and BAE (Garg and Ramakrishnan 2020), both

of which use language model in transformation.

BERT-Attack aims to generate adversarial examples that are fluent and semantically pre-

served while having high success rate and minimum perturb percentage. The attack model

finds the vulnerable words in a input sentence by masking each word and calculate the

output logit. Then, in vulnerability order, use BERT masked language model to generate

replacement for each word. BERT-Attack indeed has minimum perturbation. However,

when we recreate its experiment, we see a lot of sub-words in its generated adversarial

examples. This is because BERT-Attack tokenizes a sentence into sub-word tokens, and

some sub-words are not processed correctly.

BAE is the other work we reference to. The objective of BAE is to beat previous baselines

9

on text classification datasets at the same time improve grammatically and semantic co-

herence via replaceing and/or inserting tokens. BAE uses BERT to predict masked tokens,

and apply constraints such as sentence similarity and part of speech tag to ensure fluency.

Yet, we still find its adversarial examples unnatural when rerunning its experiment.

Although our adversarial attack method is similar to BAE except for the transforma-

tion part, we aim to solve the core internal problems of Bert-based attacks. We are the

first to propose utilizing pretraining and contrastive learning to improve the ability of the

embedding spaces to further boost the quality of adversarial examples.

2.2 Pretraining

One of the reasons why pretrained language models are so powerful is because they are

pretrained on very large corpora from various domains. To illustrate, the pretraining cor-

pus of BERT (Devlin et al. 2018) consists of two huge corpora, BookCorpus and English

Wikipedia; RoBERTa (Liu et al. 2019) is pretrained on over 160GB of uncompressed text

from books, wikipedia, news articles, web content, and stories.

Recent studies (Gururangan et al. 2020; J. Lee et al. 2020) have shown that a second

phase pretraining on domain-specific corpora can largely increase the performance of a

language model on tasks in that domain. This is because language models are initially

pretrained to perform general tasks, the general corpora may not be diverse enough to

include domain specific terms.

After reading these studies, we decided to incorporate this concept and pretrain BERT

on domain-specific datasets, hoping it will then generate less out-of-context replacements.

The domain we mainly focus on is sentiment analysis, movie reviews to be more specific.

We also test our attack model on the natural language inference in later stages of the

experiment.

10

We utilize the strong power of pretraining to regularize the language model in the task-

specific domain. We select datasets that have the same tasks as the victim models. For

example, we use the IMDb dataset to pretrain the model while the victim model is trained

on the MR dataset. Both datasets are related to movie review sentiment analysis, thus

they are in the same task domain. At the same time, we pretrain the model on task-

related datasets, which can balance the overfitting and underfitting issues. Pretraining on

the same dataset may cause overfitting to the dataset and the generated adversarial exam-

ples may not mislead the victim models. If we pretrain on the datasets of other tasks, the

generated replaced tokens are still suffering from the problem of irrelevant replacements.

2.3 Contrastive Learning

One difficulty we face when conducting experiments is that language models cannot dis-

tinguish synonyms and antonyms because synonyms and antonyms are clustered together

in the embedding space. Therefore, we incorporate contrastive learning in our model. The

idea of contrastive learning is to pull similar neighbors together and push away others.

We hope by coupling contrastive learning and BERT, BERT can pull together synonyms,

push away antonyms, and generate less opposite semantic replacements.

SimCSE (T. Gao, Yao, and Chen 2021) is a simple contrastive sentence embedding frame-

work we use in this project. Its objective is to improve sentence embedding performance on

semantic textual similarity tasks. The paper presents two approaches: unsupervised and

supervised. Unspuervised SimCSE predicts an input sentence twice with independently

sampled dropout masks to obtain two embeddings as positive pairs. Supervised SimCSE

is done by treating entailment pairs from natural language inference datasets as positive

instances and add contradiction pairs as hard negatives.

Another contrastive learning framework we reference to is CLINE (Wang et al. 2021).

11

The goal of CLINE is to train a language model that is both defensive against adversar-

ial attacks and sensitive to semantic changes by using both adversarial and contrastive

examples, because often times when trying to improve the robustness against adversarial

attacks, the performance on contrastive examples fails. CLINE generates positive sentence

pairs with the same semantics by replacing extracted words with synonyms, and generate

negative sentence pairs with opposite semantics by replacing them with antonyms and

random words.

We also adopt contrastive learning to improve the sentence embedding performance on the

synonym and antonym. Instead of directly utilizing the pretrained contrastive learning

model, we generate contrastive sentence pairs such that the synonym sentence replaces

the original sentence with synonyms, while the antonym sentence replaces the original

sentence with antonyms. Then we apply contrastive learning to further train models to

improve their embedding performance in disentangling synonyms and antonyms.

12

Chapter 3

Methodology

Despite setting multiple constraints and using state-of-the-art language model in trans-

formation in an attack model to ensure the quality of adversarial examples, we can still

see a lot of out-of-context and opposite semantic replacements, as demonstrated in pre-

vious sections. This is due to the nature of the language models. These contextual word

embedding models, such as BERT (Devlin et al. 2018) and ELMo (Peters et al. 2018),

are able to create a context-sensitive embedding for each word in a given sentence from

pretraining on large text corpora. Unlike traditional word-level vector embeddings like

word2vec (Mikolov et al. 2013) and GloVe (Pennington, Socher, and Manning 2014) that

treat each word as a independent vector, contextual word embedding models have much

more parameters that take the whole sentence context into consideration (Alsentzer et al.

2019). Nevertheless, their embedding spaces are still unable to recognize antonyms since

analogies are grouped together. Our proposed method can solve this problem. We solve

the problem from two aspects: out-of-context replacements and opposite semantic replace-

ments

For out-of-context replacements, we use pretraining to enhance the language model’s

ability to generate more domain-specific replacements. We utilize the strong power of

pretraining to regularize the language model in the task-specific domain. We carefully

13

select datasets that have the same tasks as the victim models. For example, we make

use of the IMDb dataset to pretrain our model while the victim model is trained on MR

dataset. Both IMDb and MR datasets are related to movie review sentiment analysis, so

they are in the same task domain. Since we pretrain the model on task-related datasets,

our model can balance the overfitting and underfitting issues. On the other hand, if we

pretrain on the same dataset, it may cause overfitting to the dataset and the generated

adversarial examples may not be able to mislead the victim models. Furthermore, if we

pretrain on datasets of other tasks, the generated replaced tokens will suffer from the

problem of irrelevant replacements.

For opposite semantic replacements, we adopt the concept of contrastive learning that

helps distinguish synonyms and antonyms. We utilize contrastive learning to improve the

sentence embedding performance on synonyms and antonyms. Instead of directly utilizing

the pretrained contrastive learning model, we generate contrastive sentence pairs such that

the synonym sentence replaces the original sentence with synonyms, while the antonym

sentence replaces the original sentence with antonyms. Then we apply contrastive learning

to further train our model to improve its embedding performance in disentangling syn-

onyms and antonyms. In this way, the embedding of synonyms and antonyms is separable

in the embedding space and previous constraints like cosine similarity will work well on

contrastive trained language models.

Furthermore, directly composing pretraining and contrastive learning together causes the

problem of overfitting. If we compose the objective function together, the trained model

will fit well with the contrastive and language model objectives, which will lose the at-

tacking ability to generate adversarial examples. Moreover, if we stack pretraining and

contrastive learning together, the trained model is underfitting that is still suffering from

the aforementioned problems. Therefore, we propose an iterative training method to com-

bine contrastive learning and language model pretraining to approach the optimal while

14

Figure 3.1: Complete flow of creating our own BERT.

we balance well between the quality of generated adversarial examples and the target to

craft adversarial examples.

The whole work flow of our proposed attack method is shown below. First, we create

our own contrastive sentence dataset using the IMDb dataset and CLINE. Next, we run

contrastive learning and pretraining iteratively for 32 cycles. The initial checkpoint we

operate on is the original supervised SimCSE BERT. In each cycle, we train the input

model on the dataset we created with supervised SimCSE to produce a temporary super-

vised SimCSE BERT. This step strengthens the model’s ability of separating synonyms

and antonyms in the embedding space and avoid generating opposite semantic replace-

ments. Then, we pretrain the temporary supervised SimCSE BERT on IMDb to create a

pretrained supervised SimCSE BERT. This pretrained supervised SimCSE BERT is later

passed to the next cycle. Finally, when all 32 cycles are completed, we evaluate the final

pretrained supervised SimCSE BERT with TextAttack on the MR dataset. Unlike other

attack models, our attack model is domain-specific to movie reviews, which is beneficial

to generating high quality examples. The complete flow of our method is visualized in

15

Figure 3.1. The datasets involved in the process are colored in blue, training frameworks

and scripts we use are colored in green, and the models we create are colored in orange.

Arrows indicate what elements are coupled to create another element.

16

Chapter 4

Experiments

4.1 Baselines

We choose three state-of-the-art token-level adversarial attack methods that have similar

objectives with our project as our baselines.

BAE (Garg and Ramakrishnan 2020) is a black-box attack method that leverages contex-

tual perturbations from a BERT masked language model. It inserts and replaces tokens

by masking a portion of the original sentence, then uses BERT to generate grammatically

correct and semantic coherence replacements. BAE is the baseline we mainly use since

our model is derived from it.

TextFooler (Jin et al. 2020) is commonly used as a baseline in recent NLP adversarial

attack papers as it claims to be a simple but strong baseline to generate adversarial text.

TextFooler achieves its attack goals by applying multiple rule-based strategies, including

word embedding synonym extraction, POS checking, and semantic similarity checking.

When we run TextFooler with TextAttack (Morris et al. 2020), we find out that the av-

erage number of queries is 117.23, which is much higher than that of our attack model

and BAE. The average number of queries indicates on average how many candidate re-

placements the attack model went through before achieving a successful attack, which is

17

related with the budget for attack. If the number is high, then the attack success rate

will naturally be higher with a larger budget. Therefore, in order to make TextFooler

comparable to our attack model and BAE, we set its word embedding minimum cosine

similarity constraint to 0.75, and its USE threshold to 0.75. By doing so, the average

number of queries is lowered to 58.36, which has a similar number with our method and

other baselines.

PWWS (Ren et al. 2019) uses the word saliency and the classification probability to

determine the word replacing order then greedily replace each word with its synonym.

Similar to TextFooler, PWWS has a much higher average number of queries. Thus, we

reduce the length of its synonym list to 25%. The averge number of queries is then lowered

to 62.44.

4.2 Datasets

We use two movie review datasets for the sentiment classification domain: IMDb (Maas

et al. 2011) and MR (Pang and L. Lee 2005). IMDb, also called Large Movie Review

Dataset, contains 25,000 highly polar movie reviews for training, 25,000 for testing, and

additional 50,000 unlabeled data. MR contains 5,331 positive and 5,331 negative reviews

from Rotten Tomatoes. Both of these datasets can be found on Transformers (Wolf et al.

2020).

4.3 Set up

We implement our attack method on BAE (Garg and Ramakrishnan 2020). But instead of

using an original BERT in transformation, we use our own BERT in order to see whether

modifying BERT is the key to generating better examples that we utilize an interative

way to pretrain and contrastive train the BERT.

18

Figure 4.1: Token replacing algorithm.

We adopt the token replacing algorithm from BAE as shown in Figure 4.1. The goal

function is untargeted classification. We replace the original BERT BAE uses to our own

BERT in transformation. Our own BERT varies in different phases of experiment, we will

elaborate more in later sections. We use greedy word swap for search method. Greedy

word swap measures the importance of each token by masking it and calculate the decrease

in probability of predicting the correct label. As for constraints, we include Part of Speech

constraint and Universal Sentence Encoder of threshold 0.94 to ensure correct grammar

and sentence semantic similarity.

We run attacks with TextAttack (Morris et al. 2020) in all our experiments. TextAt-

tack is a framework designed to enable researchers evaluate different NLP attacks. Given

an attack recipe (including a goal function, a transformation, a search method, a set of

constraints), a victim model, and a dataset, TextAttack will generate adversarial examples

from the dataset using the attack recipe and attack the victim model.

19

4.4 Results

In this chapter, we will show how our model has evolved as we continue to have new

findings, as well as some ideas that we didn’t end up incorporating. We first validate

the effectiveness of solely utilizing pretraining to improve adversarial attacks in Section

4.4.1. Then we combine contrastive learning into the framework. We first deploy a pre-

trained contrastive learned BERT, then we pretrain the BERT following the previous step

in Section 4.4.2. We also analyze the best number of pretraining steps to incorporate with

contrastive learning. Furthermore, the pretrained contrastive learning model is trained

based NLI datasets, which have a domain gap with the task of sentiment analysis. There-

fore, we construct contrastive sentence pairs for our movie review task and retrain the

contrastive BERT to improve the attacking performance in Section 4.4.3. In addition,

we conduct experiments to validate the best way to generate contrastive sentence pairs

for contrastive learning. Finally, we present our iterative training method for combining

pretraining and contrastive learning in Section 4.4.4 where we also validate the best cycle

numbers to fuse them together.

Moreover, we demonstrate some ideas we tried along the way but failed to improve the

performance. In Section 4.4.5, we tried the idea of batch-sorted where we use all of the

contrastive sentence pairs for an original sentence to contrastive train BERT to let it pay

more attention to the differences between synonym and antonym. In Section 4.4.6, we

tried to directly compose pretraining and contrative learning together to improve the per-

formance. However, the performance is not as good as expected, we then conclude that

the reason is over-fitting that the BERT fails to generate adversarial examples.

4.4.1 Pretraining Only

To test the effectiveness of pretraining in adversarial attack, we start by pretraining an

original BERT-base on 50,000 unlabeled IMDb data with the pretraining script from the of-

ficial BERT Github repository (https://github.com/google-research/bert) for 50,000 steps,

20

Figure 4.2: Pretraining only.

5,000 warmup steps, and all the other default parameters. We evaluate both BAE and

our attack model with TextAttack. The dataset used here is MR and the victim model is

BERT-base.

The results are shown in Table 4.1. Overall, our model has a slightly better result. The

accuracy under attack is 0.2% lower and the attack success rate is 0.24% higher. The

average perturbed word percentage is 0.54% lower, which indicates the replacements are

Dataset: MR

BAE Ours

Number of successful attacks 473 475
Number of failed attacks 365 363
Number of skipped attacks 162 162
Original accuracy 83.8% 83.8%
Accuracy under attack 36.5% 36.3%
Attack success rate 56.44% 56.68%
Average perturbed word % 13.91% 13.37%
Average number of words per input 18.64 18.64
Average number of queries 63.49 63.19

Table 4.1: Evaluation of our pretraining only attack model versus BAE on MR dataset.

21

Original
sentence

the movie is a little tired; maybe the original inspiration
has run its course

Negative
(100%)

BAE
the mind is a little tired; yet the original memory has
continued its course

Positive
(100%)

Ours
the beginning is a little tired; maybe the original tale has
improved its course

Positive
(88%)

Original
sentence

one of the funnier movie in town
Positive
(94%)

BAE one of the funnier locations in town
Negative
(97%)

Ours one of the funnier scenes in town
Negative
(99%)

Table 4.2: Examples of attacks by our pretraining only attack model versus BAE on
BERT-base classifier.

Dataset: IMDb

BAE Ours

Number of successful attacks 583 365
Number of failed attacks 338 556
Number of skipped attacks 79 79
Original accuracy 92.1% 92.1%
Accuracy under attack 33.8% 55.6%
Attack success rate 63.3% 39.63%
Average perturbed word % 4.06% 3.43%
Average number of words per input 233.5 233.5
Average number of queries 425.07 373.2

Table 4.3: Evaluation of our pretraining only attack model versus BAE on IMDb dataset.

effective, so less perturbations are needed to fool the victim model.

After studying the adversarial examples from both attack models, some presented in Table

4.2, we find out that pretraining BERT does have an effect on generating token replace-

ments. The replacements generated by our model are more related to movies.

However, the problems we are trying to solve has not improved. There are still a con-

siderable amount of opposite semantic and out-of-context replacements in the adversarial

examples from our model. The slightly better result is not sufficient for proving our model

is superior.

22

Figure 4.3: Contrastive learning and pretraining.

We also evaluate BAE and our model using IMDb dataset, the results are shown in Table

4.3. In contrast to using MR, here our model has a much lower attack success rate than

BAE. The reason is because our BERT is pretrained on IMDb, so the replacements it

generates are too similar to the original tokens that they are unable to fool the victim

model.

4.4.2 Contrastive Learning and Pretraining

Next, we add contrastive learning to our attack model. Instead of pretraining an original

BERT-base, now we pretrain supervised SimCSE BERT-base (T. Gao, Yao, and Chen

2021) on IMDb by running the same pretraining script as before for 50,000 steps, 5,000

warmup steps and all the other default parameters.

We discover that the result did not improve a lot. In fact, after analyzing the adver-

sarial examples, we find out that there are still a lot of opposite semantic replacements,

which is similar to the problem in the previous section. We suspect that this is due to

23

Dataset: MR

BAE Ours
(50,000)

Ours
(25,000)

Ours
(5,000)

Ours
(2,500)

Ours
(0)

Number of successful at-
tacks

473 471 473 487 501 411

Number of failed attacks 365 367 365 351 337 427
Number of skipped attacks 162 162 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 36.5% 36.7% 36.5% 35.1% 33.7% 42.7%
Attack success rate 56.44% 56.21% 56.44% 58.11% 59.79% 49.05%
Average perturbed word % 13.91% 13.19% 13.13% 13.58% 13.17% 14.85%
Average number of words
per input

18.64 18.64 18.64 18.64 18.64 18.64

Average number of queries 63.49 64.27 64.05 64.01 62.96 54.93

Table 4.4: Evaluation of our contrastive learning and pretraining attack model of different
number of pretraining steps versus BAE on MR dataset.

excessive pretraining that the latter pretraining dominates the BERT training. SimCSE is

pretrained too much that its contrastive learning characteristics are hiddened. Therefore,

we lower the number of training steps and warmup steps.

From Table 4.4 and Figure 4.4 we can see, the one trained with 2,500 steps has a over-

all better performance, with 2.8% lower accuracy under attack and 3.35% higher attack

success rate than BAE. This is also reflected in the generated adversarial examples, as

shown in Table 4.5. Although opposite semantic and out-of-context replacements are not

completely eliminated, we see less such replacements, and a much higher attack success

rate.

4.4.3 CLINE Contrastive Sentences Augmentation

Now that we have proved our goal can be achieved by contrastive learning and pretrain-

ing, the next thing to do is to create contrastive sentence pairs using CLINE (Wang et

al. 2021). The previous SimCSE model is pretrained on the NLI datasets, which has

a domain gap between the tasks of NLI and sentement analysis. Therefore, we should

create our own contrastive sentence pairs to eliminate the gap and further improve the

24

Figure 4.4: Attack success rate of our contrastive and pretraining attack model by different
number of pretraining steps.

Original
sentence

fans of the modern day hong kong action film finally have
the worthy successor to a better tomorrow and the killer
which they have been patiently waiting for

Positive
(100%)

BAE
fans of the modern day hong kong action film finally have
the only successor to a better tomorrow and the killer
which they have been helplessly waiting for

Negative
(99%)

Ours
(50,000)

fans of the modern day hong kong action film finally have
the disappointing successor to a better tomorrow and the
killer which they have been patiently waiting for

Negative
(51%)

Ours
(25,000)

Failed

Ours
(5,000)

Failed

Ours
(2,500)

fans of the modern day hong kong action movie now have
the usual successor to a better tomorrow and the killer
which they have been already waiting for

Negative
(83%)

Ours
(1,000)

fans of the modern day hong kong action movie now have
the usual successor to a better tomorrow and the killer
which they have been completely waiting for

Negative
(81%)

Table 4.5: Examples of attacks by our contrastive learning and pretraining attack model
of different number of pretraining steps versus BAE on BERT-base classifier.

25

Figure 4.5: CLINE contrastive sentences augmentation.

performance. A sentence pair includes an original sentence, a semantically close sentence,

and a semantically opposite sentence. CLINE generates the semantically close sentence

by replacing words in the original sentence with synonyms, hypernyms and morpholog-

ical changes, and generates the semantically opposite sentence by replacing words with

antonyms and random words. We are not using SimCSE to create contrastive sentences

because its algorithm is questionable.

To start with, we run the word replace script from the official CLINE Github reposi-

tory (https://github.com/kandorm/CLINE) on the IMDb dataset to generate contrastive

sentences of replace ratios 0.05, 0.1, 0.2, 0.4, 0.5, we regard the multiple ratios can gen-

erate diverse contrastive sentence pairs well. There are 25,000 sentences pairs for each

replace ratio. Then, we combine sentence pairs of different replace ratios into a new train-

ing dataset and use the dataset to run the supervised SimCSE training script from the

official SimCSE Github repository (https://github.com/princeton-nlp/SimCSE) to train

a supervised SimCSE BERT. Finally, we pretrain the model for 2,500 steps like we did

before on IMDb to get our final pretrained supervised SimCSE BERT.

26

Dataset: MR

Ours
(0.05)

Ours
(0.05 +
0.1)

Ours
(0.05 +
0.1 +
0.2)

Ours
(0.05 +
0.1 + 0.2
+ 0.4)

Ours
(0.05 +
0.1 + 0.2
+ 0.4 +
0.5)

Number of successful attacks 500 504 499 505 508
Number of failed attacks 338 334 339 333 330
Number of skipped attacks 162 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 33.8% 33.4% 33.9% 33.3% 33%
Attack success rate 59.67% 60.14% 59.55% 60.26% 60.62%
Average perturbed word % 13.69% 13.45% 13.37% 13.22% 13.18%
Average number of words per
input

18.64 18.64 18.64 18.64 18.64

Average number of queries 63.57 64.42 63.22 62.3 62.58

Table 4.6: Evaluation of our contrastive learning and pretraining attack model of different
number of created contrastive sentence pairs on MR dataset.

In order to test whether increasing the number and diversity of contrastive sentence pairs

will have a positive effect on the result, we successively combine sentence pairs of different

replace ratios in each round. To elaborate, the training dataset contains 25,000 pairs of

replace ratio 0.05 in the first round; 25,000 of replace ratio 0.05 plus 25,000 of replace

ratio 0.1 in the second round; 25,000 of replace ratio 0.05 plus 25,000 of replace ratio 0.1

plus 25,000 of replace ratio 0.2 in the third round; and so on.

Table 4.6 and Figure 4.6 show that this data augmentation method can indeed benefit

our attack model. Although we can change the replace ratio to generate more contrastive

sentence pairs to further improve the performance, we believe more contrastive sentence

pairs will consume more time to generate sentence pairs and training the model. Therefore,

we keep the selection of the replace ratios to balance the performance and time consump-

tion. From Table 4.7 we can see, compared to the previous version (contrastive learning

and pretraining 2,500 steps), now our model has an even better performance, with 0.7%

lower accuracy under attack and 0.83% higher attack success rate. Tables 4.8 and 4.9 are

27

Figure 4.6: Attack success rate of our contrastive learning and pretraining attack model
by different number of contrastive sentence pairs.

Dataset: MR

BAE Ours
(pre-
training
only)

Ours
(con-
trastive
pretrain
2,500)

Ours
(0.05 +
0.1 + 0.2
+ 0.4 +
0.5)

Number of successful attacks 473 475 501 508
Number of failed attacks 365 363 337 330
Number of skipped attacks 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 36.5% 36.3% 33.7% 33.0%
Attack success rate 56.44% 56.68% 59.79% 60.62%
Average perturbed word % 13.91% 13.37% 13.17% 13.18%
Average number of words per
input

18.64 18.64 18.64 18.64

Average number of queries 63.49 63.19 62.96 62.58

Table 4.7: Evaluation of different versions of our attack model versus BAE on MR dataset.

28

Original
sentence

the strength if the film lies in its two central performances
by sven wolter as the stricken composer and viveka seldahl
as his desperate violinist wife.

Positive
(100%)

BAE Failed

Ours (pre-
training
only)

Failed

Ours (con-
trastive
pretrain
2,500)

Failed

Ours (0.05)
the weakness of the film lies in its two ventral perfor-
mances by sven wolter as the stricken composer and viveka
seldahl as his desperate violinist wife.

Negative
(100%)

Ours (0.05
+ 0.1)

the point if the film lies in its two main performance by
sven wolter as the stricken composer and viveka seldahl
as his poor violinist wife.

Negative
(72%)

Ours (0.05
+ 0.1 +
0.2)

the point if the film lies in its two main performances by
sven wolter as the stricken composer and viveka seldahl
as his stupid violinist wife.

Negative
(99%)

Ours (0.05
+ 0.1 + 0.2
+ 0.4)

Failed

Ours (0.05
+ 0.1 +
0.2 + 0.4
+ 0.5)

the point if the film lies in its two main performance by
sven wolter as the stricken composer and viveka seldahl
as his poor violinist wife.

Negative
(72%)

Table 4.8: Examples of attacks by our contrastive learning and pretraining attack model
of different number of created contrastive sentence pairs on BERT-base classifier.

examples extracted from the experiments to demonstrate how by applying this CLINE

data augmentation method, our model is capable of generating semantic and syntactic

replacements.

4.4.4 Iterative Contrastive Learning and Pretraining

We have proved the efficacy of pretraining and contrastive learning in sections 4.4.1 and

4.4.2 respectively. Up till now, we have been running the two methods sequentially. That

is, we finish running the supervised SimCSE training script with in total 125,000 con-

trastive sentence pairs from 5 different replace ratios before doing pretraining for 2,500

29

Original
sentence

master of disguise runs for only 71 minutes and feels like
three hours.

Negative
(100%)

BAE Failed

Ours (pre-
training
only)

Failed

Ours (con-
trastive
pretrain
2,500)

master of silence begins for only 12 mm and ends as 11
hours.

Positive
(74%)

Ours (0.05)
master of death is for only 12 minutes and continues as
11 hours.

Positive
(86%)

Ours (0.05
+ 0.1)

master of death is for only 12 minutes and ends as 11
hours.

Positive
(84%)

Ours (0.05
+ 0.1 +
0.2)

Failed

Ours (0.05
+ 0.1 + 0.2
+ 0.4)

master of dracula suffers for only 12 minutes and succeeds
as 11 hours.

Positive
(98%)

Ours (0.05
+ 0.1 +
0.2 + 0.4
+ 0.5)

master of shadows is for only 12 minutes and succeeds as
11 hours.

Positive
(98%)

Table 4.9: Examples of attacks by our contrastive learning and pretraining attack model
of different number of created contrastive sentence pairs on BERT-base classifier.

Figure 4.7: Iterative contrastive learning and pretraining.

30

Figure 4.8: Attack success rate of our iterative attack model by different number of cycles.

steps. Nevertheless, we discover that we can achieve a much better result by running

contrastive learning and pretraining iteratively. Doing so allows our model to fully utilize

the best of both methods as it reduces the negative effect of excessive pretraining on con-

trastive learning.

Say we have n cycles. In the first cycle, we run the supervised SimCSE training script to

train an original supervised SimCSE BERT (https://huggingface.co/princeton-nlp/sup-

simcse-bert-base-uncased) on 125,000/n contrastive sentences pairs. After that, we pre-

train the model for 2,500/n steps. Then for the second cycle, we take the pretrained su-

pervised SimCSE BERT from the first cycle and train it on another 125,000/n contrastive

sentence pairs, then pretrain it for 2,500/n more steps. We iteratively run contrastive

learning and pretraining like that until all n cycles are completed.

We find out from the results in Table 4.10 and Figure 4.8 that 32 is the optimal number

of cycles, any more than that will show signs of over-fitting. From Table 4.11 we see a

significant improvement compared to all previous versions of our model, with 4% lower

31

Dataset: MR

Ours (2
cycles)

Ours (8
cycles)

Ours (16
cycles)

Ours (32
cycles)

Number of successful attacks 513 535 533 548
Number of failed attacks 325 303 305 290
Number of skipped attacks 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 32.5% 30.3% 30.5% 29.0%
Attack success rate 61.22% 63.84% 63.6% 65.39%
Average perturbed word % 13.4% 12.34% 12.01% 11.83%
Average number of words per input 18.64 18.64 18.64 18.64
Average number of queries 62.91 59.98 59.14 57.68

Dataset: MR

Ours
(32
cycles)

Ours
(42
cycles)

Ours
(64
cycles)

Ours
(250
cycles)

Ours
(781
cycles)

Number of successful attacks 548 537 533 474 472
Number of failed attacks 290 301 305 364 366
Number of skipped attacks 162 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 29.0% 30.1% 30.5% 36.4% 36.6%
Attack success rate 65.39% 64.08% 63.6% 56.56% 56.32%
Average perturbed word % 11.83% 12.21% 12.22% 12.97% 13.31%
Average number of words per input 18.64 18.64 18.64 18.64 18.64
Average number of queries 57.68 58.0 54.43 36.65 37.43

Table 4.10: Evaluation of our iterative attack model of different number of cycles on MR
dataset.

Dataset: MR

Ours
(pre-
training
only)

Ours
(con-
trastive
pretrain
2,500)

Ours
(0.05 +
0.1 + 0.2
+ 0.4 +
0.5)

Ours (32
cycles)

Number of successful attacks 475 501 508 548
Number of failed attacks 363 337 330 290
Number of skipped attacks 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 36.3% 33.7% 33.0 29.0%
Attack success rate 56.68% 59.79% 60.62 65.39%
Average perturbed word % 13.37% 13.17% 13.18% 11.83%
Average number of words per input 18.64 18.64 18.64 18.64
Average number of queries 63.19 62.96 62.58 57.68

Table 4.11: Evaluation of different versions of our attack model on MR dataset.

32

Dataset: MR

BAE PWWS TextFooler Ours (32
cycles)

Number of successful attacks 473 434 531 548
Number of failed attacks 365 404 307 290
Number of skipped attacks 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 36.5% 40.4% 30.7% 29.0%
Attack success rate 56.44% 51.79% 63.37% 65.39%
Average perturbed word % 13.91% 16.0% 20.78% 11.83%
Average number of words per input 18.64 18.64 18.64 18.64
Average number of queries 63.49 62.44 58.36 57.68

Table 4.12: Evaluation of our iterative attack model versus baselines on MR dataset.

Original
sentence

one of the funnier movies in town.
Positive
(94%)

BAE one of the funnier locations in town.
Negative
(97%)

PWWS matchless of the funnier movies in town.
Negative
(100%)

TextFooler one of the funnier kino in town.
Negative
(88%)

Ours (32
cycles)

one of the funnier scenes in town.
Negative
(99%)

Table 4.13: Examples of attacks by our iterative contrastive learning and pretraining
attack model versus baselines on BERT-base classifier.

accuracy under attack, 4.77% higher attack success rate, and 1.35% lower average per-

turbed word percentage from the previous version. Our model also outperforms all three

baselines, results shown in Table 4.12. In addition, since our model is domain-specific,

it is capable of generating somewhat appropriate replacements given limited context. As

illustrated in Table 4.13, ”scenes” is relatively more relevant to ”movies” compared to the

other replacements generated by baselines.

4.4.5 Batch-sorted Contrastive Sentences

We set the batch size to 16 when running the supervised SimCSE training script, that

means the model reads in 16 contrastive sentence pairs generated from different original

33

Dataset: MR

Ours (32 cycles) Ours (32 cycles +
batch-sorted)

Number of successful attacks 548 543
Number of failed attacks 290 295
Number of skipped attacks 162 162
Original accuracy 83.8% 83.8%
Accuracy under attack 36.3% 29.5%
Attack success rate 65.39% 64.8%
Average perturbed word % 11.83% 11.65%
Average number of words per input 18.64 18.64
Average number of queries 57.68 56.23

Table 4.14: Evaluation of our batch-sorted iterative attack model versus our iterative
attack model on MR dataset.

sentences each time. Now, we want to know whether we can double the effect of con-

trastive learning if a batch contains 16 distinct sentence pairs all derived from the same

original sentence.

To test this hypothesis, for each original sentence from the IMDb dataset, we run the

word replace script from CLINE of 16 different replace ratios to create 16 nonidentical

sentence pairs and sort them together. Then we apply the 32-cycles iterative training

method. However, from the results in Table 4.14, it seems like this idea is trivial to our

model, so we decided not to continue with this idea.

4.4.6 Merged Contrastive Learning and Pretraining

Seeing the success of the iterative training method, we are curious to know if we can achieve

a better performance by merging contrastive learning and pretraining into one step. Sim-

CSE comes with an auxiliary masked language modeling (MLM) function. According to

the paper, MLM helps SimCSE avoid catastrophic forgetting of token-level knowledge, and

adding it can improve the performance on transfer tasks modestly but not on sentence-

level semantic textual similarity tasks. The loss is defined as lcontrastive + λ · lmlm, where

λ is the MLM weight. Thus we include this function when training SimCSE, and we no

34

Dataset: MR

SimCSE MLM
weight = 0.02

SimCSE MLM
weight = 0.1

Number of successful attacks 426 398
Number of failed attacks 412 440
Number of skipped attacks 162 162
Original accuracy 83.8% 83.8%
Accuracy under attack 41.2% 44.0%
Attack success rate 50.84% 47.49%
Average perturbed word % 13.82% 14.15%
Average number of words per input 18.64 18.64
Average number of queries 54.01 57.74

Table 4.15: Evaluation of SimCSE with MLM of different weights on MR dataset.

longer do iterative training or pretraining.

We set the MLM weight to 0.02 as it is the ratio of pretraining to contrastive learn-

ing in our previous experiments (2500:125000). We also try 0.1 since it is the ratio with

the best performance in the SimCSE paper. The results are shown in Table 4.15. To our

surprise, the results are not good. Besides, there are a lot of unnatural replacements, such

as fragmented words, in the generated adversarial examples.

We conjecture that this poor result is due to incompatible data formats. As mentioned

before, data is passed to SimCSE in the form of sentence pairs. A sentence pair contains

an original sentence, a semantically similar sentence, and a semantically opposite sentence.

We speculate this data format confuses MLM because MLM usually takes in one sentence

at a time. Therefore, we modify the training script so that MLM only reads the original

sentence. Sadly, the adjustment does not work well. As presented in Table 4.16, models

trained with MLM perform worse than the original SimCSE, and the unnatural replace-

ment issue is still not resolved.

If the poor result is not due to incompatible data formats, then it might be a sign of

over-fitting. To eliminate the possibility, we apply gradient accumulation. We set the gra-

35

Dataset: MR

SimCSE
no MLM

SimCSE
MLM
weight=0.02

SimCSE
MLM
weight=0.1

SimCSE
MLM
weight=1

Number of successful attacks 411 379 410 385
Number of failed attacks 427 459 428 453
Number of skipped attacks 162 162 162 162
Original accuracy 83.8% 83.8% 83.8% 83.8%
Accuracy under attack 42.7% 45.9% 42.8% 45.3%
Attack success rate 49.05% 45.23% 48.93% 45.94%
Average perturbed word % 14.85% 14.47% 14.0% 14.23%
Average number of words per input 18.64 18.64 18.64 18.64
Average number of queries 54.93 53.78 54.49 52.9

Table 4.16: Evaluation of SimCSE with MLM of different weights after modification on
MR dataset.

dient accumulation to 100. That means instead of updating the model after every batch,

we accumulate the gradients and update after 100 batches. However, as we can see in

Table 4.17, this method does not help solve the problems.

We use two separate datasets when we run the iterative training method in Section 4.4.4,

namely the 125,000 contrastive sentence pairs we created using CLINE on the IMDb

training dataset, and the 50,000 unlabeled IMDb dataset. Yet since we merged con-

trastive learning and pretraining by adding the MLM function, we have been using only

one dataset, which is the 125,000 contrastive sentence pairs dataset. This might be an

issue because it implies we use less training data. Therefore, we once again adjust the

training script to have both components read their corresponding datasets. We also lower

the gradient accumulation to 10 to see if it makes a difference. Demonstrated in Table

4.18, it turns out the adjustment makes no difference.

At this point, we have removed all possible factors that could affect MLM. We are left with

one possible explanation of why it is still not working as expected, which is this auxiliary

MLM function provided by SimCSE is not exactly equivalent to the pretraining script we

use from the official BERT Github repository. Despite looking similar from the code, the

36

Dataset: MR

SimCSE no MLM SimCSE MLM
weight=0.1
Gradient Accu-
mulation=100

Number of successful attacks 411 391
Number of failed attacks 427 447
Number of skipped attacks 162 162
Original accuracy 83.8% 83.8%
Accuracy under attack 42.7% 44.7%
Attack success rate 49.05% 46.66%
Average perturbed word % 14.85% 14.52%
Average number of words per input 18.64 18.64
Average number of queries 54.93 59.7

Table 4.17: Evaluation of SimCSE with MLM and gradient accumulation on MR dataset.

Dataset: MR

SimCSE no MLM SimCSE MLM
weight=0.1
Gradient Accu-
mulation=10

Number of successful attacks 411 392
Number of failed attacks 427 446
Number of skipped attacks 162 162
Original accuracy 83.8% 83.8%
Accuracy under attack 42.7% 44.6%
Attack success rate 49.05% 46.78%
Average perturbed word % 14.85% 14.82%
Average number of words per input 18.64 18.64
Average number of queries 54.93 61.21

Table 4.18: Evaluation of SimCSE with MLM and gradient accumulation after modifica-
tion on MR dataset.

37

Dataset: MR

BERT BERT with MLM

Number of successful attacks 473 409
Number of failed attacks 365 429
Number of skipped attacks 162 162
Original accuracy 83.8% 83.8%
Accuracy under attack 36.5% 42.9%
Attack success rate 56.44% 48.81%
Average perturbed word % 13.91% 14.0%
Average number of words per input 18.64 18.64
Average number of queries 63.49 51.64

Table 4.19: Evaluation of BERT with MLM versus the original BERT on MR dataset.

two may have difference underlying logic that we are unaware of. To test this conjecture,

we now train an original BERT with only the MLM portion on 50,000 unlabeled IMDb

data. If MLM and pretraining are equivalent, this should have the same effect as pretrain-

ing for 2,500 steps. Surprisingly, we find out that adding the MLM function to an original

BERT actually worsens its attack performance.

We make a conclusion that this auxiliary MLM function is not an ideal solution, and

we have to find other ways to merge contrastive learning and pretraining into one loss. In

the meantime, our best model remains to be 32-cycles iterative model.

38

Chapter 5

Conclusion and Future Work

In this project, we propose a new iterative training method that combines contrastive

learning and pretraining to generate high quality adversarial examples. We discover that

pretraining and contrastive learning have positive effects on generating high quality ad-

versarial examples. We started by using a second-phase pretraining to make our attack

model domain-specific, which has shown to be effective. Then we went one step further

and added in contrastive learning to alter the embedding space, which improves the re-

sults even more. After that, we made use of CLINE to do data augmentation. Finally,

we applied the iterative training method to maximize our model’s efficacy, which boosted

the performance. We also explored the possibility of merging contrastive learning and

pretraining together into one loss, but the results are not satisfying. In the future, we will

continue to work on the paper submission with Jianping Zhang.

39

Bibliography

Szegedy, Christian et al. (2013). “Intriguing properties of neural networks”. In: arXiv

preprint arXiv:1312.6199.

Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy (2014). “Explaining and har-

nessing adversarial examples”. In: arXiv preprint arXiv:1412.6572.

Roth, Tom et al. (2021). “Token-modification adversarial attacks for natural language

processing: A survey”. In: arXiv preprint arXiv:2103.00676.

Gao, Ji et al. (2018). “Black-box generation of adversarial text sequences to evade deep

learning classifiers”. In: 2018 IEEE Security and Privacy Workshops (SPW). IEEE,

pp. 50–56.

Li, Jinfeng et al. (2018). “Textbugger: Generating adversarial text against real-world ap-

plications”. In: arXiv preprint arXiv:1812.05271.

Jin, Di et al. (2020). “Is bert really robust? a strong baseline for natural language attack on

text classification and entailment”. In: Proceedings of the AAAI conference on artificial

intelligence. Vol. 34. 05, pp. 8018–8025.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for

language understanding”. In: arXiv preprint arXiv:1810.04805.

Liu, Yinhan et al. (2019). “Roberta: A robustly optimized bert pretraining approach”. In:

arXiv preprint arXiv:1907.11692.

Garg, Siddhant and Goutham Ramakrishnan (2020). “Bae: Bert-based adversarial exam-

ples for text classification”. In: arXiv preprint arXiv:2004.01970.

40

Li, Linyang et al. (2020). “Bert-attack: Adversarial attack against bert using bert”. In:

arXiv preprint arXiv:2004.09984.

Gururangan, Suchin et al. (2020). “Don’t stop pretraining: adapt language models to

domains and tasks”. In: arXiv preprint arXiv:2004.10964.

Lee, Jinhyuk et al. (2020). “BioBERT: a pre-trained biomedical language representation

model for biomedical text mining”. In: Bioinformatics 36.4, pp. 1234–1240.

Gao, Tianyu, Xingcheng Yao, and Danqi Chen (2021). “SimCSE: Simple Contrastive

Learning of Sentence Embeddings”. In: arXiv preprint arXiv:2104.08821.

Wang, Dong et al. (2021). “Cline: Contrastive learning with semantic negative examples

for natural language understanding”. In: arXiv preprint arXiv:2107.00440.

Peters, Matthew E. et al. (2018). Deep contextualized word representations. arXiv: 1802.

05365 [cs.CL].

Mikolov, Tomas et al. (2013). Efficient Estimation of Word Representations in Vector

Space. arXiv: 1301.3781 [cs.CL].

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove: Global

vectors for word representation”. In: Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pp. 1532–1543.

Alsentzer, Emily et al. (2019). “Publicly available clinical BERT embeddings”. In: arXiv

preprint arXiv:1904.03323.

Morris, John X et al. (2020). “Textattack: A framework for adversarial attacks, data

augmentation, and adversarial training in nlp”. In: arXiv preprint arXiv:2005.05909.

Ren, Shuhuai et al. (2019). “Generating natural language adversarial examples through

probability weighted word saliency”. In: Proceedings of the 57th annual meeting of the

association for computational linguistics, pp. 1085–1097.

Maas, Andrew L. et al. (June 2011). “Learning Word Vectors for Sentiment Analysis”. In:

Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-

tics: Human Language Technologies. Portland, Oregon, USA: Association for Compu-

41

tational Linguistics, pp. 142–150. url: http://www.aclweb.org/anthology/P11-

1015.

Pang, Bo and Lillian Lee (2005). “Seeing stars: Exploiting class relationships for sentiment

categorization with respect to rating scales”. In: Proceedings of the ACL.

Wolf, Thomas et al. (Oct. 2020). “Transformers: State-of-the-Art Natural Language Pro-

cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations. Online: Association for Computational

Linguistics, pp. 38–45. url: https://www.aclweb.org/anthology/2020.emnlp-

demos.6.

