Improving the Quality of Adversarial Examples via Contrastive Learning and Pretraining

LYU2106 Final Year Project Term 1 Presentation Yung-chieh Huang (1155120711)

Agenda

- Introduction
- Objective
- Contribution
- Methedology
- Model Composition
- Experiments
- Conclusion
- Future Work

Introduction – Adversarial Attack

- Adversarial attack is an approach to test the robustness of machine learning models, by intentionally apply perturbations to make the models misclassify.
- Ensure security in real-life applications.

Introduction – Adversarial Attack for Text

- Adversarial examples are generated by attack models, by replacing words in a sentence.
- A well-crafted adversarial example should have minimum perturbations and preserve the structure and charateristics of the original.
- An attack model is composed of:
 - Goal function
 - Transformation
 - Search method
 - Constraints

• The adversarial examples state-of-the-art attack models generate are of low quality, they contain opposite semantic replacements and irrelevant replacements.

Original	no amount of good intentions is able to overcome the triv-	Negative
sentence	iality of the story	(100%)
Adversarial	no amount of good intentions is able to overcome the	Positive
example	beauty of the story	(99%)

Original	watching spirited away is like watching an eastern imagi-	Positive
sentence	nation explode	(99%)
Adversarial	watching spirited away is like watching an eastern maga-	Negative
example	zine explode	(100%)

Objective

- Overcome the flaws in previous works and generate high quality adversarial examples.
- Free from opposite semantic or out-of-context replacements while maintaining fluency.
- Higher successful attack rate and lower perturbation.

Contribution

- Opposite semantic replacements are caused by the embedding space of language models. With contrastive learning, our attack model is capable of separating synonyms and antonyms.
- Out-of-context replacements exist because attack models are too general. We make our attack model domain-specific (movie reviews) through a second-phase pretraining.
- We are the first to generate adversarial examples via a combination of contrastive learning and pretraining.

Methedology

Methedology- Datasets

- IMDb (Mass et al. 2011): 25,000 highly polar movie reviews for training, 25,000 for testing, and additional 50,000 unlabeled data.
- MR (Pang and L. Lee 2005): 5,331 positive and 5,331 negative reviews from Rotten Tomatoes.

Methedology- CLINE

- Generate positive sentences by replacing words with synonyms.
- Generate negative sentences by replacing words with antonyms or random words.

Methedology

Methedology- SimCSE

- Pulling semantically close neighbors together and pushing apart non-neighbors.
- The training objective is defined by:

$$-\log\frac{e^{\sin(\mathbf{h}_i,\mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N \left(e^{\sin(\mathbf{h}_i,\mathbf{h}_j^+)/\tau} + e^{\sin(\mathbf{h}_i,\mathbf{h}_j^-)/\tau}\right)}$$

Methedology

Methedology-TextAttack

- A framework to evaluate different NLP attacks.
- Generate adversarial examples from a given dataset using an attack recipe and attack a victim model.

Methedology – Baseline

- We use BAE (Garg and Ramakrishnan 2020) as our baseline attack model.
- BAE uses BERT to predict masked tokens and apply constraints to ensure fluency.

Model Composition

- Goal function: untargeted classification.
- Transformation: our own pretrained supervised SimCSE BERT.
- Search method: greedy word swap, importance order.
- Constraints: Part of Speech, Universal Sentence Encoder.

Experiments – Pretraining only

• Pretrain a regular BERT-base on IMDb for 50,000 steps.

Dataset: MR				
	BAE	Ours		
Number of successful attacks	473	475		
Number of failed attacks	365	363		
Number of skipped attacks	162	162		
Original accuracy	83.8%	83.8%		
Accuracy under attack	36.5%	36.3%		
Attack success rate	56.44%	56.68%		
Average perturbed word %	13.91%	13.37%		
Average number of words per input	18.64	18.64		
Average number of queries	63.49	63.19		

Experiments – Pretraining only

• The replacements are more related to movies. However, there are still a considerable amount of opposite semantic and out-of-context replacements.

Original sentence	the movie is a little tired; maybe the original inspiration has run its course	Negative (100%)
BAE	the mind is a little tired; yet the original memory has continued its course	Positive (100%)
Ours	the beginning is a little tired; maybe the original tale has improved its course	Positive (88%)
Original sentence	one of the funnier movie in town	Positive (94%)
BAE	one of the funnier locations in town	Negative (97%)
Ours	one of the funnier scenes in town	Negative (99%)

Experiments – Contrastive Learning and Pretraining

- Instead of pretraining a regular BERT-base, now we pretrain supervised SimCSE BERT-base on IMDb for different number of steps.
- The one trained for 2,500 steps have the best overall performance.

Dataset: MR					
	BAE	Ours	Ours	Ours	Ours
		(50,000)	(25,000)	(5,000)	(2,500)
Number of successful attacks	473	471	473	487	501
Number of failed attacks	365	367	365	351	337
Number of skipped attacks	162	162	162	162	162
Original accuracy	83.8%	83.8%	83.8%	83.8%	83.8%
Accuracy under attack	36.5%	36.7%	36.5%	35.1%	33.7%
Attack success rate	56.44%	56.21%	56.44%	58.11%	59.79%
Average perturbed word %	13.91%	13.19%	13.13%	13.58%	13.17%
Average number of words per	18.64	18.64	18.64	18.64	18.64
input					
Average number of queries	63.49	64.27	64.05	64.01	62.96

Experiments – Contrastive Learning and Pretraining

Original sentence	fans of the modern day hong kong action film finally have the worthy successor to a better tomorrow and the killer which they have been patiently waiting for	Positive (100%)	
BAE	fans of the modern day hong kong action film finally have the only successor to a better tomorrow and the killer which they have been helplessly waiting for	Negative (99%)	Low quality
Ours (50,000)	fans of the modern day hong kong action film finally have the disappointing successor to a better tomorrow and the killer which they have been patiently waiting for	Negative (51%)	Low quality
Ours (25,000)		Failed	Unsuccessful
Ours (5,000)		Failed	Unsuccessful
Ours (2,500)	fans of the modern day hong kong action movie now have the usual successor to a better tomorrow and the killer which they have been already waiting for	Negative (83%)	High quality and successful attack

Experiments – Using CLINE to Create Contrastive Sentences

- We create our own contrastive sentences using IMDb. We refer to the word replace script by CLINE.
- Then we train a supervised SimCSE BERT with the contrastive sentences.
- Finally, we pretrain the supervised SimCSE BERT on IMDb for 2,500 steps.

Experiments – Using CLINE to Create Contrastive Sentences

Dataset: MR					
	BAE	Ours (pre-	Ours		
		training	(IMDb		
		only)	contrastive		
			sentences)		
Number of successful attacks	473	475	495		
Number of failed attacks	365	363	343		
Number of skipped attacks	162	162	162		
Original accuracy	83.8%	83.8%	83.8%		
Accuracy under attack	36.5%	36.3%	34.3%		
Attack success rate	56.44%	56.68%	59.07%		
Average perturbed word %	13.91%	13.37%	13.5%		
Average number of words per	18.64	18.64	18.64		
input					
Average number of queries	63.49	63.19	63.77		

Experiments – Using CLINE to Create Contrastive Sentences

- Don't have enough contrastive sentences.
- The training strategy SimCSE uses is not suitable for our goal.

Conclusion

- Pretraining and contrastive learning have positive effects on generating high quality examples.
- Alter the embedding space by contrastive learning.
- Make our attack model domain-specific by a second-phase pretraining.
- Our attack model has better results than the baseline model.

Future Work

- Better method to combine contrastive learning and pretraining.
- Conduct larger scale experiment.
- Involve human evaluation to demonstrate the effectiveness.

Thank you