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Introduction - Motivation

• Revenue from horse racing is approximately HK$280 billion in 2020-2021 
despite the economic downturn caused by the coronavirus pandemic
• Win odds enhance prediction accuracy as shown in previous FYP[1][2]
• Win odds keep changing before the start of the race
• Use machine learning methods to resemble the effect of winning odds in 

horse racing prediction
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Introduction - Objective

• Apply statistical models(rating systems) to evaluate the performance of 
horses
• Apply techniques in natural language processing for winning horse 

classification
• Reproduce the effect of variable win odds from the Hong Kong Jockey 

Club in horse racing prediction by invariable features
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Background Knowledge – Rating System

Glicko Rating System[3]
• Rating
• Performance of a horse

• Rating deviation
• Reliability of a horse’s rating
• a low value of rating deviation indicates that the horse joins races 

frequently and the rating is more reliable
• uncertainty of a horse’s ability reduces because more information is 

obtained when the horse joins more races
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Background Knowledge – Rating System

TrueSkill Rating System[4]
• Rating
• Performance of a horse

• Rating deviation
• Reliability of a horse’s rating

• Multiple horse environment
• Assume outcome of each race is a permutation of multiple horses
• Allow horses to have the same rank

6



Background Knowledge – Rating System
Elo-MMR Rating System[5]
• Rating
• Performance of a horse

• Rating deviation
• Reliability of a horse’s rating

• Multiple horse environment
• Assume outcome of each race is a permutation of multiple horses
• Assume horses have distinct ranks

• incentive compatible
• horses’ ratings should not have opposite changes to their 

performance
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Background Knowledge – Transformer

Self Attention mechanism[6]
• Features in the sequence interact with each other
• Assign weights to features according to the relative importance
• Decide dependency relationships between features of the sequence
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Data Preparation - Collection

• Write web crawlers by using BeautifulSoup library in python
• Collect data on the HKJC official websites 
• Obtain 9191 race records in our dataset dated from June 2008 to  

October 2021
• Obtain horse records of 6642 horses which participated in those 9191 

race records

9



Data Preparation – Feature Analysis

• By Bayes’ formula,
Pr( Y = win | X = x1, x2, …) 
= Pr(X = x1,  x2, … | Y = win ) Pr ( Y = win) / Pr ( X = x1, x2, … )

• Likelihood estimation in machine learning is simplified by assuming that 
features are conditional independent.

• We observe the likelihood Pr( X = x | Y = win ) one by one.
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Data Preparation – Feature Analysis (Age)

• Most winning horses are 
aged between 5 and 6
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Data Preparation – Feature Analysis (Draw)

• Most winning horses 
have smaller draw 
number.
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Data Preparation – Feature Analysis (Origin)

• Most winning horses come from Australia or New Zealand
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Data Preparation – Feature Analysis (Color)

• Most winning horses have skin color Bay
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Data Preparation – Feature Analysis (Sex)

• Most winning horses are of sex Gelding.
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Data Preparation – Feature Analysis (Numerical features)

• Frequency of 1st place 
has a significant 
correlation with the 
frequency of 2nd place 
and 3rd place which are 
0.4500 and 0.4468 
respectively

• Rating systems are 
applicable in prediction
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Data Preparation – Feature Analysis (Numerical features)

• A positive correlation of 
0.4291 between the win 
odds and the place

• Winning odds help the 
prediction of horse 
racing result
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Data Preparation – Data Imputation

• A small part of horse data about those retired horses is missing in our 
data set
• do data imputation on our dataset by using the k nearest neighbors 

method
• Invoke the KNN Imputer from Scikit Learn library to impute the missing 

values
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Data Preparation – Data Encoding

• Input of our neural network models must be numerical but some of our 
data are categorical
• One hot encoding[7]
• dimension of our input will be increased drastically
• requires extra memory and more computational time in training

• Ordinal Encoding scheme[7]
• a unique integer means a category
• dimension of the data is the same as the original

• invoke the Ordinal Encoder from the Scikit Learn Library
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Data Preparation – Normalization

• z-score normalization[8]
• Values of all variables are recomputed into the same scale
• the same scale of all variables balances the focus of error minimization 

in the weight correction algorithm
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Data Preparation – Rating Generation

• Ratings mentioned 
before do not exist on 
the HKJC websites
• need to calculate those 

ratings with the 
information provided by 
our dataset
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Methodology - Overview

• Rating systems estimate the relative skill level of horses based on their 
historical performance

• Self attention mechanism captures the dependencies between horses

• Multiclass classification on place
• The winning horse number is the output

• Transformer classification model including ratings in the feature list
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Methodology - Evaluation

• Accuracy
• Accurate prediction about the winner

• Betting simulation
• Net gain
• Bet $10 for each race in test data

• Combining transformer architecture and ratings give a better result
• Multilayer perceptron with ratings
• Transformer without ratings
• Transformer with ratings
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Methodology – Multilayer perceptron

1. Input layer
2. 3 linear hidden layer
3. Dropout layer
4. Output layer

• Relu Activation function
• Cross-Entropy Loss Function
• Stochastic gradient descent
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Methodology – Transformer

1. Input layer
2. Word embedding layer
3. Position embedding layer
4. Transformer encoder
5. 2 linear hidden layers
6. Dropout layer
7. Output layer

• Relu Activation function
• Cross-Entropy Loss Function
• Stochastic gradient descent
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Experiment and Result – Input Data

• Training data : 
• races from 22 June 2008 to 6 December 2020.
• 8500 races

• Testing data
• all races from 9 December 2020 to 17 October 2021.
• 688 races
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Experiment and Result – Input Data
Feature Description

Venue Location of the race

Horse_class Class of the horses
Stronger horses compete in high race class

Distance The distance of the race

Going Condition of the lane

Course_track The lane of the race

Course_track_code Description about the lane

Horse_i_number The horse number in the race

Horse_i_name The name of horse 

Horse_i_jockey The name of jockey

Horse_i_trainer The name of trainer

Horse_i_declared_weight The weight of horse 

Horse_i_origin The place of birth

Horse_i_age The age of horse

Horse_i_color The color of skin

Horse_i_sex The gender of horse

Horse_i_1st_place_frequency The frequency of getting 1st place

Horse_i_total_race The total count of horse’s participation

Horse_i_rating The rating of the horse

Repeat 14 
times
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Experiment and Result – Accuracy

• Multilayer perceptron 
with ratings
• The model with Glicko

ratings reaches the 
highest test accuracy of 
20.4%
• The accuracy of the 

model with Glicko
ratings fluctuates in a 
larger range than that 
with Elo-MMR and 
TrueSkill 28



Experiment and Result – Accuracy

• Transformer without 
ratings
• the best performance of 

this model is having 
19.2% before overfitting
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Experiment and Result – Accuracy

• Transformer with ratings
• The transformer model 

with Elo-MMR ratings 
has the highest test 
accuracy of 21.4% 
among the other models
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Experiment and Result – Betting Simulation

• Multilayer perceptron 
with ratings
• all three models perform 

better than random 
betting
• Multilayer perceptron 

with Elo-MMR ratings has 
the best performance
• highest net gain : -13%
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Experiment and Result – Betting Simulation

• Transformer without 
ratings
• The net gain is -4% after 

betting on all 688 races 
in our test data
• Better than the 

multilayer perceptron
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Experiment and Result – Betting Simulation

• Transformer with ratings
• Positive net gain of 3% 

to 6% after betting on 
688 races in the test 
data 
• Transformer with Elo-

MMR ratings has the 
best performance
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Conclusion

• Win odds in the feature list have the effect of enhancing the accuracy 
and net gain
• Exclude the win odds from the feature list this time
• Resemble the effect of the winning odds by combining rating systems 

and the transformer architecture
• the best case of our models is the transformer with Elo-MMR ratings
• the highest test accuracy : 21.4%
• a positive net gain : 6%
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Thank you!
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