Bandit Algorithm, Reinforcement Learning, and Horse Racing Result Prediction

LYU2103

Wong Tin Wang David(1155127053) Sze Muk Hei(1155127477) Supervised by Prof. Michael R. Lyu

Objectives

- Predict the horse racing result accurately comparing to the previous FYP
- Generate stable profits using reinforcement learning techniques at the end of the whole project

Introduction

Backgrounds, Motivations & Objectives

Backgrounds

- Horse racing in Hong Kong started since 1846
- Horse racing prediction has been widely studied
 - Deep Learning
 - XGBoost
 - SVM-Based committee machine
- Betting Rules:
 - WIN (1st place)
 - PLACE (any 1 of the top 3 horses)

Backgrounds

- Reinforcement learning
 - Agent and environment
- Multi-armed Bandit (MAB)
 - One of reinforcement learning algorithms
 - Explore-exploit dilemma

Motivations

- Horse racing in Hong Kong is a popular betting events since last century
- Generate profits
- Reinforcement learning is rarely considered for horse betting
 - Especially for MAB
- Data transparency

WHAT? WHY? HOW?

Explore-Exploit Dilemma

Advertisements Selection

> Article Recommendation

> > Portfolio Allocation

Explore-Exploit Dilemma

Why we use MAB?

- Explore-Exploit dilemma in horse betting
 - Bet on the horse most likely to win but with lower odds
 - Bet on the horses with higher odds that less likely to win
- Maximize the profits
- No one used MAB in horse betting as far as we know

11

MAB Algorithms

- Epsilon-Greedy Method (constant exploration)
 - Define an Epsilon (5%, 10%)
 - Use for limit the frequency of exploration
 - Explore randomly during the process
- Other algorithms (adaptive exploration)
 - Upper-confidence-bound (UCB)
 - Thompson Sampling (TS)

Upper-confidence-bound (UCB)

- Estimate reward of an action by sample mean û.
 û should differ from actual mean u by error Δ. Then u is within the confidence bound û Δ ≤ u ≤ û + Δ.
- Δ is set in the way that it reduces as the action is played more. That means we have higher confidence that û would be close to u.
- UCB algorithms always choose action with highest upper confidence bound û + Δ. This is called "optimism in the face of uncertainty" as the reward could be as high as this bound.
- So the ucb is large at first, making all actions have high chance to be played (explore). And as we play more, only those with high actual mean will be played as Δ is small (exploit).

Thompson Sampling (TS)

- Assume reward follow certain probability distribution
 - Bernoulli
 - Gaussian
- Estimate parameters for the distribution and draw a random value as estimation for mean reward
- Bernoulli TS
 - Use Beta distribution as the prior to calculate p(q | reward)
 - Beta distribution changes depends on observed reward
 - Beta would concentrate around actual q

Terminology

• Actions Set

- Include 3 actions (canteens)
- Trying a new canteen (Explore)
- Going back to the best canteen tried before (Exploit)

• Optimal reward

• In this case: 150 x 70 = 10500

• Regret

- Difference between actual rewards and optimal
- As small as possible
- For explore only: $10500 (50 \times 40 + 50 \times 50 + 50 \times 70) = 2500$

How we use MAB?

- Not apply to horse racing prediction directly
 - Unable to define all horses as action set
 - Some horses participated in race once only
 - Difficult to estimate their performance
 - Insufficient data
- Our approach:
 - Use Random Forest as horse racing prediction
 - Use **MAB** for betting only with the result prediction

Why we use Random Forest?

- High Interpretability
 - Determine the significant factors in prediction
- Avoid overfitting or underfitting
 - Tree ensembling (bagging)
- Reduce data pre-processing work
 - No need to normalize the data
- Able to handle complex datasets
 - High dimensionality
- Stable result for MAB training

How Random Forest Works?

- Impurity function
 - Mean squared error
- Trees bagging
 - Bootstrapping datasets
 - Aggregating results
- Random sampling
 - Randomly pick features for node splitting

Contribution

- 1. Created a combined approach
 - Random forest
 - i. WIN accuracy: 24.537%
 - ii. PLACE accuracy: 47.153%
 - MAB
- 2. Figured out factors with
 - Strong correlation with the outcome
 - Crucial to our prediction
- 3. Explored multi-armed bandit algorithms
 - Horse betting
 - Feasibility of generating profit

Data

Descriptions, Analysis & Pre-processing

Sources & Descriptions

• Data Sources

- a. The Hong Kong Jockey Club
- b. Data Guru
- c. hkHorse
- Datasets
 - Ranged from 1979 to 2021
 - Tables:
 - Races data
 - Horses data
 - Horse-race data
 - Betting odds data

Races Data

Features	Description	Types	Samples
raceid	A unique id of a race	Categorical	1979-09-22-001-1235-Grass
	constructed with race date,		
	distance, track type and race		
	season id		
raceidseason	Index of a race in race season	Index	001
racedate	Date of the race	Index	1979-09-22
racetrack	Racecourse of the race	Categorical	HV, ST
tracktype	Type of racetrack of the race	Categorical	Turf, Grass, Sand, AWT
course	Width of inner rail and outer	Categorical	(Show in later table)
	rail of the track		
distance	Distance of the race (in meters)	Categorical	1000, 1200, 1400, 1600, 1650,
			1800, 2000, 2200, 2400
going	The condition of the track	Categorical	(Show in later table)
raceclass	The race class of horses in the	Categorical	1, 2, 3, 4, 5
	race		

Horses Data

Features	Descriptions	Types	Samples
horseid	A unique id of the horse	Categorical	HK_2016_A061
horsename	A unique name of the horse	Categorical	RATTAN
country	The country of the horse	Categorical	NZ, AUS, IRE
colour	The colour of the horse	Categorical	Brown, Grey,
			Brown/Grey
sex	The sex of the horse	Categorical	Gelding, Mare, Colt
importtype	The import type of the horse	Categorical	PP, PPG, SG
owner	The owner of the horse	Categorical	Zippalanda Syndicate
sire	The sire of the horse	Categorical	Savabeel
dam	The dam of the horse	Categorical	Grand Princess
damsire	The dam's sire of the horse	Categorical	Last Tycoon
url	A url linked to the HKJC data source	/	/
age	The current age of the horse	Real Value	1

Horse-race Data

Features	Descriptions	Types	Samples
horseid	A unique id of the horse	Categorical	HK_2016_A061
raceid	A unique id of the race	Categorical	1979-09-22-001-1235-Grass
place	The final place of the horse	Categorical	1 – 14, DISQ, DNF
draw	The draw where the horse starts racing	Categorical	Integer with range of 1 - 14
rating	The rating of the horse	Real Value	Decimal with range of 1-144
trainer	The trainer of the horse	Categorical	R Gibson
jockey	The jockey riding the horse	Categorical	K H Chan
lengthbehindwinner	The distance between the first placed horse and the horse in the race (in horse length)	Real Value	9-1/2, 6-1/4, 5
winodds	The final WIN odds of the horse	Real Value	T
actualweight	The actual weight of the horse	Real Value	Integer with range of 113 – 133
position $\{1 - 6\}$	The place of the horse at different distance intervals	Categorical	1 – 14, DISQ, DNF
finishtime	The finishing time of the horse	Real Value	1
declaredweight	The declared weight of the horse	Real Value	1
gear	The gear equipped by the horse	Categorical	B, TT, B/TT

Betting Odds Data

Features	Descriptions	Types	Samples
horseid	A unique id of the horse	Categorical	HK_2016_A061
raceid	A unique id of the race	Categorical	1979-09-22-001-1235-
			Grass
oddtype	The type of betting odds	Categorical	W, P
odd_1	The betting odds released by the	Real Value	/
	Hong Kong Jockey Club		
odd_{2-12}	The betting odds after the release of	Real Value	/
	betting odds (per hour)		
odd_{13-28}	The betting odds between 12 hours Real Value /		/
	after release of betting odds and 2.5		
	hours before the race starts		
odd_{29-55}	The betting odds from 2.5 hours to	Real Value	/
0.01 54 04	30 minutes before the race starts (per		
	5 minutes)		
odd_{56-84}	The betting odds in the last 29	Real Value	/
	minutes (per minute)		
odd_85	The final betting odd	Real Value	/

Data Analysis

- Decreasing trend in finishing time
- Increasing of performance

Data Analysis

• The performance of different race classes has no significant difference

Data Analysis

- The horses with lower odd have higher chances to win
- The peak of 2nd & 3rd place is rank 2

Data Encoding

- One-hot encoding
 - For data where values have no relation

Ordinal encoding

this

- For data where values has ordinal relation
- Customized encoding for gears equipped by horses
 - Indicate the **experience** of equipping

gear Encoded variables		Description	
-	0	Not equipped	
	1	Equipped for one or more consecutive races	
	2	Equipped for the first time since this race	
	3	Equipped the gear again since last unequipping the	
		gear	
	4	Unequipped since this race	

29

Data Imputing

• Distance interval data (Position data)

- Missing value due to different race distance
- Imputing approach:
 - Constant value
 - Attribute mean
 - Speed calculated by horse

2400M	~	~	~	~	~	~
2200M	(2200 – 2000M)	~	~	~	~	~
2000M	/	~	~	~	~	~
1800M	/	(1800 – 1600M)	~	~	~	~
1650M	1	/	(1650 – 1200M)	~	~	~
1600M	1	/		~	~	~
1400M	1	1	(1400 – 1200M)	~		~
1200M	1	/	/	~	~	~
1000M	1	/	/	(1000 – 800M)	~	~
	2000M	1600M	1200M	800M		
	2400 -	2000 -	1600 -	1200 -	800 –400M	Last 400M

Additional Features

Features	Descriptions	Types	Sample
weight_diff	The difference of declared weight of the horse between last race and current race	Real Value	Positive or Negative Value
last_weight	The declared weight of the horse in last race	Real Value	Positive Value
last_rating	The rating of the horse in the last race	Real Value	Positive Value
last_place	The final place of the horse in last race	Categorical	1 – 14
count_{1-14}	The count on final place the horse got in the past	Real Value	Positive Value
last_pos_time_{1-6}	The time of the horse at different distance interval in last race	Real Value	Positive Value
last_pos_place_{1-6}	The place of the horse at different distance interval in last race	Categorical	1 – 14
last_speed	The average speed of the horse in the last race	Real Value	Positive Value
avg_rating	The average rating of the horse in all previous races	Real Value	Positive Value
avg_pos_time_{1-6}	The average time of the horse at different distance interval in all previous races	Real Value	Positive Value
avg_pos_place_{1-6}	The average place of the horse at different distance interval in all previous races	Real Value	Positive Value less than 14
avg_speed	The average speed of the horse in all previous races	Real Value	Positive Value
avg_finishtime	The average finishing time of the horse in all previous races	Real Value	Positive Value
win_odds_rank	The ranks of final win odds in the races	Categorical	1 - 14

- Previous performance
 - From last race
 - Average in career
- Win odds ranking
 - Relation of horses in race

Additional Features

Betting Odds Data

- Exponential Moving Average (EMA)
 - Display underlying trend
 - Indicate the significant changes / trend breaking
 - Only for last 10 minutes

Horse Racing Prediction

Procedure, Evaluation & Performance

Input Data for Training

Features	Types	Encoding Methods	
raceclass	Categorical	Ordinal	
tracktype	Categorical	One-hot	
racktrack	Categorical	One-hot	
course	Categorical	One-hot	
country	Categorical	One-hot	
importtype	Categorical	One-hot	
sex	Categorical	One-hot	
colour	Categorical	One-hot	
going	Categorical	One-hot	
jockey	Categorical	Ordinal	
trainer	Categorical	Ordinal	
horseid	Categorical	Ordinal	
dam	Categorical	Ordinal	
sire	Categorical	Ordinal	
damsire	Categorical	Ordinal	
distance	Categorical	Ordinal	
draw	Categorical	Ordinal	
rating	Real Value	1	
rating_rank	Real Value	1	
last_rating	Real Value	1	
avg_rating	Real Value	/	
last_place	Real Value	1	
winodds	Real Value	1	
win_odds_rank	Real Value	/	
actualweight	Real Value	1	
declaredweight	Real Value	1	
gear	Categorical	Customized Encoding	
raceidseason	Real Value	1	
$count_{1-3}$	Real Value	1	
weight_diff	Real Value	1	
avg_finishtime	Real Value	1	
avg_pos{1-6}_pos	Real Value	1	
avg_pos{1-6}_time	Real Value	1	
last_pos{1-6}_pos	Real Value	1	
last_pos{1-6}_time	Real Value	/	

- Features included
 - Races data
 - Horses data
 - Horse-race data
 - Additional features
- Drop unnecessary , irrelevant features
- Split train and test data according to race season
 - Training data: 2008 2019
 - Testing data: 2019 2021

Model Configurations

- Optimized by cross-validated grid-search
 - No. of decision trees: 256
 - Max. depth of decision tree: 13
 - Min. no. of samples required to split an internal node: 2
 - Metric for comparing the quality of each node split: **mean squared error**

Results and Analysis
Results of Random Forest

	horseid	raceid	distance	winodds	place	pred
17995	5,265.00	2019-09-01-001-1600-Turf	3.00	2.20	1	95.84
17993	4,296.00	2019-09-01-001-1600-Turf	3.00	7.00	5	95.85
17994	4,268.00	2019-09-01-001-1600-Turf	3.00	5.70	4	95.86
17996	5,186.00	2019-09-01-001-1600-Turf	3.00	4.90	2	95.89
17999	4,302.00	2019-09-01-001-1600-Turf	3.00	18.00	3	96.16
18000	4,982.00	2019-09-01-001-1600-Turf	3.00	21.00	9	96.17
18001	4,809.00	2019-09-01-001-1600-Turf	3.00	19.00	6	96.21
17998	4,845.00	2019-09-01-001-1600-Turf	3.00	14.00	8	96.33
17997	5,103.00	2019-09-01-001-1600-Turf	3.00	50.00	7	96.35

- Sample output of a race
- Small difference between predicted time

Decision Path

finishtime avg	j_pos6_place	avg_pos6_time	avg_rating	declaredweight	distance	draw	going_GY	horseid	raceidseason	rating	win_odds_rank
96	4.2	23	36	1.1e+03	3	3	0	4.3e+03	1	37	3
d node 0 : (d node 3982 d node 3983 d node 3984 d node 3985 d node 3986 d node 3987 d node 4075 d node 4076 d node 4077 d node 4078 d node 4079	X_test[1, ' : (X_test[1 : (X_test[1	<pre>distance'] (= , 'distance'] , 'distance'] , 'distance'] , 'rating'] (, 'win_odds_r , 'horseid'] , 'going_GY'] , 'raceidseas , 'avg_rating , 'rating'] (, 'horseid']</pre>	3.0) > 2. (= 3.0) < (= 3.0) < = 37.0) <= ank'] (= 3 (= 4268.0) (= 0.0) < on'] (= 1) '] (= 36.6 = 37.0) <= (= 4268.0)	<pre>.5) <= 5.5) <= 4.5) <= 3.5) = 63.5) 3) <= 9.5)) > 2408.0) <= 0.5) 0) <= 688.5) 0) <= 44.03846 = 49.5) 0) > 3718.0)</pre>	16851806	64)	•	Act 95. Pre 96. Dis fea	tual finis 68 dicted fi 09 tance ar tures for	hing nish re the nod	time: ing Time: e first le
	96 96 96 96 96 96 97 98 98 982 983 983 983 983 985 985 985 985 985 985 985 985 985 985	96 42 983<:	96 4.2 23 96 4.2 23 96 4.2 23 96 0.2 23 96 4.2 23 96 0.2 23 97 1.2 23 98 1.2 23 99 1.2 23 99 1.2 23 99 1.2 23 91 1.42 23 91 1.42 23 91 1.42 23 92 1.42 23 93 1.42 1.42 94 1.42 1.42 95 1.42 1.45 96 1.42 1.45 96 1.42 1.45 983 1.42 1.45 99 1.42 1.45 99 1.42 1.45 99 1.42 1.45 99 1.42 1.45 99 1.42 1.45 99 1.42 1.45 <	96 4.2 23 36 96 4.2 23 36 96 4.2 23 36 96 4.2 23 36 96 4.2 23 36 96 982: (X_test[1, 'distance'] (= 3.0) 36 96 0.23 36 36 97 0.23 36 36 98 : (X_test[1, 'distance'] (= 3.0) 36 98 : (X_test[1, 'distance'] (= 3.0) 36 98 : (X_test[1, 'distance'] (= 3.0) 36 99 node 3983 : : (X_test[1, 'distance'] (= 3.0) 99 node 3984 : : (X_test[1, 'distance'] (= 3.0) 99 node 3985 : : (X_test[1, 'win_odds_rank'] (= 3.0) 99 : : : : : 99 : : : : : 99 : : : : : 99 : : : : : : : <t< td=""><td><pre>96 4.2 23 36 1.1e+03 96 4.2 23 36 1.1e+03 4 node 0 : (X_test[1, 'distance'] (= 3.0) > 2.5) 4 node 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5) 4 node 3983 : (X_test[1, 'distance'] (= 3.0) <= 5.5) 4 node 3983 : (X_test[1, 'distance'] (= 3.0) <= 4.5) 4 node 3984 : (X_test[1, 'distance'] (= 3.0) <= 3.5) 4 node 3985 : (X_test[1, 'rating'] (= 37.0) <= 63.5) 4 node 3986 : (X_test[1, 'win_odds_rank'] (= 3) <= 9.5) 4 node 3987 : (X_test[1, 'horseid'] (= 4268.0) > 2408.0) 4 node 4075 : (X_test[1, 'raceidseason'] (= 1) <= 688.5) 4 node 4077 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 4 node 4078 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 4 node 4079 : (X_test[1, 'horseid'] (= 4268.0) > 3718.0) 4 node 4083 : (X_test[1, 'avg_pos6_place'] (= 4.1666666666666666666666666666666666666</pre></td><td>96 4.2 23 36 1.1e+03 3 d node 0 : (X_test[1, 'distance'] (= 3.0) > 2.5) d node 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5)</td> d node 3983 : (X_test[1, 'distance'] (= 3.0) <= 5.5)</t<>	<pre>96 4.2 23 36 1.1e+03 96 4.2 23 36 1.1e+03 4 node 0 : (X_test[1, 'distance'] (= 3.0) > 2.5) 4 node 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5) 4 node 3983 : (X_test[1, 'distance'] (= 3.0) <= 5.5) 4 node 3983 : (X_test[1, 'distance'] (= 3.0) <= 4.5) 4 node 3984 : (X_test[1, 'distance'] (= 3.0) <= 3.5) 4 node 3985 : (X_test[1, 'rating'] (= 37.0) <= 63.5) 4 node 3986 : (X_test[1, 'win_odds_rank'] (= 3) <= 9.5) 4 node 3987 : (X_test[1, 'horseid'] (= 4268.0) > 2408.0) 4 node 4075 : (X_test[1, 'raceidseason'] (= 1) <= 688.5) 4 node 4077 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 4 node 4078 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 4 node 4079 : (X_test[1, 'horseid'] (= 4268.0) > 3718.0) 4 node 4083 : (X_test[1, 'avg_pos6_place'] (= 4.1666666666666666666666666666666666666</pre>	96 4.2 23 36 1.1e+03 3 d node 0 : (X_test[1, 'distance'] (= 3.0) > 2.5) d node 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5)	<pre>Minishume avg_poso_place avg_poso_time avg_rating declared weight distance draw 96 4.2 23 36 1.1e+03 3 3 d node 0 : (X_test[1, 'distance'] (= 3.0) > 2.5) d node 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5) d node 3983 : (X_test[1, 'distance'] (= 3.0) <= 4.5) d node 3984 : (X_test[1, 'distance'] (= 3.0) <= 3.5) d node 3985 : (X_test[1, 'rating'] (= 37.0) <= 63.5) d node 3986 : (X_test[1, 'win_odds_rank'] (= 3) <= 9.5) d node 3987 : (X_test[1, 'horseid'] (= 4268.0) > 2408.0) d node 4075 : (X_test[1, 'raceidseason'] (= 1) <= 688.5) d node 4076 : (X_test[1, 'rating'] (= 37.0) <= 44.038461685180664) d node 4077 : (X_test[1, 'rating'] (= 37.0) <= 49.5) d node 4078 : (X_test[1, 'horseid'] (= 4268.0) > 3718.0) d node 4083 : (X_test[1, 'avg_pos6_place'] (= 4.1666666666666667) <= 9.125 </pre>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>minstume avg_poss_place avg_poss_time avg_rating declaredweight distance draw going_GY norseld raceldseason 96 4.2 23 36 1.1e+03 3 3 0 4.3e+03 1 64 node 3982 : (X_test[1, 'distance'] (= 3.0) > 2.5) 64 node 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5) 64 node 3984 : (X_test[1, 'distance'] (= 3.0) <= 4.5) 64 node 3985 : (X_test[1, 'distance'] (= 3.0) <= 63.5) 64 node 3986 : (X_test[1, 'rating'] (= 37.0) <= 63.5) 64 node 3987 : (X_test[1, 'incseid'] (= 4268.0) > 2408.0) 64 node 4075 : (X_test[1, 'raceidseason'] (= 1) <= 688.5) 64 node 4076 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 64 node 4077 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 64 node 4078 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 64 node 4079 : (X_test[1, 'norseid'] (= 4268.0) > 3718.0) 64 node 4083 : (X_test[1, 'avg_pos6_place'] (= 4.166666666666667) <= 9.125)</pre>	 96 4.2 23 36 1.1e+03 3 3 0 4.3e+03 1 37 96 4.2 23 36 1.1e+03 3 3 0 4.3e+03 1 37 96 4.2 23 36 1.1e+03 3 3 0 4.3e+03 1 37 96 anode 3982 : (X_test[1, 'distance'] (= 3.0) <= 5.5) 97 anode 3983 : (X_test[1, 'distance'] (= 3.0) <= 4.5) 98 anode 3983 : (X_test[1, 'distance'] (= 3.0) <= 63.5) 99 anode 3985 : (X_test[1, 'rating'] (= 37.0) <= 63.5) 99 anode 3985 : (X_test[1, 'win_odds_rank'] (= 3) <= 9.5) 99 anode 3987 : (X_test[1, 'borseid'] (= 4268.0) > 2408.0) 99 anode 3987 : (X_test[1, 'raceidseason'] (= 1) <= 688.5) 96 anode 4077 : (X_test[1, 'raceidseason'] (= 1) <= 688.5) 96 anode 4077 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 96 anode 4077 : (X_test[1, 'rating'] (= 37.0) <= 49.5) 97 anode 4079 : (X_test[1, 'horseid'] (= 4268.0) > 3718.0) 97 anode 4083 : (X_test[1, 'avg_pos6_place'] (= 4.166666666666667) <= 9.125)

• odds, rating, going are used as node splitting features

Evaluation Metrics

- Mean Squared Error (MSE)
 - Accuracy of the prediction
 - Closer to 0, the better performance
 - MSE of model: 2.2649 seconds
- Explained Variance Score
 - Discrepancy between the model and data
 - The closer to 1, the stronger association
 - Explained Variance Score of model:
 0.99388

• Impurity-based Feature Importance

- Measure the significance of affecting decision trees
- Related to node splitting
- Computed by
 - Mean and standard deviation of accumulation of the impurity reduced
 - Take average among all decision trees
- Limitation:
 - Misleading when features have high cardinality

- Top 20 features
- Distance is hidden
 - Significantly greater than other features
 - Importance: 0.99631
- Rating and odds occupied 4/20
 - Performance & public intelligence
- Environmental features occupied 6/20
 - Racetrack
 - Going
 - Tracktype
 - Raceidseason
- High cardinality features

- Permutation-based Feature Importance
 - Measure the significance of affecting the prediction result
 - Computed by
 - Define a baseline metric (R² score)
 - Evaluate the model on given dataset
 - Permute each feature from the dataset and evaluate the model with the same metric
 - Figure out the difference between the baseline metric and newly computed metric
 - Limitation:
 - Misleading when there are highly correlated features

- Top 20 features
- Distance is hidden
 - Significantly greater than other features
 - Importance: 2.0142
- **Rating** and **going** have high importance
- Id of horse has been verified
- More distance interval data
 - Previous performance affect the result of prediction

- 1. Group all the horses by the race
- 2. Order the horses by the predicted finishing time in ascending order
- 3. Assign a **predicted place** to each horse according to the ranking
- 4. Start Betting!

	horseid	raceid	place	winodds	pred	pred_place	place_difference
17995	5265.0	2019-09-01-001-1600-Turf	1	2.2	95.84	1	0
17996	5186.0	2019-09-01-001-1600-Turf	2	4.9	95.89	4	2
17999	4302.0	2019-09-01-001-1600-Turf	3	18.0	96.16	5	2
17994	4268.0	2019-09-01-001-1600-Turf	4	5.7	95.86	3	-1
17993	4296.0	2019-09-01-001-1600-Turf	5	7.0	95.85	2	-3
18001	4809.0	2019-09-01-001-1600-Turf	6	19.0	96.21	7	1
17997	5103.0	2019-09-01-001-1600-Turf	7	50.0	96.35	9	2
17998	4845.0	2019-09-01-001-1600-Turf	8	14.0	96.33	8	0
18000	4982.0	2019-09-01-001-1600-Turf	9	21.0	96.17	6	-3

- 1. Assume \$10 would be used for each bet
- 2. Gain **\$10 * odds 10** if correctly picked the horses
- 3. Lose \$10 otherwise
- 4. PLACE betting would be simulated
- 5. Compare with different strategies
 - Based on lowest odds
 - Based on highest rating
 - Random

- Betting **WIN**
- All strategies are losing money
- Random & rating have the **worst** performance
- Comparable result with betting on lowest odds
 - Lowest odds has 30% accuracy
 - Our prediction has 24.537%

Betting **PLACE**

•

- All strategies are losing money
- Random & rating have the worst performance
- Comparable result with betting on lowest odds
 - Lowest odds has 51.349% accuracy
 - Our prediction has 47.153%

Horse Betting Using MAB

MAB Formulation of Horse Betting Problem

Contextual MAB problem

Each action (horse) is with context (such as closing odds), which is correlated to the reward (outcome of the bet)

Combinatorial MAB problem

Instead only one action is played at a time, multiple actions are played (Placing multiple bets) at once.

Contextual MAB

Possible features (context) for horse betting:

- First/closing odds, intermediate odds
- Rankings
- etc...

How does these features relate to the outcome (how much/likely will we earn)?

• Linear relation can be a reasonable guess Examples for algorithms with linear model: LinUCB, LinTS

Combinatorial MAB

In many cases, we would want to play **multiple actions** instead of one only

- Article/Ad recommendation
- Allocate jobs to multiple workers in crowdsourcing True also in our case, it would be **more flexible** if we allow **betting on multiple horses**

Bet type we play: **Place bet** Max horses to bet: **2**

Algorithms

Some of algorithms that we use: LinUCB[1], LinTS[2] -> For one-armed bandit problem (one action each round) To extend from that, we just pick multiple actions with highest scores.

Combinatorial MAB algorithms we tried: **CC-MAB**[3], **C²UCB**[4] (not included as not working well)

Environment for Horse Betting

We will let the agent play race by race

Action set:

14 horses (at most) ordered by predicted finishing time + not to bet

Features (for each horse):

- Last moment place odds
- Last 10 minutes EMA of odds
- Rankings (odds, predicted finishing time)
- Ratio of finishing time between each horse with the horse ranked 1 place ahead (finishing time)

Environment for Horse Betting(cont.)

Reward functions

1. Bet right or wrong (Bet any of top 3 horses correctly) = 1

- R(Bet wrong) = 0
- R(Not bet) = 0.46, i.e. average place accuracy
- ->Expected to pick actions that win most
- 2. Actual cash change
 - R(Bet any of top 3 horses correctly) = 10 * place odd -10 (cost)
 - R(Bet wrong) = -10
 - R(Not bet) = -3, i.e. average return of random guess
- ->Expected to pick actions that earns the most

Procedure

• Dataset

- 1414 races in total
 - No train-test split (bandit algo are online)
 - Run according to chronological order
 - 6-14 horses in each

Results and Analysis

Regret (Reward Function 1)

Regret slightly improves Overtime ->Agent does learn to take better actions as time goes on

Cash Balance (Reward Function 1)

Even we just let the agent learns on the go (no training), the result is still comparable to public intelligence/our prediction in terms of

- Descent rate of cash
- Final balance

Actions Taken (Reward Function 1)

The agent is able learn to play Horses with highest win rate (horse 1)

60

Result (Reward Function 1)

The agent **can** learn in such simple scenario of guessing which actions win the most (as reward function 1 favors horses with high win rate).

But how about more sophisticated scenario where we really use actual money gain/lose as reward (reward function 2)?

Regret (Reward Function 2)

Compared to last time, the regret can hardly reduce

Cash Balance (Reward Function 2)

- earns a bit more than public intelligence/our prediction
- Still cannot revert the trend of losing money.

Actions Taken (Reward Function 2)

Most frequent actions

- Horse 2-5
- Higher odds but still likely to be in top 3
- But still not sufficient to generate profit

Actions Taken (Reward Function 2)

Action set 1, Reward function 2, B = 2 horse 1 horse 2 700 horse 3 horse 4 600 horse 5 horse 6 500 horse 7 horse 8 frequency horse 9 400 horse 10 norse 11 300 norse 12 horse 13 200 horse 14 not bet 100 0 500 1000 1500 2000 2500 0 Number of actions taken

As time goes on, horse 2-5 are played significantly more than other horses.

Result (Reward Function 2)

- Able to choose actions with higher profit (not just simply choose top 3)
- Perform a bit better than public intelligence/our prediction
- Still insufficient for generating profit
 - All options have negative average return (low odds & accuracy not high enough)
 - Fixed bet each time

Possible Improvements

- Previously we bet fixed amount of money, Can we bet more especially when it could possibly earn decent amount (e.g. >= 20)?
- And if the money returned can be low (e.g. < \$15), we don't earn much anyway. Do we still continue to bet?

Our attempt: use 2 extra bandit algorithms to make decision for each situation

Procedure

- Feed actions from original bandit to 2 extra bandits
 - One for each situation in last slide
 - Output 'bet' or 'not bet' actions

Environment (Part 2)

Reward functions

1. For 1st bandit (bet when possible return is >=15)

- R(Bet and return >= 15) = return
- R(Bet and return < 15) = -10
- R(Not bet and return when bet < 15) = 10
- R(Not bet and return when bet >= 15) = -net gain if bet

2. For 2nd bandit (bet \$20 when possible return is >= 20)

- R(Bet and return >= 20) = return *2
- R(Bet and return < 20) = -20
- R(Not bet and return when bet < 20) = 10
- R(Not bet and return when bet >= 20) = -net gain if bet \$10 *2

Results

- make large gains oftenly
- **Red** curve:
 - doesn't lose much after certain point
 - large ascent at the end.

Results

Conclusion

Conclusion

- Horse racing prediction model
 - Acceptable accuracy
 - Comparing to the previous projects
 - Predict the result with features in different aspects
 - Odds, rating and environment related
 - Proved to be significant
- Bandit algorithms
 - Capable of finding choices that earn most
 - All choices have negative returns
 - Low odds
 - Hardly have good accuracy
 - Not able generate profit easily
 - Need more advanced way that allows variable amount of money to bet / intelligent enough to decide when to not bet

Q&A Section

The End Thanks!

References

[1]. Li, Lihong, et al. "A Contextual-Bandit Approach to Personalized News Article Recommendation." Proceedings of the 19th International Conference on World Wide Web - WWW '10, 2010,

https://doi.org/10.1145/1772690.1772758

[2] Agrawal, Shipra, and Navin Goyal. "Thompson sampling for contextual bandits with linear payoffs." International Conference on Machine Learning. PMLR, 2013.
[3] Chen, Lixing, Jie Xu, and Zhuo Lu. "Contextual combinatorial multi-armed bandits with volatile arms and submodular reward." Advances in Neural Information Processing Systems 31 (2018): 3247-3256.

[4]Qin, Lijing, Shouyuan Chen, and Xiaoyan Zhu. "Contextual combinatorial bandit and its application on diversified online recommendation." Proceedings of the 2014 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2014.