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Win odds in horse racing reflect public opinions because the more confidence the 

public has about winning a horse, the lower the win odds due to the pari-mutuel 

betting system. The transformer model in the natural language process has 

successfully dealt with the prediction of sequence input. Still, there is no research 

exploring the transformer model's use in horse racing prediction. The ratings given by 

rating systems have been used in many competitions to represent the skill level of 

players. In this project, we combine these two techniques for horse racing prediction 

and see if it can have the same effect as the win odds in helping the forecast. By 

comparing the results of using each technique alone, we show that combining the two 

approaches can achieve better prediction accuracy and positive net gain in betting 

simulation. Furthermore, horse token embedding is proposed to replace the word 

embedding in the transformer model to boost the prediction accuracy and maintain a 

steady growth of net gain in betting simulation. To develop a deeper understanding of 

the transformer model, probing, analysis of attention map, and integrated gradient are 

methods used to assess model capability, data shuffling impact, and input-output 

behaviors. 
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Chapter 1 

Overview 

Reproducing the effects of win odds in horse racing prediction with machine learning 

methods and understanding the underlying mechanism and behaviors of those 

methods are the purposes of this final year project. As the win odds keep changing 

before the start of a horse race, data collection of the win odds may not be accurate 

enough before the race. However, betting is not permitted after the beginning of the 

race. Hence, we attempt to use only static data which do not vary within the betting 

period, combined with a neural network to resemble the helpfulness of win odds in 

horse racing prediction in the first stage. In the next stage, we endeavor to understand 

the underlying mechanism and behaviors of the neural network used for horse racing 

prediction. The introduction to machine learning methods and the background about 

horse racing are provided at the beginning of this section. Then, our motivation for 

this project and the respective objectives of the first and second semesters will be 

stated. 

 

1.1 Introduction 

Machine learning has become a hot topic in technical fields with the dramatic 

advancement of the hardware and appearance of big data in recent years. It has been 

applied to real-world problems such as weather forecast, image recognition, speech 

recognition, natural language process, etc. The concept of machine learning is 

optimizing the parameters defined in a model with the guidance of training experience 

to get intuition and prediction [1]. Machine learning is not specific to one particular 
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field but the junctions of different domains such as statistics, computer science, and 

data science. For instance, it uses the knowledge in statistics to build models and 

knowledge in computer science to convert the models into computer representations 

and design an efficient algorithm to deal with the optimization problem of the model 

[2]. 

 

Machine learning can be divided into two types. The first type is supervised learning, 

in which the known target outputs are used to correct the values of the parameters in 

the mapping model between the input and outcome [3]. The mapping will then be 

employed for predicting the output of new incoming data. The second type is 

unsupervised learning, in which there is no explicit target output to guide the 

optimization of parameters in the model. Instead, an assessment of the 

representation’s quality is learned in a self-organizing process [4]. Supervised 

learning is our choice for this project because the win odds can easily be collected 

from the HKJC website. 

 

The primitive neural network architecture in machine learning was the single-layer 

perceptron proposed in 1958. It was further developed into a multilayer perceptron in 

1975 to solve nonlinear problems and linearly sparable problems that the perceptron 

cannot solve [5]. The multilayer perceptron gradually evolves to different neural 

network architecture such as deep neural network, convolutional neural network, 

recurrent neural network, and long/short term memory network. The original design 

of the neural network was to emulate how the brain function in doing a task by 

treating each neuron in the neural network as the neuron in the brain and aggregating 

them into a complicated information system that is nonlinear [6]. 
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Natural Language processing has been a popular topic in the research field. It had 

initially addressed by the convolutional neural network and recurrent network due to 

their exceptional performances until the appearance of the transformer architecture in 

2017, which has an even better performance in understanding and generating the 

natural language by parallel training and the ability to tackle lengthy sequence inputs 

[7]. 

Previous FYP students made several attempts in horse racing prediction with machine 

learning methods. LYU1603 tried to predict the winning horse with regression on time 

[8]. LYU1703 attempted to predict the winning horse and the places with MLP and 

rank network [9]. LYU1805 tried to predict the winning horse with deep probabilistic 

programming [10]. We approach the horse racing prediction from a different 

perspective for this project. Since both the inputs of this horse racing prediction and 

natural language processing are sequences, we decide to reduce the horse racing 

prediction to a natural language processing classification problem. We hope that the 

techniques in natural language processing can capture the relationships between 

horses in a single race and make the prediction according to the dependency. 

  

This project makes four contributions. The first contribution is applying the 

transformer model in horse racing prediction, which has not been explored yet. The 

second contribution proposes a new embedding method suitable for horse racing data. 

The second contribution shows a positive net gain when using the prediction of the 

transformer model with ratings as input in horse racing betting. The fourth 

contribution is revealing the behaviors of the transformer model with horse racing 

data via different interpretability methods. 
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1.2 Background of Horse Racing 

1.2.1 Horse Racing in Hong Kong 

Horse racing in Hong Kong is a sports competition introduced by the British, which 

usually has 10 – 14 jockeys riding on corresponding horses in a single race, 

competing to reach the finish line in a shorter time. It has been an esteemed sports 

event in Hong Kong for over 100 years as betting allows people to bet on the horses 

they like. This event is mainly held on Sundays and Wednesdays. There are 10-day 

races on Sundays and 8-night races on Wednesdays, respectively. The number of 

competitors is limited to 14 for races on Sundays, while it is limited to 12 for races on 

Wednesdays. Each year, the horse racing season starts in September and ends in July, 

and roughly 88 days have the horse racing within a season [11]. 

 

1.2.2 The Hong Kong Jockey Club 

The Hong Kong Jockey Club, founded in 1884, is a certified non-profit making and 

charitable organization responsible for hosting horse racing events and other betting 

entertainments. It gains enormous revenue from its sport betting events every year, 

and those revenues will be split for operational costs and returned to the community. 

HK$29.4 billion was returned to the community regarding duty, tax, and donations in 

2020-2021 [12]. 
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1.2.3 Pari-mutuel Betting in Horse Racing. 

In pari-mutuel betting, the bets from people are accumulated in a pool in each race. 

The bookmaker will take a fixed percentage from the pool [13]. In Hon Kong, The 

Hong Kong Jockey Club acquires 17.5% of the pool in winning bets as its revenue 

and allocates the remaining in the pool to the betters with a correct prediction 

concerning the odd, which is the ratio of return to the bet calculated before the start of 

the race. The odds cannot be interpreted as the actual winning probability of a horse, 

but it is just an estimation of how many betters favors the horse. In other words, it 

reflects public intelligence. Since the betters are betting against each other, a positive 

net gain is expected if we make a more accurate prediction than the public [14]. 

1.2.4 Types of Bets 

The Hong Kong Jockey Club provides various types of bets for bettors. The types and 

explanations can be found in Figure 1. 

 

Figure 1. Pari-mutuel betting provided by the HKJC [15] 
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As we see from Figure 1, the minimum amount to invest in the pari-mutuel pools is 

$10 from a self-vending terminal such as the HKJC mobile application or the HKJC 

WEB Application at any time. 

 

Single-race Pool Dividend Qualification 

Win 1st in a race 

Place 1st, 2nd or 3rd in a race, or 1st or 2nd in a race of 4 to 6 

declared starters (applicable to local races) 

1st, 2nd, 3rd or 4th in a race, or 1st, 2nd or 3rd in a race of 7 

to 20 declared starters, or 1st or 2nd in a race of 4 to 6 

declared starters (applicable to designated simulcast races) 

Quinella 1st and 2nd in any order in a race 

Quinella Place Any two of the first three placed horses in any order in a race 

3 Pick 1 

(Composite Win) 

Winning Trainer 

(Composite Win) 

Winning Region 

(Composite Win) 

Composite containing the 1st horse in a race 

Forecast 1st and 2nd in correct order in a race 

Trio 1st, 2nd and 3rd in any order in a race 

Tierce 1st , 2nd and 3rd in correct order in a race 

First 4 1st, 2nd , 3rd and 4th in any order in a race 

Quartet 1st, 2nd , 3rd and 4th in correct order in a race 

Table 1. Types of bets in the single race pool [16] 
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The single race pool and the dividend qualification for beginners are shown in Table 

1. 

 

Multi-race Pool Dividend Qualification 

Double 1st in each of the two nominated races 

Consolation :1st in 1st nominated race and 2nd in 

2nd nominated race 

Treble 1st in each of the three nominated races 

Consolation : 1st in the first two Legs and 2nd in 3rd Leg of 

the three nominated races 

Table 2. Type of bets in multi-race pool [16] 

 

The multi-race pool and the dividend qualification for more experienced bettors are 

shown in Table 2 
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1.3 Motivation 

Horse racing held by the Hong Kong Jockey Club has been the most favored sports 

betting event in Hong Kong. Its popularity can be shown to be the colossal amount of 

revenue, which is approximately HK$280 billion in 2020-2021, despite the economic 

downturn caused by the coronavirus pandemic [17]. 

 

Tremendous efforts have been made to predict the winning horse of each race by 

machine learning. Still, the outcome has been unsatisfactory as profitable results can 

only be attained under certain circumstances. It is believed that the betting odds hide 

the secret of beneficial plans from the observation that bookmakers consistently have 

interests in providing profitable betting odds to gamblers. Therefore, building and 

interpreting the machine learning model, which has a similar effect on the betting 

odds in horse racing prediction, may help reveal the hidden message of the betting 

odds and the reasons for the bookmaker’s enormous financial gain.  
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1.4 Objectives 

We have two objectives in this project. The first objective of this project is to 

reproduce the effect of win odds from the Hong Kong Jockey Club in horse racing 

prediction. As the horse with a low winning odd usually has a higher winning 

probability, as implied from the public intelligence, the win odds contain helpful 

information which guides the model prediction. However, the dynamic nature of the 

win odds before the start of a race cannot guarantee the data which we get at a 

particular time is accurate, and we, therefore, exclude the win odds from our input 

data and try to reproduce the effect of win odds with only static variables. 

 

The second objective is comprehending the decision made by the model by different 

interpretability methods. Even though machine learning model usually provides more 

accurate predictions than humans, we are advised to understand the decision 

principles and vulnerabilities of the neural network so that we are convinced to apply 

the model. 
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First Term: 

⚫ Convert the data collected from the HKJC into a sequence that can be fitted 

to a natural language processing model. 

⚫ Find other features that have a similar meaning as the win odds 

⚫ Build a natural language process model for winning horse classification 

⚫ Evaluate the performance of the proposed model on the test set. 

Second Term: 

⚫ Improve the winning horse classification by designing a more appropriate 

embedding scheme for the input  

⚫ Inspect the capabilities of the transformer model in the horse racing context 

⚫ Examine the vulnerabilities of the transformer model and find the possible 

underlying reasons 

⚫ Enhance the interpretability of the transformer model by extracting intuitive 

rules from the model decisions.   
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1.5 Related Works 

Researchers have been interested in applying machine learning methods to learn the 

complex relationship between sports betting and predicting the outcome accurately. 

Several studies investigated horse racing prediction by the artificial neural network 

[18], conditional logistic regression [14], random forest [20], and support vector 

machine [21]. 

 

Elnaz and Khanteymoori [18] applied an artificial neural network in horse racing 

prediction with five supervised neural network learning algorithms: Conjugate 

Gradient Descent, Quasi-Newton Levenberg-Marquardt, Backward-Propagation, and 

Backward-Propagation with Momentum. The experiment used the horse racing 

records in January 2010 in the United States, and the result was exceptional that all 

learning algorithms produced satisfying predictions of 77% accuracy on average. The 

performance differences between the learning algorithms are minor. Although 

Backward-Propagation took a longer training time, it achieved a slightly better 

prediction result than others. This research demonstrated that artificial neural 

networks are applied to horse racing prediction. 

 

Silverman and Suchard [14] proposed adjustments to the multinomial logit model for 

horse racing prediction suggested by Bolton and Chapman [19]. They exploited the 

winning dividends by introducing a frailty contribution and parameter regularization 

to the regression model. They collected the data of 3681 races in Hong Kong from the 

HKJC, and 737 races were retained for testing the model. They discovered that they 

could gain a remarkable higher return by changing the objective to simply increasing 

the profit and combining a calculated inverse-frailty score in the experiment. 
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Lessmann, Sung, and Johnson [20] explored alternative methods for predicting horse 

racing results. They admitted that the conditional logit model was a proper tool for 

estimating the winning probability of a horse in conjunction with other horses in a 

race. In addition to that, they showed that random forest could complement 

conditional logit-based horseracing forecasting. Consequently, they adapted a two-

stage modeling framework that captured the complicated relationship between horses’ 

information and the results of races in the first stage. Then, the winning probability of 

a horse within a single race was computed at the second stage. In the second stage, a 

random forest revealed the winner horse by counting the number of votes regarding 

whether the horse was a winner from the decorrelated decision trees.  

 

Chung, Change, and Ko [21] utilized the support vector machine to predict horse 

racing results in Hong Kong. They divided their training data into multiple similar 

training sets and trained a support vector machine for each training set. They were 

combined to form a more robust model for those weaker models. The outcome of a 

race was determined similarly to a random forest. All trained support vector machines 

created a committee machine and did voting. In the experiment, they collected data 

from the HKJC official website. There were 33532 horse records and 2691 race 

records dated from 1st Jan 2012 to 30th June 2015 in the dataset. The result of the 

experiment showed a 70.86% accuracy in predicting the winner horse by the 

committee machine. 

 

Tung and Hei [8] attempted to build a classification model for winning horse 

prediction with Tensorflow. They used the neural network to create a binary 

classification model and betted on the horse if the model's prediction revealed that the 

horse was a winner. They set a confident threshold to be 0.8 so that they only gambled 
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the horse when the model predicted it as a winner with a certain threshold exceeding 

0.8. As a result, they exhibited a 30% net gain after one year. 

 

Liu [9] tackled the horse racing prediction problem by building a supervised neural 

network in predicting the finishing time of each horse. After that, he compared horses’ 

anticipated finishing times and ranked them based on their anticipation. He set a 

confident threshold of 0.5 and betted only on class 1 and 2 races. This setting was 

shown to have a positive net gain over an entire race season. 

 

Wong [10] applied Pyro, a probabilistic programming language supported by Python, 

to build sophisticated probabilistic models. The PyTorch backend assisted automatic 

differentiation, neural networks, and backward propagation. The abstraction provided 

by the probabilistic programming language simplifies the code for inferences and 

probabilistic sampling. The result of the experiment showed a profit of 14.43% could 

be gained when using features including the win odds, while it dropped to 7.59% 

when using features excluding the win odds. 

 

 

 

 

 
 

 

 

 



20 
 

Chapter 2 

Background Knowledge 

2.1 Rating Systems 

2.1.1 Glicko Rating System 

Glicko rating system [22] extends the Elo rating system. It is a statistical model that 

addresses the limitation of the Elo rating system by introducing an additional 

measurement of the rating deviation. This measurement is intended for assessing the 

reliability of a player’s rating. When the value of rating deviation is high, it infers that 

the player has not played the game for an extended period, and the rating thus 

becomes unreliable. In contrast, a low value of rating deviation indicates that the 

player plays the game frequently, and the rating is more reliable. The intuition is that 

the uncertainty of a player’s ability reduces because more information is obtained by 

the player playing more games. 

 

The rating and the rating deviation of horses are calculated in two steps. The formula 

is recursive as the current rating and rating deviation are determined from the rating 

and deviation from the last rating and last rating deviation. 

 

During the new rating period, we should compute each horse's rating and rating 

deviation based on its previous rating and rating deviation. In step 1, we focus on the 

rating deviation.  

 

If the horse is new to the race, which means it hasn’t participated in any races, we 
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assign 1500 and 350 to its rating and rating deviation respectively. Both 1500 and 350 

are default values of the rating and the rating deviation.  

 

If the horse participated in races in the past, we take its rating from the last race for 

computing the current rating deviation with the formula below,  

 

𝜎 = 𝑚𝑖𝑛(√𝜎𝑜𝑙𝑑
2 + 𝑐2 , 350).     (1) 

 

𝜎 is the current rating deviation and 𝜎𝑜𝑙𝑑 is the rating deviation of the last race. 

𝑐 is the constant controlling the uncertainty between races. The current rating 

deviation is the minimum value between the computation from the old rating 

deviation and 350. 

 

In step 2, we update the rating and rating deviation for each horse in a race. 

Let 𝑟 be the horse's rating in the last race and 𝜎 be the rating deviation computed in 

step 1. Then, 𝑟1, 𝑟2, . . . , 𝑟𝑛 are the rating of the other horses from their last rating 

period. The corresponding rating deviation is 𝜎1, 𝜎2, . . . , 𝜎𝑛. The result of horses in the 

race is 𝑠1, 𝑠2, . . . , 𝑠𝑛. If the horse wins the race, 𝑠𝑖 equals to one. If the horse loses the 

race, 𝑠𝑖 equals to zero.  

 

Let 𝑟𝑛𝑒𝑤 𝑎𝑛𝑑 𝜎𝑛𝑒𝑤 be the updated rating and rating deviation of a horse and we 

repeat this procedure for each horse. 

We first define the following terms, 

𝑞 =
ln(10)

400
 ,            (2) 
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𝑔(𝜎) =
1

√1+
3𝑞2(𝜎2)

𝜋2

 ,        (3) 

 

𝐸(𝑠|𝑟, 𝑟𝑗 , 𝜎𝑗)  = 
1

1 + 10
−𝑔(𝜎𝑗)(𝑟 − 𝑟𝑗)/400 ,        (4) 

 

𝑑2  =  (𝑞2 ∑ (𝑛
𝑗=1 𝑔(𝜎𝑗))2 𝐸(𝑠|𝑟, 𝑟𝑗 , 𝜎𝑗) (1 −  𝐸(𝑠|𝑟, 𝑟𝑗 , 𝜎𝑗)))−1,(5) 

 

The above terms are used in the update. 

𝑟𝑛𝑒𝑤  =  𝑟 +  
𝑞

1/𝜎2+ 1/𝑑2  ∑ 𝑔(𝜎𝑗) (𝑠𝑗  −  𝐸(𝑠|𝑟, 𝑟𝑗 , 𝜎𝑗)) 𝑛
𝑗=1  ,   (6) 

 

𝜎𝑛𝑒𝑤  =   √(
1

𝜎2 +  
1

𝑑2)
−1

.               (7) 
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2.1.2 TrueSkill Rating System 

TrueSkill rating system [23] also measures the uncertainty of player skill level, but it 

also has additional features to the Glicko rating system. The first one is the relaxation 

of the number of players in a game. As the Glicko rating system is designed for 2-

players chess games, it assumes that there are only one winner and one loser in each 

game. The TrueSkill rating system tries to adapt to a multiple-player environment by 

taking that the outcome of each match is a permutation of multiple teams or players so 

that it is dedicated to multiplayer games. The second is the inference for individual 

skills in games requiring players to form groups. Each team only has one player in our 

situation because horses in horse racing do not constitute a team, and we treat each 

horse as a team. 

 

We apply the Trueskill rating system in horse racing in which there are n horses 

{ 1, …, n } in a race, and each horse forms a team with only one member. 

Let 𝑇 ∶=  {𝑇1, . . ., 𝑇𝑛 } 𝑎𝑛𝑑 𝑇𝑖  be the i-th team which has horse 𝑖 as the only team 

member so that 𝑇𝑖 ∩ 𝑇𝑗  =  ∅ for 𝑖 ≠  𝑗. We also let 𝑅 ∶=  (𝑟1, . . . , 𝑟𝑛)  be the result 

of each team in a race. If the i-th horse wins in a race, then 𝑟𝑖  =  1. Otherwise, 𝑟𝑖  =

 𝑖 if the i-th horse gets the i-th place in the race. 

 

As our goal is to estimate the skill level of horses, we would like to calculate the 

probability that the players have skill level S given the result of the race R and the 

team assignment T. From the training dataset, we have the race result given the team 

assignment T and skill level S. Therefore, we can obtain the probability 𝑃(𝑅| S, T) of 

the race with R as the race result and S as the skill level horse all participating horses. 
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Then, 𝑃(𝑆| 𝑅, 𝑇) can be obtained by Bayes’ rule, 

 

𝑃(𝑆| 𝑅, 𝑇 )  =  
𝑃(𝑅| 𝑆,𝑇) 𝑃(𝑆)

𝑃(𝑅 | 𝑇)
.                (8) 

 

We assume the skill level of each horse is a Gaussian distribution with parameters 𝜇𝑖 

and 𝜎𝑖 so that 𝑃(𝑆)  =   ∏ 𝑁(𝑠𝑖;  𝜇𝑖 ,𝑛
𝑖=1 𝜎𝑖). The race performance of each team 𝑇𝑖 is 

actually the race performance of each horse because every team has only one horse as 

a member. So, the race performance 𝑡𝑖 of 𝑇𝑖 is modeled as  𝑁(𝑝𝑖;  𝑠𝑖, 𝛽2). We then 

order the teams in ascending order based on their rank so that the order of teams is 

𝑟(1)  ≤  𝑟(2)  ≤ . . . ≤   𝑟(𝑛). As a result, the probability that the race has outcome R 

given the team T is the following, 

 

𝑃(𝑅 | 𝑇)  =  𝑃(𝑅 | {𝑇1, . . . , 𝑇𝑛 }) 

          =  𝑃( 𝑡1  >  𝑡2  > . . . >  𝑡𝑛) .             (9) 

 

Assume a very simple horse race with 3 teams and each team has only one horse so 

that 𝑇1  =  {1}, 𝑇2  =  {2} 𝑎𝑛𝑑  𝑇3  =  {3}. Also, team 1 is the winner while team 2 

gets the second place and team 3 gets the third place respectively. The joint 

distribution 𝑃(𝑆, 𝑡 | 𝑅 , 𝑇) can be represented by the factor graph below. 
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Figure 2. The factor graph describing the joint distribution 

 

In Figure 2, the gray circles indicate the variables, and the black squares show the 

factor nodes respectively. The joint distribution 𝑃(𝑆, 𝑡 | 𝑅 , 𝑇) is computed by the 

product of all the functions next to the factor nodes. The dependent relationships of 

the factors are reflected in the graph, and the graph structure is utilized for an efficient 

inference algorithm. 

 

As we have the joint distribution from the factor graph, we can get back the posterior 

distribution of the skill level of horses given R and T 𝑃(𝑆| 𝑅, 𝑇 ) by integrating the 

team performances  𝑡𝑖 which is the same as the individual horse performances, 

𝑃(𝑆 | 𝑅, 𝑇)  =  ∫ 𝑃(𝑆, 𝑡 | 𝑅, 𝑇) 𝑑𝑡
∞

−∞
.                (10) 
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In the factor graph, the results at the bottom will be used for the update in the 

approximate message passing part, and the update equations for each section are 

shown in Figure 3. 

 

Figure 3. The update equations for the factor graph [23] 
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2.1.3 Elo-MMR rating system 

The Elo-MMR rating system [24] is a novel Bayesian rating system that can be 

applied to multiplayer competitions with distinct ranks. In order to analyze and 

quantify the skill levels of horses, all ranking records of horses in the past races are 

aggregated together, and stronger horses that won consistently in the past will have a 

higher skill level. The experiments shown in the original paper give a more accurate 

result with a very efficient time complexity than the existing rating systems when the 

number of players is large enough. 

 

The Elo-MMR rating system is designed with clear goals. The first goal is to estimate 

accurate results in a time-efficient manner even though the size of the population is 

large. The second goal is to be incentive compatible. It means that horses’ ratings 

should not have opposite changes to their race performance. For example, the horse’s 

rating should not be escalated if it gets a place lower than it got in the last race or vice 

versa. The third goal is to provide a human interpretable rating that the overall skill of 

a horse can be encapsulated with a single number. One of the reasons for setting the 

above goals is to avoid complex mechanisms like the message passing in the 

TrueSkill rating system, which takes more time because the message passing process 

needs to iterate until convergence has no rigorous justification due to the complexity.  

 

Ultimately, the simplicity of the Elo-MMR system enables rigorous analysis of the 

massive, monotonic, and robust properties, as mentioned in its name. The massive 

property indicates that the computation time is scaled only linearly with the increasing 

size of the population. The monotonic property is equivalent to the incentive-

compatible property mentioned in its goal, meaning stronger horses are always 
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expected to have high ratings. The robust property sets a dynamic bound to the 

change of the horse’s rating so that volatile horses have a larger bound than those 

consistent horses. As a comparison, Elo-MMR should be better than the Trueskill 

rating system because the Trueskill rating system cannot meet the robustness 

requirement and intends to achieve the first two properties without rigorous 

justification. 

 

The races take place sequentially, and we denote the series of races as 𝑡 =   1, 2 , . . .,

𝑛. Then, we denote all horses in the race 𝑡 as 𝐻𝑡. The i-th horse’s skill level at race t 

is a real random variable denoted as 𝑆𝑖,𝑡. The performance of the i-th horse in race t is 

denoted as 𝑃𝑖,𝑡 and it should have a similar value to 𝑆𝑖,𝑡. We further assume that each 

horse's performance and skill level should be independent of its skill level. 

 

The ranking of the race t which is described as the evidence 𝐸𝑡 would be responsible 

for the Bayesian updates. As a result, Elo-MMR calculates the skill level of horse i in 

race t based on the entire ranking history before race t. 

According to the above notations, we can write the joint distribution described by Elo-

MMR below, 

 

𝑃(𝑆, 𝑃, 𝐸)  =   ∏ 𝑃(𝑆𝑖,0)𝑖 ∏ 𝑃(𝑆𝑖,𝑡 | 𝑆𝑖,𝑡−1)𝑖,𝑡 ∏ 𝑃(𝑃𝑖,𝑡|𝑆𝑖,𝑡𝑖,𝑡 ) ∏ 𝑃(𝐸𝑡  | 𝑃𝑡𝑡 ).  (11) 

 

The above equation includes one prior distribution and three models. 

⚫ 𝑃(𝑆𝑖,0) represents the initial skill level prior. 

⚫ 𝑃(𝑆𝑖,𝑡 | 𝑆𝑖,𝑡−1) represents the skill evolution model with previous skill levels as 

information. 
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⚫ 𝑃(𝑃𝑖,𝑡|𝑆𝑖,𝑡) represents the performance model with current skill level as 

information. 

⚫ 𝑃(𝐸𝑡 | 𝑃𝑡) represents the evidence model with performances of all participating 

horses as information. It is an indicator function that equals one if the relative 

order of performance of all horses in race t 𝑃𝑡 is same as 𝐸𝑡. Otherwise, it 

equals zero. 
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2.2 Transformer 

In horse racing, the winner is believed to be a relatively skillful horse that defeats the 

other somewhat weaker horses. Therefore, the dependencies between horses should be 

captured for comparison and prediction instead of independently treating horses in a 

single race. Our input is a long sequence of information about all horses in a race. We 

need a model that can handle sequence modeling and dependencies between the 

information in the input owing to its attention mechanism. Transformer turns out to be 

a proper network structure fulfilling our requirements and solves our problem more 

efficiently than the convolutional neural network and recurrent neural network. 

 

2.2.1 Transformer 

The transformer [25] has an encoder-decoder structure. The encoder in the 

transformer converts input sequences of discrete values to an intermediate sequence 

of continuous values. Then, the decoder makes use of the intermediate sequence to 

produce the tokens in the output sequence one by one because the previous token in 

the output is also the input for producing the next token. 
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2.2.2 Model Architecture 

 

Figure 4. The transformer architecture [25] 

In Figure 4, it shows the general structure of a transformer. It contains a stack of self-

attention and fully connected layers in the core components encoder and decoder. 

Details are explained in the later sections. 
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2.2.3 Encoder 

The encoder is formed by N exactly the same layers, while each layer in the stack can 

be further separated into two sub-layers. The input sequence is first embedded 

through an embedding layer to have dimension d for each token before entering the 

encoder stack. The input x of the layer enters the first sub-layer of the encoder stack, 

which is the multi-head attention mechanism. Then, the original input is added to the 

output of the multi-head attention mechanism, which is fed to the normalization layer, 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 +  𝑚𝑢𝑡𝑙𝑖 − ℎ𝑒𝑎𝑑_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥)). After that, the outcome of the 

normalization layer is passed to a fully connected feed-forward layer, and the residual 

connection is again employed here so that the normalization layer following the feed-

forward layer is 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 +  𝑓𝑒𝑒𝑑_𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥)). 

 

2.2.4 Decoder 

The decoder is the same as the encoder, except it has additional multi-head attention. 

A mask is introduced to the first multi-head attention in the decoder stack. The 

modification aims to prevent positions from attending the unread positions and ensure 

output at position k can only reference the output before position k. 
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2.2.5 Attention 

In an attention function, the input consists of three vectors: query, keys, and values. 

Query and keys together undergo a compatibility function to give the weights. Then, 

the weights are combined with the values to produce the output, a weighted sum of 

the values. 

 

2.2.6 Scaled Dot-Product Attention 

Query and keys both have dimension k, while the values have dimension v. The 

weights of values are computed by feeding the division of dot products of the queries 

and keys by the square root of k to a SoftMax function. Generally, the output is 

generated with the following formula: Q is the matrix of a set of queries, K is the 

matrix of a set of keys, and V is the matrix of a set of values. The diagram describing 

the scaled dot-product attention is shown in Figure 5. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑘
)  ∙  𝑉                       (12) 

 

 

Figure 5. Scaled Dot-Product Attention [25] 
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2.2.7 Multi-Head Attention 

We take an approach alternative to inputting the original queries, values, and keys into 

the single attention function. The queries, keys, and values of dimension d are linearly 

projected to h different versions of queries, keys, and values with dimensions k, k, and 

v respectively. These different versions of queries are parallelly processed with the 

Scaled Dot-Product Attention. Each of them will produce the values vectors of 

dimension v. Finally, we concatenate the values outputted from the Multi-head 

attention, and they are projected as the final values. The following functions 

mathematically describe the process. The diagram depicting multi-head attention is 

shown in Figure 6. 

ℎ𝑒𝑎𝑑𝑖  =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) for i = 1 , … , h, (13) 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉)  =  𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ) ∙  𝑊𝑂. (14) 

 

 

Figure 6. Multi-head Attention [25] 
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The attention mechanism helps us capture the dependencies between horses because 

the self-attention layers in the encoder allow each position in the encoder to attend to 

every position in the former layer of the encoder. 

 

2.2.8 Positional Encoding 

The information regarding each information's relative and absolute position in the 

sequence is inserted because the Transformer does not have recurrence and 

convolution. Therefore, positional encodings of dimension d are added to the 

embeddings of the input before it enters the stacks for preserving the ordering and 

position information. It uses two different functions for encoding the odd and even 

dimension position. 

Let 𝑖 be the dimension and 𝑝𝑜𝑠 be the position, 

𝑃𝑜𝑠𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑝𝑜𝑠, 2𝑖 + 1)  =  𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑),   (15) 

 

𝑃𝑜𝑠𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑝𝑜𝑠, 2𝑖)  =  𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑).       (16) 
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2.3 Evaluation Strategies 

We want to evaluate the model in the profit-making and accuracy aspects after 

experiments on the horse racing datasets. We propose the following strategies to 

decide the performance and effectiveness of adapting the transformer model with the 

rating of horses as a replacement of win odds in the input. 

2.3.1 Random betting (Profit-making Aspect) 

We randomly select a horse number from all the participating horses in random 

betting. If the chosen horse wins, we get back our bet multiplied by the win odd of the 

winning horse. Otherwise, we lose our chance. It is assumed to be the worst betting 

strategy because no knowledge is learned from the data before making the prediction. 

2.3.2 Lowest Odds betting (Profit-making Aspect) 

In Lowest odd betting, we always guess the horse with the lowest win odds as the 

winner. If the prediction is correct, we gain the amount of bet times the win odd of the 

winning horse. Otherwise, we lose our bet. It is believed that the lowest odd betting is 

much better than random betting because the win odds of horses change according to 

public opinion due to pari-mutuel betting, and thus it reflects the public intelligence. 

As the public uses their knowledge and experience from the former races in making 

the prediction, we assume this strategy surpasses random betting. 

2.3.3 Multilayer Perceptron Prediction (Accuracy 

Aspect) 

The multilayer perceptron consists of multiple fully connected feed-forward layers is 

a simple structure of the neural network for making the prediction. No specific 
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assumption is made about the input properties, and we think it should have lower 

accuracy than our model. 

2.3.4 Transformer without Rating in the Input (Accuracy 

Aspect) 

From the study of previous FYP students, the win odds of horses are the essential 

features in making the prediction [9]. Since we use the ratings of horses to replace the 

win odds, we want to show that the ratings are equivalent to the win odds that they 

could boost the accuracy of the prediction.  
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Chapter 3 

Data Preparation 

3.1 Data Collection 

Although past horse racing records could be bought directly via websites hosted by 

companies such as https://horseracedatabase.com/ and https://www.hkhorsedb.com/, 

which has a database storing the historical data, we prefer to collect the data by 

ourselves because of the high prices. 

 

In addition to the financial consideration, writing web crawlers to collect data by 

ourselves provides us more flexibility in the choice of data because we are free to 

retrieve the data that we want by simply configuring our web crawler. In this project, 

a web crawler was written for collecting data on the HKJC official websites within a 

given period. The user can specify the start date and end date so that the crawler will 

automatically collect the horse race record and horse information from the start date 

to the end date automatically. 

 

3.2 Data Description 

There is a total of 9191 race records in our dataset dated from June 6, 2008 to 

October, 17 2021. Every row is a race record storing the attributes of a race such as 

the venue, class, and distance. All races were hosted by the HKJC and took place in 

Hong Kong. The information about the horses that appeared in the race records was 

also collected from the HKJC official database. 

 

https://horseracedatabase.com/
https://www.hkhorsedb.com/
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3.2.1 Racing Record 

Table 3 below shows the features of our race record and their detailed information. 

 

Feature Description Types Values 

Date Date of the race Index - 

Race_id The id of the race Index - 

Venue Location of the race Categorical  - 

Season_race_no The number of races in 

the season 

Categorical In range [ 1 , 

800] 

Horse_class Class of the horses 

Stronger horses 

compete in high race 

class 

Categorical 1 - 5 

Distance The distance of the race Categorical 1000, 1200, 

1400, 1600, 

1650, 1800, 

2000, 2200, 

2400 

Going Condition of the lane Categorical >= 10 distinct 

values 

Course_track The lane of the race Categorical A, A+3, B, B+2, 

C, C+3 

Course_track_code Description about the 

lane 

Categorical TURF, ALL 

WEATHER 

Horse_i_place The rank of horse i in a 

race 

Categorical 14 distinct 

values 

Horse_i_number The number of horse i 

in a race 

Categorical 14 distinct 

values 

Horse_i_name The name of horse i Categorical > 5000 distinct 

values 

Horse_i_jockey The name of jockey Categorical > 200 distinct 

value 

Horse_i_trainer The name of trainer Categorical > 200 distinct 

value 

Horse_i_actual_weight The total weight of 

horse i and gears 

Float - 
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Horse_i_declared_weight The weight of horse i Float - 

Horse_i_finish_time The time when horse i 

finishes the race 

Float - 

Horse_i_win_odds The win odd of horse i Float - 

Table 3. Feature description of race records 

 

3.2.2 Horse Information 

Since the horse’s information was a helpful indicator of the horse’s performance in a 

race, we gathered 6642 horses that all participated in the races recorded in our dataset 

for making a comparison between horses in a particular race. Table 4 shows the traits 

of a horse in our horse dataset. 

Feature Description Types Values 

Horse_origin The place of birth Categorical >10 distinct 

values 

Horse_age The age of horse Categorical In range [3, 10] 

Horse_color The color of skin Categorical >6 distinct 

values 

Horse_sex The gender of horse Categorical Colt, Gelding, 

Mare etc. 

Horse_1st_place_frequency The frequency of 

getting 1st place 

Categorical In range [0,20] 

Horse_2nd_place_frequency The frequency of 

getting 2nd place 

Categorical In range [0,30] 

Horse_3rd_place_frequency The frequency of 

getting 3rd place 

Categorical In range [0,30] 

Horse_total_race The total count of 

horse’s participation 

Categorical In range [0,100] 

Horse_sire Name of horse’s 

father 

Categorical - 

horse_dam Name of horse’s 

mother 

Categorical - 

horse_dam's_sire Name of horse’s 

maternal grandfather 

Categorical - 

Table 4. Feature description of horse records 
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3.3 Data Analysis 

Among all the features describing races and horses, it is believed that not all features 

are equally important in predicting a horse’s performance. Therefore, we would like to 

study the influences of features on the result of races. In the data analysis, we first 

investigate the distribution of the selected categorical feature given the winning 

horses and then look at the likelihood 𝑃(𝑋 = 𝑥 | 𝑌 =  𝑦) where 𝑥 is the selected 

categorical feature and 𝑦 is the winning horse. Then, we examine the performance of 

horses by the correlation between numerical features, especially the finish time and 

win odds as a horse usually performs well if it finishes the race in a shorter time and 

has a low win odd. Finally, we want to improve the accuracy of our model and speed 

up the training process so we carry out feature selection to eliminate unrelated 

features and noises. 
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3.3.1 Categorical Features 

3.3.1.1 Age 

 

Figure 7. The distribution of age given the winning horse 

 

Our data demonstrate the declining performance of horses with increased age, as 

shown in Figure 7. Among all the winning horses, more than 50% are horses aged 

between 5 and 6 as horses’ optimal body weight and skeleton are reached at 4 or 5 

years old [26]. The number of winning horses decreases substantially after the age of 

5. It implies that the overall performance of the majority of horses reaches its peak 

when they are 5 or 6 years old and then declines due to the decrease in stamina, speed, 

and power bought to aging. The horses aged between 3 and 4 accounts for 

approximately 11% of the winning horses. One explanation for fewer winning horses 

of lower age is that they have not joined enough competitions to be very skillful, and 
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they are still growing.  

 

Figure 8. The distribution of winning horses given age 

 

Although the likelihood tends to choose horses aged between 5 and 6 to be winners, 

we observe that horses have a similar probability of winning at around 10% for all 

ages except 3, shown in Figure 8. It suggests that the winning condition cannot be 

determined solely by the age of an individual horse. 
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3.3.1.2 Origin 

 

Figure 9. The distribution of origin given the winning horse 

 

Most winning horses were born in Australia or New Zealand, as shown in Figure 9. It 

reflects that horses born in Australia or New Zealand usually perform better than 

horses from other countries. This information is useful when we want to do a simple 

classification to identify all horses with various origins in a single race into two 

classes that are likely and unlikely to win. In this situation, horses from Australia or 

New Zealand will be classified as possible to win, while horses from other countries 

will be classified as unlikely to win. 
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Figure 10. The distribution of the winning horse given origin 

 

Since most horses in horse races are imported from Australia and New Zealand, this 

may bias the winning distribution that horses from Australia and New Zealand are 

usually winners. After conditioning the winning probability by the origin, we see 

horses from the Republic of Zimbabwe and República de Chile. Nevertheless, the 

number of horses coming from the Republic of Zimbabwe and República de Chile is 

tiny, while the number of horses from Australia and New Zealand is huge. Figure 10 

shows that horses Australia and New Zealand are still likely to be the winner in the 

actual case compared to other countries except for the Republic of Zimbabwe and 

República de Chile. 

 

 

 

 



46 
 

3.3.1.3 Color 

 

Figure 11. The distribution of color given the winning horse 

 

More than 65% of winning horses have skin color Bay as shown in Figure 11. The 

second most color is Chestnut with 17%. The remaining colors like Brown, Grey, 

Dark, Roan, and Black only constitute a small portion of the winning horse. The 

extensive distribution of color Bay in the winning horse suggests that color would be 

a good choice for being the early decision boundary in machine learning methods that 

adopt the greedy approach such as decision tree. 
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Figure 12. The distribution of the winning horse given color 

 

When the winning probability is conditioned on the color, the advantage of horses 

with the color Bay loses while those colors which are less likely to appear in winning, 

such as Dark and Roan horses surpass. Also, the winning probability of a horse with 

the color Bay is the second-lowest in Figure 12, and it implies that our observation 

from Figure 11 is biased as a large portion of horses in horse races have skin color 

Bay. 

 

 

 

 

 

 



48 
 

3.3.1.4 Sex 

 

Figure 13. The distribution of sex given to the winning horse 

 

The sex Gelding dominates the likelihood distribution of sex in winning horses. Over 

97% of winning horses with sex Gelding, as shown in Figure 13. The sex Horse and 

Brown only constitute a tiny portion of the winning horse with approximately 3% in 

total. This likelihood is highly biased because almost all horses in a horse race have 

Gelding, and therefore this feature should have extremely few impacts on the race 

result. 
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Figure 14. The distribution of winning horse given sex 

 

The conditional probability of winning given the sex of the horses confirms our 

assumption that the horse with the sex Gelding is the most likely the winner is flawed 

because the chance of winning given the sex is Gelding has a similar value to the 

probability of winning given other sex. From Figure 14, we are more confident that 

the horse with sex Horse will win the race as it has the highest conditional probability 

of winning among all horses of other sex. 
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3.3.1.5 Draw 

 

Figure 15. The distribution of draw given the winning horse 

 

Horses with smaller draw numbers are considered to be opportune in horse racing 

because they are arranged towards the center of the circular track, as shown in Figure 

15. The running distance of those horses is thus relatively shorter than horses with 

more significant draw numbers, which means horses with smaller draw numbers need 

a shorter time in finishing the race. Our data agrees with our assumption about the 

advantage of smaller draw numbers since there is a declining proportion of winning 

horses with increasing draw numbers. 
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Figure 16. The distribution of the winning horse given the draw 

 

The conditional probability of winning given the draw has a similar shape to the 

possibility of draw given the winning horses as shown in Figure 16. Hence, the fact 

that the horses with a smaller draw number are more likely to be the winner is 

assured. However, the horses with a large draw number also win in some races so the 

other factors should be considered in determining their winning probability.  
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3.3.2 Numerical Features 

 

 

Figure 17. The correlation matrix of numerical features 

In analyzing the numerical features, we investigate the correlation between each pair 

of horse features in our dataset from Figure 17. The cell of darker color in the 

correlation matrix implies a stronger correlation or vice versa. Some essential horse 

features that strongly influence the result of a race are selected for the following 

discussion. 
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3.3.2.1 Frequency of 1st Place 

We examine the row of feature frequency of 1st place, which counts as a winner in a 

race. It has a significant correlation with the frequency of 2nd place and 3rd place, 

which are 0.4500 and 0.4468 respectively. As the correlation coefficients are positive, 

it infers the positive relationship between the frequency of 1st place, 2nd place, and 3rd 

place. The relationship matches our expectation that a horse with good performance in 

the past, getting first three places in the past race, often performs well in the next race. 

Notice the negative correlation of -0.1882 between the frequency of 1st place and the 

win odds. The public has the same opinion about the consistent performance of horses 

in future races, so they tend to bet the horse with a large count of 1st place, and it 

results in a lower win odds of the horse owing to the pari-mutuel betting system. 

Besides, the consistent performance is proven by the negative correlation of -0.1980 

between the count of 1st place and the horse's places in races. 

 

3.3.2.2 Finish Time 

The finish time measures horse performance since we assume a stronger horse will 

finish a race in a shorter time. This motivates us to examine the correlation between 

the finish time and other horse features. A negative correlation of -0.1547 between 

finish time and declared weight is shown in the correlation matrix. The handicapping 

policy by the HKJC adds weights to well-performed horses, and the declared weight 

is increased so that the chances for horses of worse performance are increased [11]. 

Our data shows that the policy is not effective enough because the well-performed 

horses with more declared weights still have a shorter finish time. On the other hand, 

there is a positive correlation of 0.1695 between the finish time and the age. This 
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agrees with our analysis of the age of horses that the performance of horses declines 

with age. 

 

3.3.2.3 Win Odds 

The win odds of horses reveal the general guess of the public since the win odds of 

horses change with the amount of bet. The more popular the horse, the lower the win 

odds of the horse. From the correlation matrix, win odds have negative correlations of 

-0.1882, -0.1979, and -0.1868 between the frequency of 1st place, 2nd place, and 3rd 

place respectively. This implies that the frequency of 1st place, 2nd place, and 3rd place 

guides the public to decide. The larger the number of this statistic, the lower the win 

odds. Another discovery is the positive correlation of 0.4291 between the win odds 

and the place. This shows that public intelligence is accurate in some sense. For 

example, if the public does not think the horse will win, they will not bet on it, and the 

hose will have very high win odds. If the public intelligence is accurate enough, the 

horse with a high win odd should not perform well and get a small number. 
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3.4 Data Preprocessing 

The raw data scraped from websites are not clean and well organized, so they should 

be preprocessed into a desirable format before feeding them into our neural network 

models. We had done the following four steps data imputation, data encoding, input 

normalization, and rating generation on our dataset before starting the experiments. 

 

3.4.1 Data Imputation 

In the data collection process, we inevitably encounter network errors such as link rot 

or an unresponsive server, especially when the target data is old. This happened when 

we collected the data of some retired horses that took part in the races before 2010. 

Hence, our data set is missing a small part of horse data about those retired horses. 

However, omitting or removing the horse records with missing information is 

unadvisable. The records may affect the quality of the knowledge extraction 

procedure, and biased estimation would be made when doing the analysis [27]. 

 

Addressing the missing information, we decided to do data imputation on our dataset 

using the k nearest neighbors method. First, we extract all complete horse records 

without missing values. Then, we place the missing value in an incomplete record by 

looking for its k nearest neighbors in the complete horse records. The value filled in 

the missing part will be the mean of neighbors if the type of feature is numerical. 

Otherwise, we do a majority vote on the neighbors and place the most common 

categorical value in the missing part [27].  

 

Instead of implementing the k nearest neighbors, we invoked the KNN Imputer from 

the Scikit Learn library to ensure simplicity and correctness. 
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3.4.2 Data Encoding 

The input of our neural network models must be numerical, but some of our data are 

categorical. For instance, the horse’s name, jockey name, distance, and course track 

are categorical values. For this reason, we need to transform our categorical data into 

numerical by data encoding. 

 

A straightforward method is converting the categorical data in the form of one-hot 

encoding in which we use k binary features to represent a categorical feature of 2k 

classes. The value of the binary feature is either 1 or 0. However, the dimension of our 

input will be increased drastically for representing all categorical data, and it requires 

extra memory and more computational time for the training [28]. The principal 

component analysis is a possible solution to the expansion of dimension caused by 

one-hot encoding because it can reduce the data dimension while preserving the 

variance of data points. 

 

The ordinal Encoding scheme is also a good option for our data as we do not want 

additional memory usage and extra computational time due to the one-hot encoding. 

In this scheme, a unique integer means a category, and no new columns are added, so 

the data dimension is the same as the original. Furthermore, the order of ordinal 

variables is preserved in this scheme [29]. For example, the feature place has 14 

classes representing the ranks of horses in a race. We encode the horses of higher rank 

with a smaller integer to preserve the ranking order. 
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3.4.3 Normalization 

Normalization of the input was done before the training of our models. It was shown 

that the normalization of input data can produce a better result and speed up the 

training process. On the one hand, values of all variables are scaled to have the same 

range, which saves the effort for backward propagation in changing the weight of 

variables. On the other hand, the same scale of all variables balances the focus of 

error minimization in the weight correction algorithm, so that importance of variables 

is distributed evenly to avoid bias [30]. 

 

We use z-score normalization which takes the mean and standard deviation of each 

feature in the column direction of our input vector and uses that information to 

compute the values for the corresponding feature. The formula is shown below, 

 

𝑥𝑖
′ =

𝑥𝑖−𝑥�̅�

𝜎𝑖
.                           (17) 

          

where 𝑥𝑖
′ is the computed value, 𝑥�̅� is the mean of the feature and 𝜎𝑖 is the standard 

deviation of the feature. 
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3.4.4 Rating Generation 

Rating the horse's performance is one of the focuses of this project. Nonetheless, the 

ratings mentioned in the methodology do not exist on the HKJC websites, and we 

need to calculate those ratings with the information provided by our dataset. 

 

In rating generation, we mapped horse records to race records under the guidance of 

the horse names in race records so that we obtain the race records with horse records 

ordered from 1st place to the last place. Then, we reformatted each record into a JSON 

file and named each file with a number. The smaller the number, the older the race. 

After that, we invoked a rating computation library [31] and used all JSON files as the 

input. Then we had a list of horses with their rating in each race which was then 

merged into our original dataset. The list of JSON files is shown in Figure 18. The 

content of the rating file for each horse is shown in Figure 19. 

 

 

Figure 18. The list of JSON files for rating computation 
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Figure 19. The rating of the horse 
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3.5 Feature Selection 

As the data dimension is large, the number of parameters increases, and the time for 

training parameters in the model is expensive. Furthermore, irrelevant features in the 

data are noises that cause the model to consider irrelevant information and harm the 

neural network's performance [32]. Feature selection is used to reduce the dimension 

of the data so that a small but sufficient subset of features becomes the input of the 

model to achieve a shorter learning time and higher accuracy. 

3.5.1 Random Forest 

A measure of the feature relevance is needed to filter out unnecessary features with 

low relevance scores. The random forest classifier combined with the Gini index 

could estimate the feature relevance because the changes of Gini impurities due to a 

feature indicated the importance of the feature [33]. The higher the increment in the 

leaf’s purity, the more the relevance of the feature. This enables an explicit feature 

elimination based on the changes in the leaf’s purity and results in using a small 

subset of significant features only. 
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Figure 20. Accuracy versus Number of Trees in Random Forest 

 

The random forest classifier must be trained first before viewing the Gini feature 

importance associated with it. However, the accuracy of the random forest classifier 

varied with the number of trees, and we believe that the classifier with the highest 

accuracy could provide a more precise estimation of the feature relevance. In Figure 

20, the random forest classifier has the highest accuracy of 19.3% when there are 560 

decision trees, and the Gini feature importance of this classifier is picked to be an 

indicator of feature relevance.  
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3.5.2 Importance of Features 

  

Figure 21. Gini Feature Importance 

 

The Gini feature importance shown in Figure 21 is extracted from the random forest 

classifier and arranged in descending order. Ratings, declared weights, the total 

number of winning a race, and the frequency of getting the first places are essential 
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among all the features in the input data, and they are candidates to be kept in the 

feature selection.  

 

 

Figure 22. Accuracy of Random Forest with n Most Important Features 

 

Determining the number of the most important features kept for in the input of our 

neural network, we investigate how the accuracy changes with a varying number of 

features. In Figure 22, The random forest classifier reaches its maximum accuracy 

when the number of features is around 50, and the accuracy remains more or less the 

same after it. So, only the 50 important features are kept in the input of the neural 

network, and other features are eliminated if we want to speed up the training or lack 

memory in training. 
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Chapter 4 

Methodologies 

4.1 Overview 

 

The win odds capture the relative expected performance of horses in a race because 

bettors tend to bet on a relatively more robust horse, and the pari-mutuel betting 

setting will therefore decrease the win odds of the horse with better-expected 

performance. Moreover, previous final year project, students in LYU1805 illustrated 

the significance of win odds in horse race prediction [10]. Finish time is also an 

important metric to evaluate the relative performance of horses since stronger horses 

can finish the race in a shorter time. However, both win odds and finish time should 

be excluded from the feature list because we cannot obtain accurate win odds until the 

start of the race owing to the dynamic nature of win odds, and we do not know the 

finish time of horses when we predict new races. Therefore, we decide to find another 

metric to help us figure out the relative performance of horses.  

 

Rating systems estimate the relative skill level of horses based on their historical 

performance. As we can quickly assess a horse’s past racing record from the HKJC 

website, we apply rating systems here to calculate the relative skill point of horses, 

and we wish the ratings could replace the effect of win odds in our prediction.  

 

Rating systems have different underlying assumptions in calculating the relative skill 

point. We want to see which rating system best represents the relative skill point of 

horses, so we will experiment with three different rating systems and find the one that 
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produces the best result. 

 

Besides the relative skill level of horses, win odds also rely on the dependencies 

between horses’ attributes. The attributes of horses in a race are not independent in 

our context, and thus the probability of winning for each horse should be conditioned 

on the attributes of all participating horses. Simple models such as linear regression 

and a single decision tree are not suitable for this problem because the relationships 

between the attributes of horses are sophisticated and cannot be easily captured by 

these simple models. So, models that can learn complex non-linear relationships and 

are dedicated to referencing all attributes of horses in estimation should be selected 

for the prediction. Multilayer perceptron and transformer are chosen to be the models 

for this consideration. 

 

Therefore, we will experiment with the combinations of rating systems and the 

selected neural network architectures to see whether they can compensate for the 

exclusion of win odds in prediction. Then, we will compare the results of different 

combinations and evaluate their performance by using the evaluation strategies 

proposed in section 2.3. 

 

A customized embedding scheme named Horse Token embedding scheme is designed 

to encapsulate the horse attributes better and improve the model accuracy in the 

second stage of the project. The impact of the embedding scheme on the prediction is 

evaluated by comparing the preciseness of the predictions before and after applying 

the embedding scheme to the best model selected through the model comparison in 

the first stage of the project. The methodology diagram is shown in Figure 23. 
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Figure 23. The diagram describing the methodology 
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4.2 Horse Attributes Embedding Scheme 

In the first semester, every input was embedded as a text sentence, and every feature 

was converted as a word representation with the word embedding layer provided by 

PyTorch before entering the transformer encoder. This simulation of mimicking a race 

as a sentence and a feature as a word is retained but with a customized embedding 

scheme which produces better results. 

4.2.1.1 Word Embedding Layer from PyTorch 

 

Figure 24. The Interface of Word Embedding Layer from PyTorch [34] 
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In order to feed the input data into the word embedding layer from PyTorch [34], all 

features have to be first encoded into an integer value according to the ordinal 

encoding scheme. Every integer is treated as a word, and distinct integers represent 

different words. Suppose every input has n features and m is the expected dimension 

for each word, the input of the embedding layer is thus a sequence of integers with the 

length equal to n and the output of the layer is a matrix of size n x m so that m real 

values describe every word/feature. The details of the word embedding layer from 

PyTorch are shown in Figure 24. 

4.2.1.2 Appropriateness of Word Embedding Layer for 

Horse Racing Data 

From the perspective of the word embedding layer, it expects different integers 

represented distinct words from a bag of words. The information about the 

inequalities of numbers in the original data may lose after converting the data into 

sequences of words drawn from a bag of word because a bag of words does not 

characterize the relationship between numbers or words. For example, the original 

input contains the declared weights shown in Figure 25 with values 1098, 1103, 1331, 

etc. They may be encoded into integers of values 1, 2, 3 before feeding them into the 

embedding layer. We knew that 1331 is much greater than 1103 and 1098 is slightly 

smaller than 1103 but this relationship may not be well captured after embedding 

since 1 and 3 are expected to have equal distance from 2. 

 

Also, the data contains the finishing time in types of real values, and it is 

unreasonable to encode real values into distinct integers and treats them as words. For 

example, it is not sensible to encode the real values 50.5, 51.0, 55.5, …. into integers 
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1, 2, 3, …. as the distance relationship is not preserved, and every real value must 

occupy as a unique word which hugely increases the size of the bag of words. 

Therefore, the word embedding layer is not appropriate for horse racing data. 

 

Figure 25. A Subset of Input Features  

4.2.2.1 Word Embedding Simulation by Horse Token 

As the word embedding layer is inappropriate for horse racing data, the embedding 

scheme is customized to suit the data. The input of the neural network was initially 

been a sequence of words, but it is now a sequence of horse tokens. The main idea of 

horse token generation is that some real values describe both horse tokens and words 

after embedding. A comparison between word embedding and horse token generation 

is provided as follows. 
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Figure 26. Example of Word Embedding [34] 

 

Suppose a sequence of 4 words encoded as a sequence of integers 1 ,2 ,4, 5 is 

embedded with the word embedding layer and the embedding dimension is 3 as 

shown in Figure 26. Then, the output of the embedding layer is a matrix of size 4 x 3 

such that each row represents a word, each column represents a dimension of the 

words, and each element is a real value. 

 

Figure 27. Example of Horse Tokens 

Similarly, suppose there is a horse race with only 4 horses, and we want the output of 

our customized embedding to be a sequence of 4 horse tokens. Each token has 3 

dimensions so that 3 real values describe every horse token as the matrix shown in 

Figure 27. 
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4.2.2.2 Horse Tokens Generation by PCA 

In the generation of horse tokens, the horse racing dataset consisting of 9191 races is 

partitioned into 14 matrices. The matrix 𝑖 contains only attributes of the horse with 

number 𝑖 in all 9191 races and the size of the matrix was 9191 x 𝑛 where 𝑛 is the 

number of attributes. Principal component analysis (PCA) is utilized to reduce the 

dimensionality of every matrix from 𝑛 to 𝑚. The generation process is illustrated in 

Figure 28. 

 

All 14 matrices are concatenated horizontally after PCA so that a matrix of size 9191 

x 14 x 𝑚 is obtained. The first dimension is the index for the race, the second 

dimension is the index for the horse token and the third dimension is the index for real 

values which describe the token. 

 

 

Figure 28. Horse Tokens Generation by PCA 
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4.3 Model Design 

4.3.1 Multilayer Perceptron Classification 

The number of classes in our multilayer perceptron equals the number of horses in the 

race. For instance, there will be 14 classes if the race has 14 participating horses, and 

each class corresponds to a horse number. The input is a race record joined with horse 

records according to the horse names listed in the race record. The neural network's 

output is a vector consisting of the values resembling the probabilities of winning 

horses, and classification is done based on these values. If the horse with horse 

number 7 wins the race and our multilayer perceptron predicts it correctly by giving it 

the highest value in the vector, the model assigns this input to class 7. 

 

The multilayer perceptron has a total of 5 linear layers. The first linear layer is the 

input layer that takes the input vector's values. There are 3 hidden linear layers with a 

number of neurons in the range of 100 – 400 to increase the model's sensitivity in the 

learning process [35]. The output of each hidden linear layer has to be passed through 

the ReLU activation function, which determines the activity of the neurons. For the 

second and third hidden layers, dropout layers are inserted for regularization, which 

helps the model avoid overfitting by randomly losing connections between neurons in 

the training process [36]. The last linear layer is the output layer storing the outcome. 

We pick the cross-entropy function and stochastic gradient descent as the model’s loss 

function and optimizer. The diagram of the model is shown in Figure 29. 
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Figure 29. The Multilayer perceptron architecture 
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4.3.2 Transformer Classification 

As our ultimate goal of designing two neural network models is to compare the effect 

of using different neural network architectures in horse racing prediction, we decide to 

have a similar setting regarding the input and output in the transformer model as the 

multilayer perceptron. Therefore, the input of the transformer classification is joined 

by race records and horse records, and the output is the horse number belonging to the 

winning horse. 

 

The transformer model does not use the decoder [25] mentioned in the original paper 

because the output of our classification problem is a single number instead of a 

sequence. We partition our model into three stages. The first stage is about the data 

formatting of the input vector. We use an embedding layer to increase the dimension 

of each feature which mimics the word embedding in natural language processing. 

Then, we use a position embedding layer to remember the position of each feature as 

the position is meaningful in our input data which features of one horse are in closer 

distance than other features. Next, the processed input enters the encoder of a 

transformer to learn the dependencies between features. The output of the encoder is 

sent to a simple, fully connected feedforward network consisting of 2 hidden linear 

layers and an output layer. We pick the cross-entropy function and stochastic gradient 

descent as the model’s loss function and optimizer. The diagram of the model is 

shown in Figure 30. 
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Figure 30. The Transformer architecture 
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Chapter 5 

Experiments and Results 

Our experiment has two phases. In the first phase, we have trained three models with 

changes in input features and the neural network architecture. The first model is the 

multilayer perceptron classification model with inputs including ratings. The second 

model is the transformer classification model with inputs excluding ratings. The third 

model is the transformer classification model with inputs including the rating. We 

want to study whether the third model achieves a better result. Therefore we use the 

results of the first and the second models to be the reference when evaluating the 

performance of the third model. After the model selection, we figure out the more 

appropriate embedding scheme among the word embedding and horse token 

embedding through their performance on the best model found in the first stage.  

 

5.1 Input Data 

We separate the most recent 688 horse races between 9 December 2020 and 10 

October 2021 from our original horse race dataset for testing. The remaining 8503 

horse races are used in the training process. Splitting the training data and testing data 

randomly is inappropriate in our context because we are more interested in correct 

predictions of new races, and the past races having retired horses should not be 

involved in the test data when we want to evaluate the performance of our models in 

predicting the new races. 

 

We formulate each race as a single input after data preprocessing, as shown in Table 

5. All information about a race, including the track's conditions, attributes of horses, 
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and ratings, are packed into a row in our input matrix. This ensures that the neural 

network receives sufficient data when predicting the winning horse in a race. For 

further comparison of different combinations of neural network architectures and data, 

a few columns in the input matrix are discarded to study the effect of the discarded 

features. 

 

Feature Description 

Venue Location of the race 

Horse_class Class of the horses 

Stronger horses compete in high race class 

Distance The distance of the race 

Going Condition of the lane 

Course_track The lane of the race 

Course_track_code Description about the lane 

Horse_i_number The horse number in the race 

Horse_i_name The name of horse  

Horse_i_jockey The name of jockey 

Horse_i_trainer The name of trainer 

Horse_i_declared_weight The weight of horse  

Horse_i_origin The place of birth 

Horse_i_age The age of horse 

Horse_i_color The color of skin 

Horse_i_sex The gender of horse 

Horse_i_1st_place_frequency The frequency of getting 1st place 

Horse_i_total_race The total count of horse’s participation 

Horse_i_rating The rating of the horse 

Table 5. The schema of the input data 
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5.2 Model Comparisons 

This section evaluated several combinations of models and rating systems to find the 

best model and ratings input in the horse racing context. The performance evaluation 

was based on the strategies proposed in chapter 2.3, which mainly focused on the test 

accuracy and profits in betting simulation. 

5.2.1 Multilayer Perceptron 

5.2.1.1 Accuracy 

 

Figure 31. The loss of multilayer perceptron on test data 

 

In Figure 31, this graph shows the average loss of all batches on the test data with 

respect to the training epoch number. Three curves represent the average loss of the 

models with different ratings in the input. In the graph, we see that the average loss of 



79 
 

all three models has a general decreasing trend from epoch number 1 to epoch number 

17. The multilayer perceptron with Elo-MMR rating input has a low average loss at 

epoch number 18. The multilayer perceptron with Glicko ratings as input has a low 

average loss at epoch 18. The multilayer perceptron with the TrueSkill rating as input 

has a low average loss at epoch 17. After epoch number 18, the average loss of all 

three models increases remarkably, indicating the overfitting. The model with the Elo-

MMR rating as input has the highest average loss among the other models, while the 

model with the Glicko rating as input has the lowest average loss among the other 

models. 

 

Figure 32. The accuracy of multilayer perceptron on test data 

 

We observe the testing accuracy in Figure 32. We notice that the testing accuracy of 

all three models keeps dropping after the epoch number 17. This is because the 

models overfit, as reflected in Figure 32. The model with the Glicko rating reaches the 
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highest test accuracy of 20.4%, while the model with the Elo-MMR rating has the 

lowest accuracy among the other models. This is related to the same pattern in the 

graph of average loss in Figure 32. We can also see that the model's accuracy with 

Glicko fluctuates in a larger range than that with Elo-MMR and TrueSkill because the 

Glicko rating is dedicated to 2 player games while Elo-MMR and TrueSkil ratings are 

dedicated to multiplayer games. 

5.2.1.2 Betting Simulation 

 

Figure 33. The betting simulation of multilayer perceptron on test data 

 

We use the prediction of the betting models and show the result in Figure 33. In our 

betting simulation, all three models perform better than random betting. The model 

with the Elo-MMR rating has a similar performance as the lowest odd betting, 

reflecting public intelligence. This means that the Elo-MMR rating is comparable to 
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the win odds in betting guidance. However, none of the models can give us a positive 

net gain. 
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5.2.2 Transformer classification without Ratings 

5.2.2.1 Accuracy 

 

Figure 34. The loss of transformer on test data without rating 

 

In Figure 34, this graph shows the average loss of all batches on the test data with 

respect to the training epoch number. In the chart, we see that the average loss of this 

model has a general decreasing trend from the start to epoch number 8. After epoch 

number 8, the average loss of the model increases remarkably, which indicates the 

overfitting. We observe that this model reaches the converges earlier than multilayer 

perceptron models. The transformer classification model is more complex than the 

multilayer perceptron and it learns faster. 
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Figure 35. The accuracy of transformer on test data without rating 

 

We examine the testing accuracy in Figure 35. We see that the testing accuracy of this 

model is in the range of 17% to 20% for epoch numbers larger than 3. The reason for 

considering the test accuracy after epoch number 3 is that the model is learning, and 

its average loss on test data has not reached the minimum before epoch number 3. 

From the implication of the average loss in Figure 34, the best performance of this 

model has 19.2% at epoch number 6. 
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5.2.2.2 Betting Simulation 

 

Figure 36. The betting simulation of transformer on test data without rating 

 

We use the prediction of the transformer model to guide our bet on the test data. 

Figure 36 reveals the performance of this model in the profit-making aspect. Our test 

data shows that the net gain is -4% after betting on all 688 races. The performance of 

this model in betting is better than the multilayer perceptron, which has -13% as the 

highest net gain with the Elo-MMR rating included in the input. 
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5.2.3 Transformer classification with Ratings 

5.2.3.1 Accuracy 

 

Figure 29. The loss of transformer on test data with rating 

 

Figure 37 shows the average loss of transformer models with different ratings 

involved in the input. All models overfit after the epoch number 8 because their 

average loss on test data keeps increasing after the epoch number 8. When compared 

to the graph for models using multilayer perceptron, we see that using different 

ratings is not significant here because the differences in average loss between the 

transformer models that use different ratings are more minor than that of the 

multilayer perceptron models. 
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Figure 38. The accuracy of transformer on test data with rating 

 

As Figure 37 indicates overfitting after epoch number 8, we focus on the test accuracy 

before epoch number 8. We notice that the test accuracy increases consistently from 

the start. The transformer model with the Elo-MMR rating included has the highest 

test accuracy of 21.4% among the other models. Compared to the test accuracy of the 

transformer model without rating in the input, we conclude that including ratings in 

the transformer model as input slightly increases the test accuracy. Compared to the 

test accuracy of multilayer perceptron models, we conclude that using the transformer 

model slightly increases the test accuracy and narrows down its confidence level 

because its fluctuation is slight, as shown in Figure 38. 
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5.2.3.2 Betting Simulation 

 

Figure 39. The betting simulation of transformer on test data with rating 

 

When following the predictions of these transformer models in betting, we obtain a 

satisfactory result. The models give us a positive net gain of 3% to 6% after betting on 

688 races in the test data, as shown in Figure 39. The transformer models with rating 

do have a better performance than the transformer model without rating and the 

multilayer perceptron models with rating. Also, we find that the change of net gain is 

confined to a smaller interval throughout the betting simulation when using the 

transformer model with the Elo-MMR rating. 
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5.3 Embedding Methods Comparison 

Beyond the neural network architecture and rating estimation system, input 

embedding is an essential ingredient in the learning process. A better embedding 

method could provide a more precise vector representation of input carrying semantic 

meanings. Therefore, a proper embedding method helps the model better understand 

the similarities and differences of inputs and affect the model's performance. During 

the investigation, the inappropriateness of fitting horse racing input into word 

embedding is spotted, and the horse token embedding is then advocated to replace the 

word embedding. So, the two embedding methods are compared under the same 

architecture and rating input, the transformer model with Elo-MMR ratings, to 

determine a more suitable embedding method. As the result of using word embedding 

in the transformer model with Elo-MMR ratings is shown in Figure 38, we only offer 

the result of using horse token embedding with the specified transformer below. 
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5.3.1 Transformer with Horse Token Embedding 

5.3.1.1 Accuracy 

 

Figure 40. Test accuracy when horse token embedding was used 

 

Overfitting occurs when the transformer model, which uses word token embedding, is 

applied to the input with horse token embedding. Therefore, the number of encoder 

layers is decreased to form a simpler transformer model, but more epochs are needed 

instead. The maximum accuracy of 23.4% was reached with 420 epochs, as shown in 

Figure 40. Compared to the accuracy of using the word embedding layer, the accuracy 

of using the horse token embedding is increased by 2%, from 21.4% to 23.4%. The 

accuracy is stabilized at around 22.5% in later epochs after reaching the maximum, 

and it differs from the performance shown in Figure 37 that the accuracy has a 

significant drop of 2% after its maximum. The difference evinces that the horse token 

embedding is more applicable for input in the horse racing context. 
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5.3.1.2 Betting Simulation 

 

Figure 41. The betting simulation of transformer with horse token embedding 

 

The replacement of the word embedding by the horse token embedding excels in the 

profit-making capability of our transformer model. From Figure 41, the net gain over 

the races in test cases has a gentle trend of increase in which the profits from the 

correct predictions compensate for the losses caused by the wrong predictions. The 

steady growth of the net gain implies that the horse token embedding is more 

favorable than the word embedding, which leads to large fluctuations in the net profit, 

as shown in Figure 39, towards the profit-making aspect. 
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Chapter 6 

Interpretability 

6.1 Assessment to Model Capability 

The comparison between a transformer classification model and a multilayer 

classification model discussed in Chapter 5 exhibits the privilege of the transformer 

classification model in the horse racing context. Also, horse token embedding instead 

of word embedding leads to higher accuracy in winning horse prediction. These 

observations bring interest in investigating how information encoded in horse token 

embedding allows the transformer model to perform better. One possible way to 

examine the information, the internal vector representation, carried in every layer of 

the encoder layer in the transformer is using probing tasks for reasoning the 

capabilities of the transformer in relation to properties of a race that helps in correct 

prediction [37]. 

 

Regarding the process of learning useful properties for a correct prediction, we lay 

down an assumption here, and we will revisit them with the results obtained after the 

probing tasks. We assume that layers at the front of the encoder learn only simple 

features and layers at the end of the encoder learn more abstract concepts. The internal 

vector representations at the layers towards the end of the encoder should have more 

helpful information about the properties of a race. 
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6.1.1 Probing Model 

The probing model could partially reveal the information captured in the internal 

vector representations because the probing model could have accurate predictions if 

the information in the internal vector representation is sufficient for the probing model 

to make correct decisions. The precise prediction of the probing task for a particular 

property entails the capability of the transformer model to learn that property because 

it has sufficient information stored in the interval vector representation for a better 

understanding of that property [38]. 

 

A probing dataset is constructed for each property that will be investigated. In a 

probing dataset, the input of the probing model is the internal vector representation, 

while the target is an integer indicating the class of the input. The architecture of the 

probing model is illustrated in Figure 42. The internal vector representation in the 

probing dataset is extracted from the transformer model, which will be assessed and 

fed to a simple multilayer perceptron for binary classification. To avoid overfitting, 

the multilayer perceptron consists of two fully connected layers with ReLU activation 

and dropout. The output of the multilayer perceptron is then compared to the 

corresponding target in the dataset for evaluation. This probing model could be 

generalized for multi-class classification by allowing the multilayer perceptron to 

have more than two outputs if the property has more than two expressions. 
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Figure 42. The probing model [38] 

6.1.2 Number of Participants 

The number of participants varies in races, and it is usually in the range of 10 to 14. 

While maintaining the input to have 14 horse tokens consistently even though the 

number of participants is sometimes fewer than 14, the model is expected to know the 

number of the participant when predicting the winner horse so that the prediction of 

the winning horse number is within the range. For example, the transformer's output 

should be in the range of 1 to 10 if the number of participants is 10. Therefore, the 

capability of understanding the number of participants is investigated to see if the 

model can avoid giving an out-of-bound prediction to minimize the probability of 

producing an unreasonable forecast. 
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In the generation of the probing dataset, the count of participants in each race is 

extracted from the data frame of the original dataset, and it is marked as the target for 

that particular race. The input 𝑥𝑖 for each race is a row vector of length 𝑛 where 𝑛 is 

the length of the internal vector representation and 𝑖 was the 𝑖-th layer in the 

transformer encoder for 1 ≤  𝑖 < 5 . The target 𝑦 for each race is an integer such 

that 1 ≤  𝑦 ≤  5 represents 5 possible numbers of participants. The probing task is 

thus a classification task of 5 classes. 

 

Figure 43. Accuracy of probing model (number of participants) 

 

The accuracy of classifying the number of participants in all layers is at least 86%, as 

shown in Figure 43. The high accuracy indicates the capability of the transformer to 

identify the number of participants correctly in most cases. This essentially reduces 

the probability of incorrect prediction due to misunderstanding of race conditions by 

the model and pushes the forecast towards the ground truth. Another substantial 

interpretation is the preservation of information about participant count over all 

layers, as we see those similar accuracies in determining the participant count in all 
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layers. One possible explanation is that the knowledge of participants is essential in 

predicting the winning horse so that the model does not forget it but preserves it. 

 

Figure 44. Loss of probing model (number of participants) 

 

We expected more complex concepts are learned by later layers, like the aggregation 

of the existence of horses into count, while earlier layers learn only simple features 

such as the dichotomy in regard to the existence of a particular horse. Although the 

result shown in Figure 44 did not strongly verify the assumption, it does not disagree 

at all as the loss of model using the fourth encoder layer is lower than that of the 

second and third layers. Therefore, further investigation into other properties is 

needed to verify our assumption. 
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6.1.3 Most Popular Horse 

Wining odds could improve the model's performance since it involves the public 

intelligence and reflects the most popular horse with the lowest win odds. However, it 

is excluded from our input because it keeps changing until the start of the race and we 

want to resemble the effect of win odds by static rating and transformer architecture. 

To determine whether rating and transformer could have a similar impact on finding 

the most popular horse, we study whether the internal vector representation contains 

enough information for identifying the most popular horse. 

 

The input in the probing dataset was the same as the input in section 6.1.2. The target 

of the dataset is the horse with the lowest win odds as the win odds of the horse 

decrease if more people bet on that horse. So, target 𝑦 will be an integer such that 

1 ≤  𝑦 ≤  14 indicates the horse number of the winner. The probing task is thus a 

classification task of 14 classes. 

 

 

Figure 45. Accuracy of probing model (most popular horse) 
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In Figure 45, the model using vector representation of the second encoder layer as 

input reached the maximum accuracy of 26.6%, followed by that of the third encoder 

layer, the fourth encoder layer, the embedding layer, and the first encoder layer, which 

had maximum accuracies of 26.1%, 25.4%, 24.4%, and 24.2% respectively. The 

transformer indeed learned to distinguish the most popular horse, albeit with a 

seemingly low accuracy of 26.6%. There were 14 horses in a race, and the probability 

of selecting the most popular horse in a random guess was 0.0714, but the accuracy 

was boosted to 0.266 when the internal vector representation was used to assist the 

selection. The model could find the most popular horse indicated by the lowest win 

odds. 

 

 

Figure 46. Loss of probing model (horse with lowest odds) 

 

The internal vector representation of the second encoder layer has the lowest loss 

among all layers, as shown in Figure 46. Furthermore, the loss of the third encoder 

layer is lower than all other layers except the second layer. Since the concept of the 
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most popular horse includes a comparison between horses’ attributes and it is 

complex, we expect the later layers to learn better at the abstract idea and they always 

perform better than the earlier layer. Nonetheless, the result in Figure 46 does not 

entirely support it because the third and the second layers have higher losses than that 

of the second layer. This concludes that the later layers usually grasp the abstract 

concept better, but it is not a must in the horse racing context. 

 

6.1.4 Usefulness of Ratings 

Although the rating is an important factor in winning horse prediction as it 

summarizes a horse’s overall performance based on its past records, there are some 

cases in which the winning horse does not have a high rating. In these cases, the rating 

is useless, and the prediction should not depend on the rating. We want to know 

whether the model could determine the usefulness of rating and make use of it in 

prediction. 

 

The input in the probing dataset is the same as the input in section 6.1.2. The target of 

the dataset is a truth value about the usefulness of rating, which has True and False as 

the value. The target y of a race is an integer 0, indicating that the rating is useless if 

the horses with low ratings win the first three places. Otherwise, y is an integer 1, 

indicating that the rating is useful. 
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Figure 47. Loss of probing model (rating contribution) 

 

In the classification of the rating usefulness, the internal vector representation at the 

third layer shows the best performance of attaining 57.7% accuracy. The vector 

representations at the second and fourth layers both get 55.9% accuracy while the first 

layer and the embedding out result in 54.5% and 54% respectively, as shown in Figure 

47. The highest accuracy obtained is 57.7% which is slightly better than making a 

correct random guess between useful and useless of 0.5 probability. One reason for 

the result is the complexity of deciding the usefulness of a rating. Suppose the model 

fully understands the usefulness of rating in the race. In that case, it can just give a 

prediction directly relying on the rating, and the expected accuracy of our transformer 

model would be much higher. However, this task is very complex, and our 

transformer model has only 23.4% accuracy in the correct prediction of the winner 

from Figure 40. 
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Figure 48. Loss of probing model (rating contribution) 

 

As detecting the usefulness of rating is a very complex task, our assumption states 

that earlier layers are not as capable as the later layers in this task because earlier 

layers learn only simple features. In Figure 48, it shows that the claim is valid to a 

certain extent because the embedding output and the first encoder layer, which are the 

earlier layers, produce higher loss when their internal vector representations are used 

for finding the usefulness of rating than that of the second, third and fourth layers. 
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6.2 Better Performance with Ascending Horse Number 

The input of the transformer model is a sequence of horse tokens arranged in 

ascending order according to the horse number. Therefore, a horse with horse number 

1 is positioned on the first horse token, and the horse with horse number 2 is arranged 

on the second horse token. The other horses are placed in the same way. We want to 

inspect the performance change of our model in a situation where the horse tokens in 

the input are reordered randomly so that they are no longer in ascending order. In 

Figure 49, the model's accuracy drops by 1.7%, from 23.4% to 21.7% after data 

shuffling. Also, the loss of the model before the shuffling is obviously lower than that 

after the shuffling, as shown in Figure 50. We will explain this phenomenon from the 

perspectives of distribution in the dataset and the attention map. 

 

 

Figure 49. Comparison of accuracy before and after data shuffling 
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Figure 50. Comparison of loss before and after data shuffling 
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6.2.1 Distribution of Horses with the Lowest Odds 

Arranging the horse tokens in ascending order in terms of horse number implies 

hidden information about the probability of winning for horses. Figure 51 shows the 

distribution of horses with the lowest odds. If the horse has the lowest odds in a race, 

it is the most popular horse perceived by the public, and this information was proven 

helpful in prediction [9]. The model may learn the distribution in Figure 51 after the 

training and it may know that the probability of the horse with the lowest odd 

decreases as the horse number increases. This hidden information may induce bias in 

the model, and it tends to guess horses with a smaller number to be the winner more 

often. If the horse tokens are rearranged randomly, the model may not learn the 

negative relationship between the horse's probability with the lowest odds and the 

horse number. It loses this information, and the predicting power may be undermined. 

 

 

Figure 51. Distribution of horses with lowest odds. 
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6.2.2 Properties of Attention Map in Successful 

Transformer Model 

Since we attempt to reduce the horse racing classification to a language processing 

classification by using the transformer and embedding, we expect the attention map of 

our transformer model will be similar to that of a successful transformer model such 

as BERT if our model performs well. It suggests a comparison of the attention map in 

our model with that in BERT to evaluate our model performance. Therefore, we will 

analyze the attention maps of our model before and after data shuffling based on the 

properties of the attention map in BERT. 

 

From the observations of the attention map in BERT, we concluded that there are four 

general properties of a good attention map [39]. The first property is the appearance of 

recurring patterns in attention heads. The second property is the similar behaviors of 

heads in the same layer. The third property is the little attention on the same token in 

most heads. The fourth property is the broad attention of heads in lower layers. The 

attention maps before and after data shuffling are visualized by an open-source tool 

[40]. These four properties will be used to evaluate our attention maps and explain the 

better performance of using horse tokens with ascending order as the input. 
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6.2.3 Attention Map Evaluation 

 

Figure 52. Attention map trained by data before shuffling 

 

The attention map trained by data before in Figure 52 is considered with reference to 
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the four properties mentioned in section 6.2.2. Firstly, the appearances of recurring 

patterns in attention heads are recognized. For example, the fourth head in the first 

layer, the second to fourth heads in both the second and third layers, and the fourth 

head in the last layer exhibit a recurring pattern in which the first few tokens tend to 

pay more attention to the last few tokens. In comparison, the last few tokens tend to 

pay more attention to the first few tokens, and a cross pattern is likely to form. 

Secondly, we observe similar behaviors for heads in the same layer. All heads in the 

first layer, second and fourth, tend to pay strong attention to tokens further away from 

the current tokens. All heads in the second layer tend to pay attention broadly to every 

token, satisfying the fourth property simultaneously. Also, the third property is 

satisfied because there are only a few numbers of heads having weak attention to the 

same token. Therefore, the attention map trained by data before shuffling has all 

properties of the attention map in a successful transformer model. 

 

The existence of those four properties is examined in the attention map trained by data 

after shuffling. Firstly, a recurring pattern of paying strong attention to tokens in the 

first few and last few tokens exists in some heads such as the first and second heads in 

the first layer, the first head in the second layer, and the third and fourth heads in the 

third layer. However, the second property does not exist because all heads in the first 

layer tend to behave differently. Also, the first head in the third layer exhibits broad 

attention while the second head does not. The third property is not satisfied because 

many heads pay attention to the same tokens. For example, the third and fourth heads 

in the first layer, the fourth head in the second layer, the second head in the third layer, 

and the first, second, and third heads in the fourth layer. The fourth property is also 

unsatisfied because broad attention is only observed in the third layer's first head, 

which disagrees with the fourth property that there is broad attention of heads in the 
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lower layer. 

 

Figure 53. Attention map trained by data after shuffling. 
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6.2.4 Explaining the Results 

Our investigations of the phenomenon of the better performance of the model when 

the horse tokens input is in ascending order provide two possible reasons. The first 

reason is that the model can learn the negative relationship between the probability of 

being the most popular horse and the horse number if the horse tokens are in 

ascending order. This information may lose after the shuffling of the horse tokens. 

 

The second reason is that the shuffling of horse tokens leads to the poorer behaviors 

of the attention map as the attention map trained before the data shuffling has all 

properties of the attention map in a successful model while that after the data 

shuffling possesses only one of the properties. The comparison can be found in Table 

6. 

 

 Attention map trained 

by data before shuffling 

Attention map trained 

by data after shuffling 

Recurring pattern ✔ ✔ 

Similar behavior in the 

same layer 

✔ 

 

✖ 

 

Little attention to the 

same token 

✔ 

 

✖ 

 

Broad attention in lower 

layers 

✔ 

 

✖ 

 

Table 6. Existence of properties of successful attention map 
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6.3 Contribution of Horse Tokens to the Prediction 

Our transformer demonstrates its capability in making a profit in betting simulation, 

and this means that the model generalizes some ideas in the learning process, which 

provides profitable prediction. We want to look at those ideas and conceptualize them 

into simple rules that assist the betting. The integrated gradient is chosen to be the tool 

for us to realize the input-output behavior of the model and determine the importance 

of each horse token [41]. 

 

Before the investigation, we have prior assumptions below about the contributions of 

horse tokens to the prediction, which will be verified in the analysis. Suppose the 

horse with horse number 𝑖 is the predicted winner, we expect it should have the 

highest positive contribution to the prediction. Horses other than the winner should 

give negative contributions because they are competitors of the winner. Besides, the 

contributions of the strong horses should be more significant because they are more 

influential in the race. 
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6.3.1 Integrated Gradient 

We select the integrated gradients method because we can utilize the gradient 

operations to compute the integrated gradients by integrating the first-order 

derivatives with little effort while maintaining our model architecture [41]. After the 

computation, the input features' attribution of the model prediction can be obtained for 

further analysis. Hence, integrated gradients can approximate the importance of horse 

tokens in the race. 

 

Suppose the input sequence of horse tokens for a race is 𝑥 and the baseline input is 

𝑥’. We denote our transformer model as 𝐹, and the model's output is 𝐹(𝑥). The 

gradients of all points along the straight-line path from the baseline 𝑥’ to the input 𝑥 

are integrated to obtain the integrated gradient [42]. Therefore, we can use the 

following equation to see how the 𝑚𝑡ℎ horse token in the input sequence 𝑥 

contributes to the model prediction 𝐹(𝑥), 

 

    𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑚(𝑥)  =  (𝑥𝑚  − 𝑥𝑚′)  ∫
𝜕𝐹(𝑥′ + 𝛼(𝑥−𝑥′))

𝜕𝑥𝑚

1

𝛼 = 0
 𝑑𝛼.     (18) 
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6.3.2 Contributions in Different Situations 

In this section, the contributions of all horse tokens in different situations are 

computed for extraction of commonalities, and every situation has a distinctive 

winner. The positive contribution of the horse token is colored in blue, while the 

negative contribution is colored in red.  

 

Figure 54. Contributions of horse tokens when horses 1 – 4 are winners 

 

When the winners are a horse with numbers 1 to 4, the winner contributes positively 

to a large extent and most other horses contribute negatively as seen in Figure 54. We 

notice that horses with numbers 8, 9, and 10 contribute a significant negative value 

while the remaining horses contribute relatively low negative values. 
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Figure 55. Contributions of horse tokens when horses 5 – 8 are winners 

 

For races whose winners are horses with a number from 5 to 8, the winner contributes 

a significant amount of positive value, and most other horses contribute negatively. In 

Figure 55, we discover that the horse that contributes most negatively are not the 

horses next to the winner but the horses further away from it. For example, if the 

winner is horse number 5, horse number 11 has the most negative value instead of 

horse number 4 or number 6. 
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Figure 56. Contributions of horse tokens when horses 9 – 14 are winners 

 

For races whose winners are horses with a number from 9 to 14 in Figure 56, we 

observe that the contribution patterns for winners from 12 to 14 are different. For 

these three cases, the input regarding the race information contributes a positive value 

while it contributes a negative value for all the other cases. Besides, the number of 

horses giving positive contributions increases when the winners are a horse with a 
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number from 12 to 14. 

 

 

Figure 57. Heatmap showing contributions of horse tokens in all situations 
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6.3.3 Simple Rules Extraction 

The advantage of the integrated gradient in model inspection is showing the mapping 

of input-output behavior [41]. We can often gain insights from the visualizations of 

the mapping to generalize a set of simple rules that help us predict the output. From 

the results obtained in section 6.3.2, we conclude the following simple rules that guide 

the betting people. 

1. Given that you want to bet on a horse with horse number 𝑖 for 1 ≤  𝑖 ≤  14, 

you should focus on the horses far from horse 𝑖 and consider their ratings. If 

those horses’ ratings are high, horse 𝑖 is not likely to win. This rule is based on 

the observation that the negative contribution of horse 𝑗 with |𝑖 − 𝑗| which 

indicates that the negative impact of horse 𝑗 will likely be enlarged when it is 

distant from horse 𝑖 

 

2. Given that you want to bet on horse 𝑖 for 12 ≤  𝑖 ≤  14, you should consider 

the race condition. If horse 𝑖 performed well in a similar race condition in the 

past, the probability for horse 𝑖 to be the winner is large because we observe 

that the race condition contributes a significant amount of positive value when 

the winners are horses with a number greater than 11. 

 

3. Given that you want to bet on horse 𝑖 for 12 ≤  𝑖 ≤  14, a few strong horses 

with a horse number smaller than 𝑖 should not discourage you from betting on 

horse 𝑖. We discover that some horses with numbers smaller than 𝑖 contribute 

positively when the winner is 𝑖. One possible explanation is that those horses are 

strong that they block the other horses in the race and leave chances for horse 𝑖 

to catch up with them. 
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Chapter 7 

Conclusion 

The first phase of the project aims at understanding the betting odds in horse racing 

by analyzing the impact of using both the rating systems and transformer architecture 

on the accuracy and profit-making aspects of horse racing prediction. From previous 

studies, the win odds in the feature list enhance the accuracy and net gain [8][9]. We 

exclude the win odds from the feature list this time and attempt to resemble the effect 

of the win odds by combining the performance judgment and natural language 

processing techniques.  

 

We contrast the differences in performance by experimenting with three models: 

multilayer perceptron with ratings, transformer without ratings, and transformer with 

rating. We discover that the best case of our models is the transformer with Elo-MMR 

ratings, which has the highest test accuracy of 21.4% and gives a positive net gain of 

6% in the betting simulation of the test data. This shows that ratings and transformer 

architecture have similar influences on the horse racing prediction.  

 

The second phase of the project extends the work of the first phase from two 

perspectives. The first perspective focuses on accuracy improvement. When applying 

the transformer architecture in the horse racing context, a more appropriate horse 

token embedding is suggested to replace the word embedding. The horse token 

embedding can be efficiently generated with proper data segregation and the aid of 

Principal component analysis. The accuracy of the best model chosen in the first 

phase is boosted by 2%, from 21.4% to 23.4% after replacing the embedding. 
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The other perspective shifts the attention to the interpretability of the best model 

found in the first phase. Three different aspects are investigated using different 

interpretability methods. The first one is the assessment of the model's capabilities in 

learning helpful information by probing. It exposes that later layers are usually more 

capable of discovering useful information. The second aspect is the impact of input 

order perturbation on the model performance. It shows that the perturbation causes the 

loss of information and poor attention heads' behaviors, which results in worse model 

performance. The third aspect is studying the input-output behaviors of the model by 

the integrated gradient. Simple rules are extracted from the input-output behaviors to 

guide the betting. 
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