

Motivation

Buy today Sell tomorrow (BSTS) trading

- Buy stock and sell it within several days
- Profit from frequent transactions

Advantage: Easier to manage risk

Disadvantage: High transaction cost

- Stock patterns have high accuracy in predicting stock price
- Research on the relation of Twitter and the stock market

Project Context & Objectives

Simplify the situation

- 1. Focus on one large cap stock, Apple Inc (AAPL)
- 2. Focus on double bottom pattern
- 3. Not considering the transaction cost

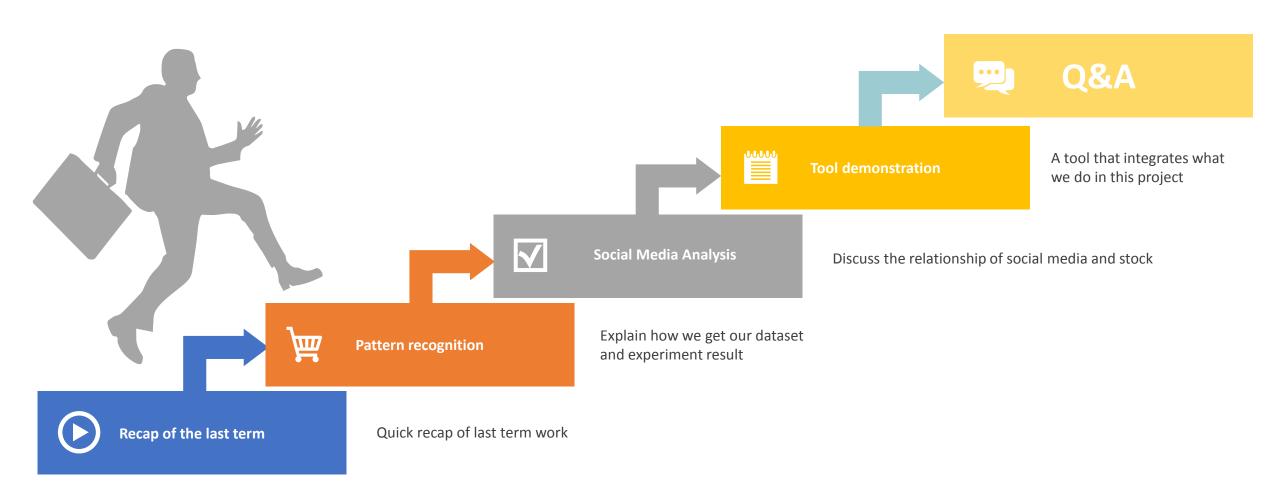
Objectives

- Train a machine learning model to identify the pattern
- Study social media sentiment values and stock price

Development platform

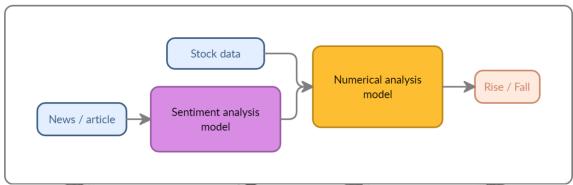
- Python Jupyter notebook
- Tensorflow, Vader, Tkinter

Overview



Recap of the Last Term

- Stock prediction using stock data and news data
- Applied different models to conduct experiments
 - Numerical analysis: LSTM, GRU, KNN, Prophet
 - Sentiment analysis: Vader, Bert
- Merged the two components, input the resent stock data and news to predict whether AAPL will rise or fall

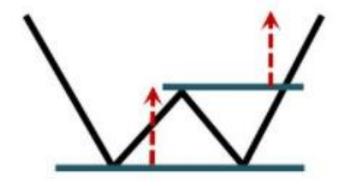


Pattern Recognition

- Focus on double bottom pattern
- Stock patterns show future trend
 - Double bottom pattern: 78.55%

- Hard-coded (rules-based) Detector
 - No available dataset on the internet
 - From components of S&P 500
 - Building a dataset for machine learning

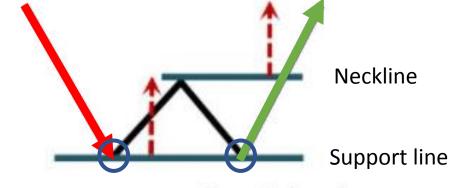
Double Bottom



Double Bottom

- First drop (red solid arrow)
 - 10-20%
- Two bottoms (blue circles)
 - The difference is 3-4%
- Last rise (green arrow)
 - Twice of the distance between the support and the neckline

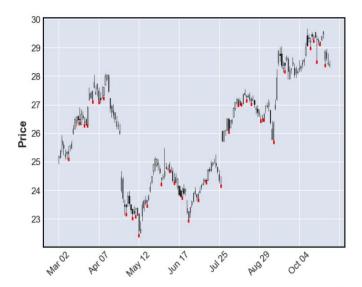
Double Bottom



© samuraitradingacademy.com

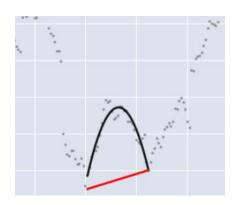
Hard-coded Detector

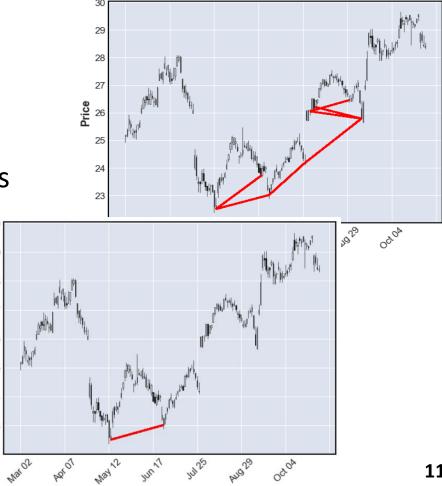
- Step 1: Locate the local minima
- Step 2: Find the support lines
 - Draw a line if the difference of two local minima is 3-4%



Hard-coded Detector

- Step 3: Filter the support lines
 - Check the existence of middle inverted "V"
 - Fit a parabola between the two bottoms
 - Support lines should not cut through candlesticks
 - No candlestick can under support lines

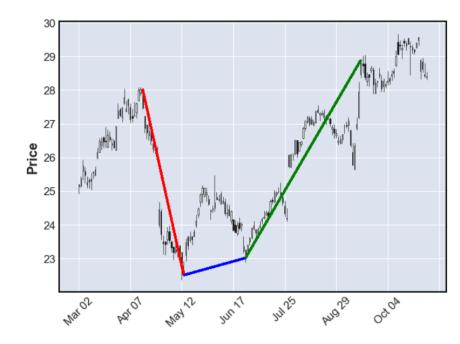




Hard-coded Detector

• Step 4: Check the existence of a 10-20% drop end at the first bottom

• Step 5: Check the existence and intensity of the last rise

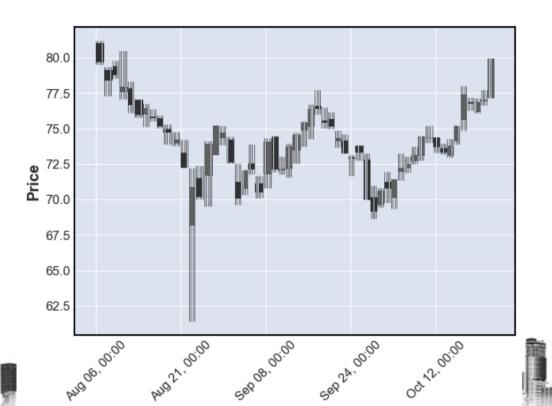


Dataset & preprocessing

- 500 stocks from the S&P index, after filtering
 - 182 stock show double bottom pattern
 - We have 234 patterns in total
 - Timespan from 55 days to 235 days
- Prepare another 235 negative samples
 - Randomly picked from the rest 318 stock without replacement
 - For each sample, Timespan is randomly chosen from range 55 to 235 days

Dataset & preprocessing

- Unify the time span to 235
 - Repeating themselves
 - e.g. 64 days to 235 days



Machine learning detecter

- LSTM
- Suitable for time series data
- Input features: OHLC, adjusted close and volume
- Sequence length: 235 days
- Predict whether the input has double bottom patterns

LSTM – Experiment setting

- Cross validation to choose the hyperparameter
- 90% for training, 10% for testing
- Find the average of loss and accuracy
- Each model is composed of LSTM layers and dense layers
- Hyperparameter we want to test:
 - LSTM: [4], [8], [16], [32], [8, 4], [16, 4], [16, 8], [32, 16], [16, 8, 4]

• Dense: [1], [4, 1], [8, 1], [16, 1], [16, 8, 1]

LSTM – Experiment result

LSTM	[4]	[8]	[16]	[32]	[8, 4]	[16, 4]	[16, 8]	[32, 8]	[32, 16]	[16, 8, 4]
Dense										
[1]	0.726831	0.696726	0.699982	0.707643	0.766637	0.702040	0.698780	0.711815	0.723233	0.704372
[4, 1]	0.707077	0.693055	0.694595	0.703030	0.697822	0.806689	0.730751	0.751265	0.696239	0.693188
[8, 1]	0.694618	0.700404	0.701528	0.704191	0.765635	0.694593	0.693295	0.694566	0.707367	0.693120
[16, 1]	0.695024	0.709587	0.700311	0.703101	0.694556	0.693155	0.704758	0.694818	0.704564	0.694842
[16, 8, 1]	0.690570	0.698109	0.699208	0.708586	0.719594	0.695222	0.711063	0.690496	0.701868	0.693134
LSTM	[4]	[8]	[16]	[32]	[8, 4]	[16, 4]	[16, 8]	[32, 8]	[32, 16]	[16, 8, 4]
LSTM Dense	[4]	[8]	[16]	[32]	[8, 4]	[16, 4]	[16, 8]	[32, 8]	[32, 16]	[16, 8, 4]
Dense	0.536232		0.538043	0.538043	[8 , 4]	0.532609	0.539130	[32, 8]	[32, 16] 0.539855	0.521739
Dense						0.532609		/		
[1]	0.536232	0.543478 0.586957	0.538043	0.538043	0.543478	0.532609	0.539130	/	0.539855	0.521739
[1] [4, 1] [8, 1]	0.536232	0.543478 0.586957 0.543478	0.538043	0.538043	0.543478	0.532609	0.539130 0.528986	/	0.539855	0.521739

- The best combination
 - LSTM: [4]
 - Dense: [16, 8, 1]
- Average accuracy: 56.5%

Calculation of the average

```
{'lstm': [32, 8],
                                     'train accu': [0.5614973306655884,
'dense': [1],
'train loss': [0.6783584356307983,
                                      0.5.
0.6860380172729492,
                                      0.6203208565711975,
0.6598420143127441,
                                      0.5,
7.712474822998047,
                                      0.5,
7.712474346160889,
                                      0.6096256971359253,
0.6632499694824219,
                                      0.5614973306655884,
0.6781659126281738,
                                      0.6203208565711975,
0.6660026907920837,
                                      0.5,
7.712474346160889,
                                      0.5614973306655884],
0.6869624257087708],
                                     'val accu': [0.5,
'val_loss': [0.6989296078681946,
                                      0.5.
0.6965937614440918,
                                      0.43478259444236755,
0.7346721887588501,
                                      0.5,
7.7124738693237305,
                                      0.5,
7.7124738693237305,
                                      0.47826087474823,
0.7233051657676697,
                                      0.5,
0.7057515978813171,
                                      0.41304346919059753,
0.7307489514350891,
                                      0.5,
7.7124738693237305,
                                      0.478260874748231}
```

0.6927011609077454],

- Unsuccessful training
 - Ignore the result
 - Loss ≈ 7.71
 - Accuracy: 0.5
- Calculate the average without them
 - The reason why we have "/" in previous page.

Social Media Analysis

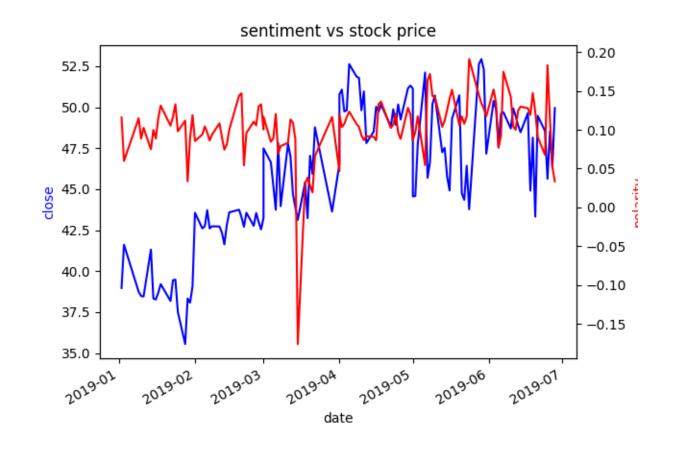
Twitter Reddit YouTube

Twitter (IA)

- Internet Archive
 - non-profit, public digital library provides free public access to collections of digitized materials.
 - Including a collection of Twitter tweets
- Collected Features:
 - Date, user, tweets, hashtags, links, etc
- In this experiment
 - Date: 2019-01 to 2019-06
 - Total tweets: ~128GB
 - Sentiment Analyzer: VADAR Sentiment

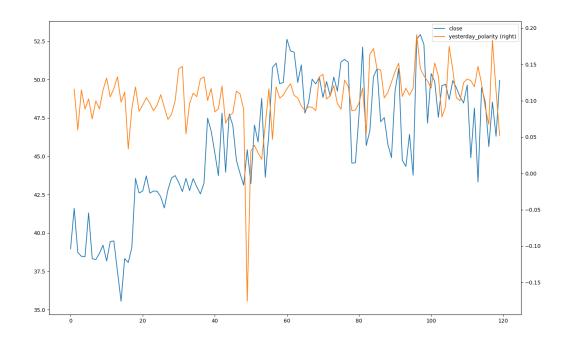
Twitter (IA)

- Raw sentiment vs stock price
- Covariance: 0.023761
- Correlation: 0.139869
- Aim: see the relationship
- Outcome: can use to predict stock price



Twitter (IA)

- Yesterday polarity vs stock price
- Covariance: 0.032677
- Correlation: 0.19541
- Aim: see if yesterday polarity can use to predict today stock price
- Outcome: suitable to predict stock price



- Twint python library to scrape tweets without worry about the limitation of official API
- Collected Features:
 - Date, user, tweets, hashtags, links, etc
- In this experiment:

Date: 2019-01 to 2019-06

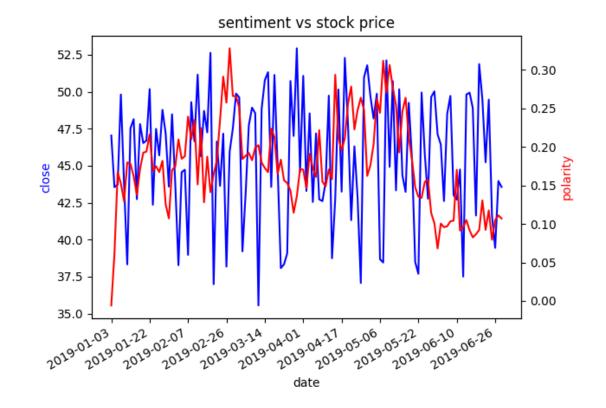
Total tweets: 233217 records

Sentiment analyzer: VADAR Sentiment

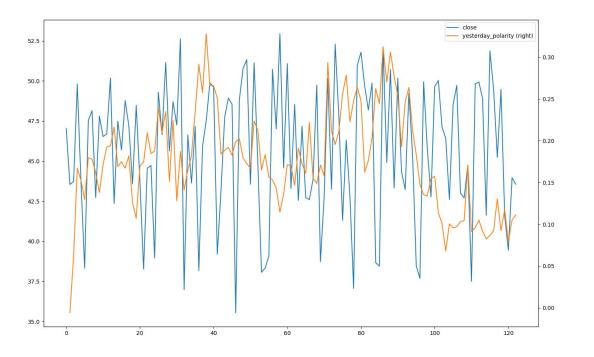
Others: Fourier transform

ected Features:		Fourier polarity	Fourier price	covariance	correlation
ecteu reatures.		N/A	N/A	-0.015243	-0.059368
Date, user, tweets, hashtags, links, etc		5	5	0.004014	0.228205
		5	10	0.004586	0.081181
	4	5	15	0.004586	0.048984
his experiment:	5	5	20	0.004586	0.041089
	6	10	5	0.004586	0.240461
Date: 2019-01 to 2019-06	7	10	10	0.000304	0.004969
	8	10	15	0.000696	0.006855
Total tweets: 233217 records	9	10	20	0.000696	0.00575
	10	15	5	0.004586	0.231462
Sentiment analyzer: VADAR Sentiment	11	15	10	0.000696	0.010936
	12 13	15	15	-0.002506	-0.023763
Others: Fourier transform		15	20	-0.003914	-0.031133
	14	20	5	0.004586	0.226844
	15	20	10	0.000696	0.010718
	16	20	15	-0.003914	-0.036375
	17	20	20	-0.008449	-0.06586
	F				

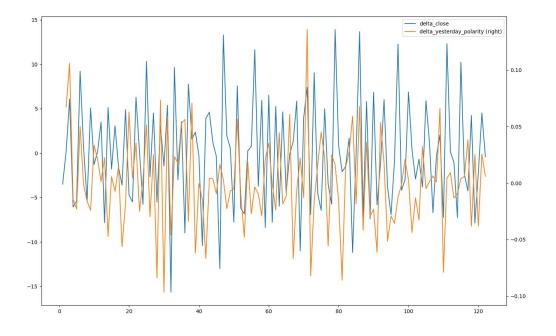
- Raw comparison
- Covariance: -0.015243
- Correlation: -0.059368
- Aim: see the relationship



- Yesterday polarity vs stock price
- Covariance: 0.015503
- Correlation: 0.060237
- Aim: see if yesterday polarity can use to predict the next stock price

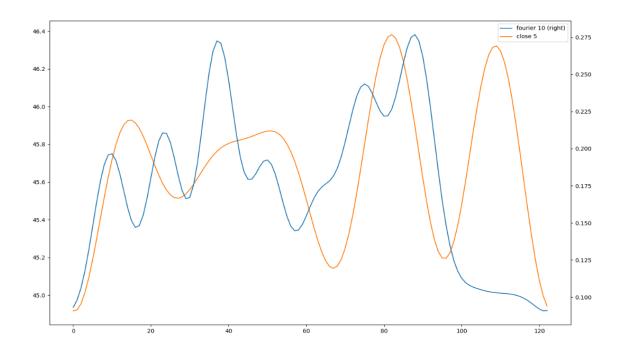


- Delta yesterday polarity vs delta stock price
- Covariance: 0.050172
- Correlation: 0.201895
- Aim: see if this comparison better than previous one
- Outcome: we can use this to predict the rise/fall of tomorrow stock price



• Fourier polarity 10 vs Fourier price 5

• Covariance: 0.004586



- PRAW python reddit API wrapper
- Collected Features:
 - Date, user, comments, etc
- In this experiment:

• Date: 2018-09-01 to 2019-09-01

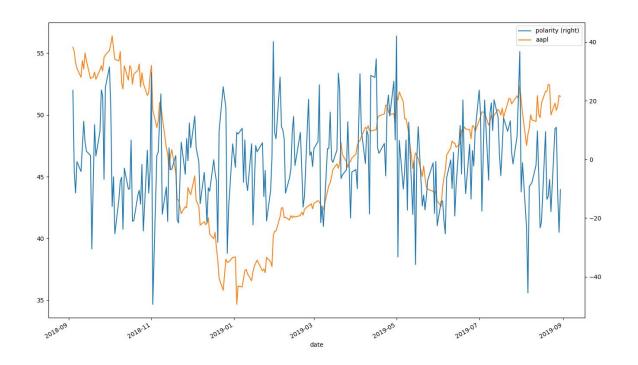
• Total comments: 123857 records

Sentiment analyzer: VADAR Sentiment

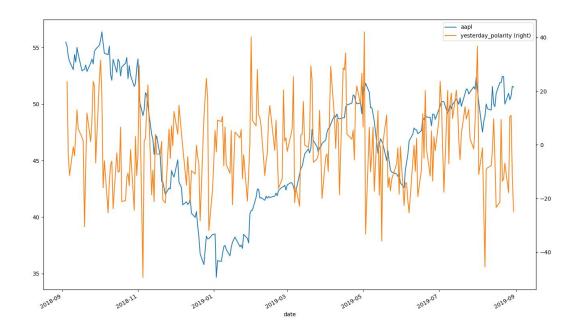
• Others: Fourier transform

	Fourier polarity	Fourier price	covariance	correlation
1	N/A	N/A	5.413715	0.068209
2	5	N/A	0.791039	0.030308
3	10	N/A	2.285104	0.065746
4	15	N/A	2.628963	0.069038
5	20	N/A	3.745961	0.087944

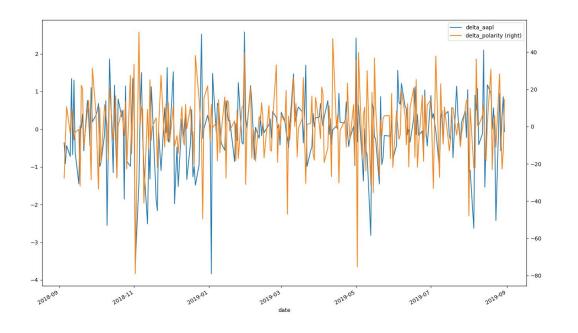
- Raw comparison
- Covariance: 5.413715
- Correlation: 0.068209
- Aim: see their relationship



- Yesterday polarity vs stock price
- Covariance: 5.726788
- Correlation: 0.072307
- Aim: see if yesterday's polarity can use to predict tomorrow's stock price
- Outcome: yesterday's polarity can use in prediction

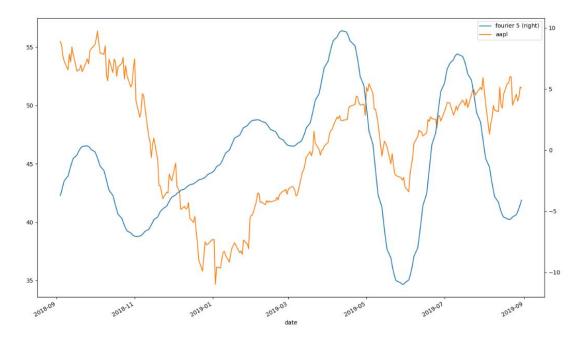


- Delta polarity vs delta stock price
- Covariance: 3.453137
- Correlation: 0.19473
- Aim: see ↑/↓ polarity result in
 ↑/↓ stock price
- Outcome: \uparrow/\downarrow polarity = \uparrow/\downarrow stock price



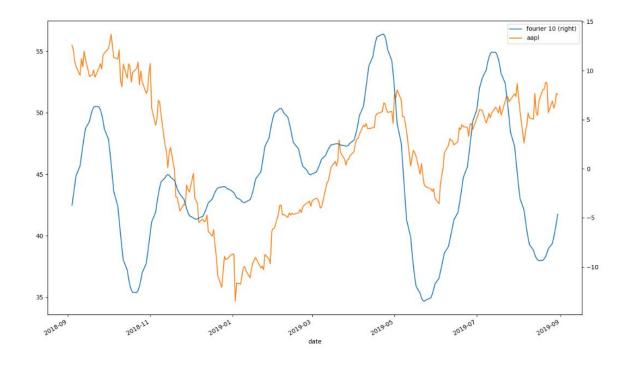
Fourier 5 polarity vs stock price

• Covariance: 0.791039



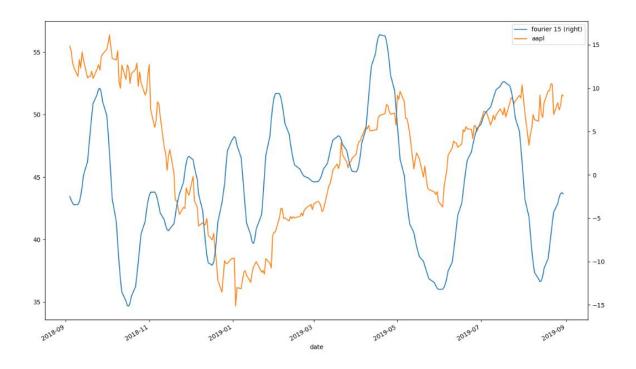
• Fourier 10 polarity vs stock price

• Covariance: 2.285104



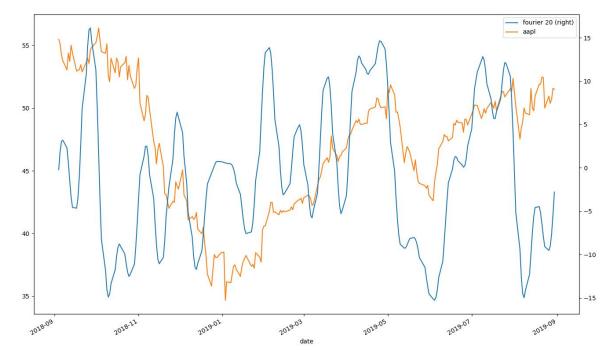
• Fourier 15 polarity vs stock price

• Covariance: 2.628963



• Fourier 20 polarity vs stock price

• Covariance: 3.745961



YouTube Sentiment Analysis

- Data source: YouTube Data API
- Search for a list of videos related to Apple
 - Limit to the science and technology category
- Request for comments for each video

- Limitation of the API
 - Hard to get old comments. API limits us to request comment started from the latest

Quota limits the volume of use

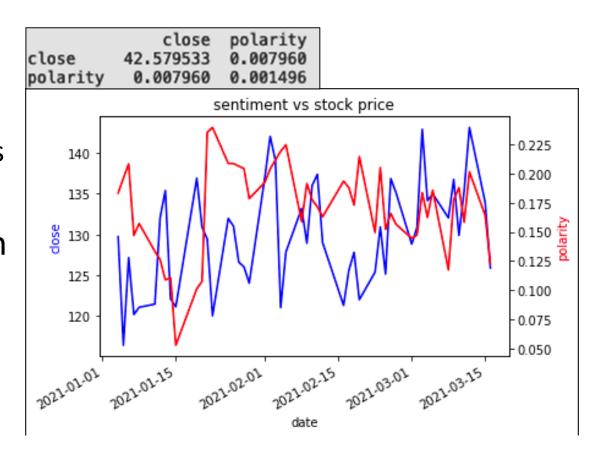
YouTube Comment Dataset

- Timespan: 2021-01 to 2021-03
- 80K+ comments
- Preprocessing
 - Sterilizing
 - Remove reply tags, HTML tag, URLs, emoji
 - Information extraction
 - Remove punctuation, stop words
 - Spelling correction
- Sentiment analysis
 - VADAR Sentiment analysis

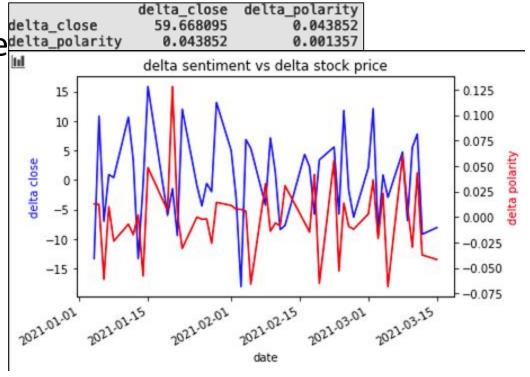
- Study the relation of them step by step
- Summary of testing

	Graph	Covariance	Correlation
1 (Base case)	Sentiment vs stock price	0.00796	0.125
2	Change in sentiment vs change in stock price	0.0439	0.541
3	Yesterday sentiment vs change in stock price	0.0508	0.661

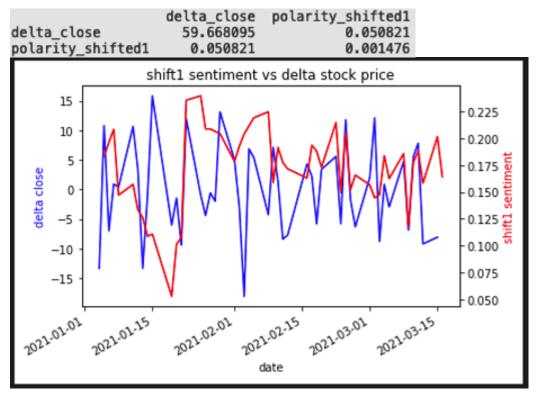
- Sentiment vs stock price
- To check the covariance of
 - The sentiment of YouTube comments
 - Stock close price
- As a base case for later comparison
 - Red line: sentiment value (polarity)
 - Blue line: close price
- Covariance: 0.00796
- Correlation: 0.125



- Delta sentiment vs delta stock price
- Aim to study if a positive change in the comment will lead to the stock rise
- Compared to the base case:
 - Covariance: 0.00796 -> 0.0439
 - Correlation: 0.125 -> 0.541
- Spikes quite matched
- Positive change in comments likely to see the stock rise



- Yesterday sentiment vs delta stock price
- Aim to study if it is possible to use sentiment value to predict the stock price
- Compared to the previous case:
 - Covariance: 0.0439 -> 0.50821
 - Correlation: 0.541 -> 0.661
- Using yesterday sentiment value can give us a better prediction



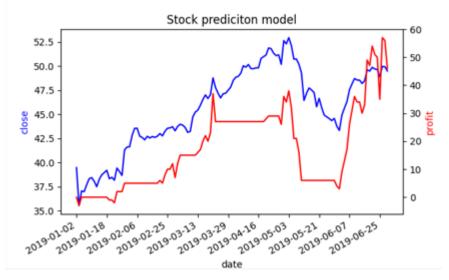
Investment tool

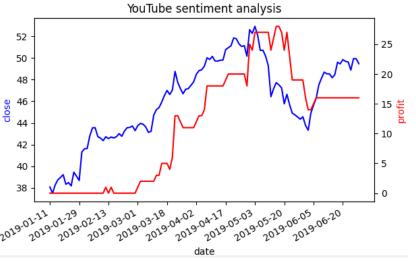
- Wrap up our project by integrating them into a tool
- A tool that provides our founding in these two semesters

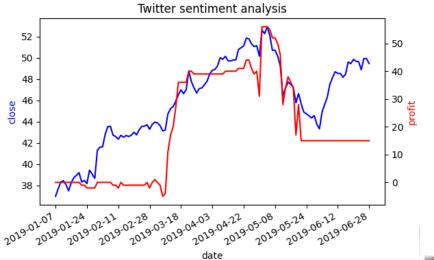
- Stock prediction using our term 1 model
- Pattern recognition
- Social media sentiment analysis
- Backtest
- Tool demonstration

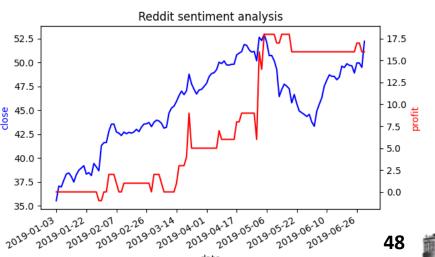
Investment tool - backtest

Strategy	Profit
Prediction model	46
YouTube sentiment	16
Twitter sentiment	15
Reddit sentiment	16



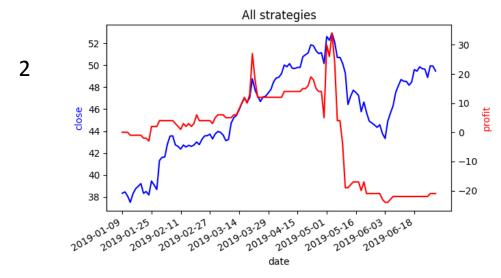






Investment tool - backtest

Minimum	Profit
1	19
2	-21
3	23
4	11





Conclusion

- Pattern recognition
 - The outcome of the training is not satisfying, many unsuccessful training
 - No existing dataset and quality of the hardcode detector is not good enough
 - Dataset size is too small
- Twitter (Internet Archive)
 - Inconsistent in data
 - Takes too much time to process the data
- Twitter (Twint)
 - Using time lag & delta gives a better correlation
- Reddit
 - Raw data is good compared to Twitter, adding delta gives a better result
- YouTube sentiment shows us an interesting finding
 - Adding time lag gives us a better correlation
 - Possibility of using YouTube comment as a media to predict the stock

