Using Deep Learning for Breast Cancer Diagnosis

LYU1704

Li Qi (1155062147) , Li Wei(1155062148)
Supervisor: Prof. Michael R. Lyu
CUHK CSE
01. Introduction
Introduction

01 Motivation
02 Background
03 Objective
Introduction

01 Motivation

02 Background

03 Objective
Introduction: Motivation

• Breast cancer diagnosis
• 10+ gigapixels per patient
• agreement in diagnosis < 48%
Introduction: Motivation

- Current automatic diagnosis
- Statistics
- Jargons
- Codes
Introduction

01 Motivation
02 Background
03 Objective
Introduction: Background

Naïve Bayes SVM Neural Network DNN DNN (on GPU)
Deep Learning for Medical Images

- structures detection
- segmentation
- labeling and captioning
- computer aided detection or diagnosis
Introduction

01 Motivation
02 Background
03 Objective
Introduction: Objective
Introduction: Objective
Introduction: Objective
02. Related Work
Related Work

01 Naïve Bayes for Breast Cancer Diagnosis
02 SVM for Remote Breast Cancer Diagnosis
03 Classification of Skin Cancer with DNN
Naïve Bayes for Breast Cancer Diagnosis

- 42 features
- Multiple models
 - Competitive neural network
 - Fuzzy C-means
 - K-means
 - Gaussian mixture model
- 500 images from 50 patients

<table>
<thead>
<tr>
<th></th>
<th>KM</th>
<th>FCM</th>
<th>GMM</th>
<th>CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>100.00%</td>
<td>96.00%</td>
<td>100.00%</td>
<td>98.00%</td>
</tr>
<tr>
<td>Image</td>
<td>90.22%</td>
<td>85.78%</td>
<td>88.00%</td>
<td>89.56%</td>
</tr>
</tbody>
</table>

Kowal et al.
Related Work: SVM

01 Naïve Bayes for Breast Cancer Diagnosis

02 SVM for Remote Breast Cancer Diagnosis

- Preprocessing
- Cell Nuclei Detection
- False Findings Elimination
- Classification
- Feature Extraction
- Cell Nuclei Segmentation

- 3260 images
- Acc=82.6%

George et al.
Related Work: DNN

01 Naïve Bayes for Breast Cancer Diagnosis

02 SVM for Remote Breast Cancer Diagnosis

03 Classification of Skin Cancer with DNN

- Minimum preprocessing
- Acc=72.1±0.9%
- Human acc=66.0%

Esteva et al.
Method

01 Dataset
02 Preprocess
03 Model Architecture
04 Aggregation
05 Workflow
Method

01. Dataset
02. Preprocess
03. Model Architecture
04. Aggregation
05. Workflow
Breast Cancer Histopathological Image Classification (BreakHis)

different magnifying factors (40x, 100x, 200x, and 400x)
Breast Cancer Histopathological Image Classification (BreakHis)

9109 images

- 40x: 1995 images
- 100x: 2081 images
- 200x: 2013 images
- 400x: 1820 images
Breast Cancer Histopathological Image Classification (BreakHis)

Stain: hematoxylin and eosin

Biopsy procedure: Surgical Open Biopsy

Format: 3-channel RGB
8-bit depth
Method

01 Dataset
02 Preprocess
03 Model Architecture
04 Aggregation
05 Workflow
Preprocess

- Data Treatment
 - Image Segmentation
 - Sliding Window Crop
 - Random Crop
 - Resizing
 - Whitening
 - Contrast Limited AHE
 - Image Treatment
- Data Augmentation
Task: make dataset larger
Preprocess: Sliding Window Crop

01 Data Augmentation

02 Sliding Window Crop

Idea: crop systematically
Preprocess: Random Crop

01 Data Augmentation
02 Sliding Window Crop
03 Random Crop

Idea: crop randomly
Preprocess: Resizing

01 Data Augmentation
02 Sliding Window Crop
03 Random Crop
04 Resizing

Idea: simply shrink
Preprocess: Whitening

01 Data Augmentation
02 Sliding Window Crop
03 Random Crop
04 Resizing
05 Whitening

Idea: remove extra information
Preprocess: Contrast Limited AHE

01 Data Augmentation
02 Sliding Window Crop
03 Random Crop
04 Resizing
05 Whitening
06 Contrast Limited AHE

Idea: make image clearer
Method

01. Dataset
02. Preprocess
03. Model Architecture
04. Aggregation
05. Workflow
Model Architecture: CNN
Model Architecture: Input Layer

01 Input Layer

Task: read input
Model Architecture: Convolution Layers

01 Input Layer

02 Convolution Layers
Task: learn feature map

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

3
Model Architecture: Dropout

01 Input Layer
02 Convolution Layers
03 Dropout

Task: eliminate free riding

(a) Standard Neural Net
(b) After applying dropout.
Model Architecture: Residual Blocks

- **01** Input Layer
- **02** Convolution Layers
- **03** Dropout
- **04** Residual Blocks

Task: fix degradation problem

\[H(x) - x \rightarrow F(x) \]

\[H(x) = F(x) + x \]
Model Architecture: Residual Blocks

01 Input Layer
02 Convolution Layers
03 Dropout
04 Residual Blocks

Task: fix degradation problem

ImageNet Large Scale Visual Recognition Challenge 2015 winner
Model Architecture: Pooling Layers

01 Input Layer
02 Convolution Layers
03 Dropout
04 Residual Blocks
05 Pooling Layers

Task: subsampling

\[y = \max_{\text{local window}} (x) \]
Model Architecture: Activation Layers

01 Input Layer
02 Convolution Layers
03 Dropout
04 Residual Blocks
05 Pooling Layers
06 Activation Layers

Task: add non-linearity

\[f(x) = \max(0, x) \]
Model Architecture: Fully Connected Layer

01 Input Layer
02 Convolution Layers
03 Dropout
04 Residual Blocks
05 Pooling Layers
06 Activation Layers
07 Fully Connected Layer

Task: make output
Method

01 Dataset
02 Preprocess
03 Model Architecture
04 Aggregation
05 Workflow
Aggregation

patch to image

image to patient
Aggregation: Sum

Idea: posteriori ≈ prior

\[P(w_k | x_i) = P(w_k)(1 + \delta), \delta \ll 1 \]

Prediction = \text{argmax}[(1 - R)P(w_k) + \sum P(w_k | x_i)]
Aggregation: Plurality Vote

01 Sum

02 Plurality Vote

Idea: wisdom of crowds

\[
\text{Prediction} = \text{argmax}(\sum \Delta_i)
\]
Aggregation: Average

01 Sum

02 Plurality Vote

03 Average

Idea: weighted voting

\[
\text{Prediction} = \arg \max \left(\frac{1}{R} \sum P(w_k | x_i) \right)
\]
Idea: one bad apple spoils the whole barrel

$$\text{Prediction} = \begin{cases}
\text{malignant,} & \sum \Delta_i > 0 \\
\text{benign,} & \sum \Delta_i = 0
\end{cases}$$
Idea: n bad apple(s) spoil the whole barrel

$\text{Prediction} = \begin{cases}
\text{malignant,} & \sum \Delta_i \geq n \\
\text{benign,} & \sum \Delta_i < n
\end{cases}$
Method

01 Dataset
02 Preprocess
03 Model Architecture
04 Aggregation
05 Workflow
Workflow

- Design
- Implement
- Train
- Validate
- Test

- Accuracy
- Precision
- Recall
- F1-Measure
04. Results
Results

01. Results of different methods
02. Results analysis
03. Comparison with past papers
04. Limitations
Results

01 Results of different methods
02 Results analysis
03 Comparison with past papers
04 Limitations
Results of different methods

1. Preprocess method
2. Model structure
3. Segmentation method
Results of different preprocess methods

1. Preprocess method
2. Model structure
3. Segmentation method
Contrast-Limited Adaptive Histogram Equalization (CLAHE)
Whitening

01 Raw image

02 Contrast-Limited Adaptive Histogram Equalization (CLAHE)

03 Whitening
<table>
<thead>
<tr>
<th>Step</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Raw image</td>
</tr>
<tr>
<td>02</td>
<td>Contrast-Limited Adaptive Histogram Equalization (CLAHE)</td>
</tr>
<tr>
<td>03</td>
<td>Whitening</td>
</tr>
<tr>
<td>04</td>
<td>Demean</td>
</tr>
</tbody>
</table>

\[
DemeanImage = RawImage - \text{mean}
\]
Subtract gaussian smooth image and CLAHE

01. Raw image
02. Contrast-Limited Adaptive Histogram Equalization (CLAHE)
03. Whitening
04. Demean
05. Gaussian + CLAHE

\[\text{GaussianImage} = \text{CLAHE}(\text{RawImage} - \text{GaussianSmoothedImage}) \]
<table>
<thead>
<tr>
<th>No.</th>
<th>Preprocess Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Raw image</td>
</tr>
<tr>
<td>02</td>
<td>Contrast-Limited Adaptive Histogram Equalization (CLAHE)</td>
</tr>
<tr>
<td>03</td>
<td>Whitening</td>
</tr>
<tr>
<td>04</td>
<td>Demean</td>
</tr>
<tr>
<td>05</td>
<td>Gaussian + CLAHE</td>
</tr>
<tr>
<td>06</td>
<td>CLAHE + Whitening</td>
</tr>
<tr>
<td>07</td>
<td>Whitening + CLAHE</td>
</tr>
</tbody>
</table>
In general, **CLAHE** is the best preprocess method. **CLAHE** won’t work when the magnification factor is 40× while **whiten** operation can help model to overcome this problem. (**CLAHE + whiten**)
Results of different Model structures

- Preprocess method
- Model structure
- Segmentation method
Results of different model architectures: normal model architecture we used

- Normal model architecture we used
- Residual block
- Convolution layer
- Pooling layer
- Fully connected layer
Results of different model architectures

Result of normal model

- 40×: batch level accuracy, image level accuracy, image level F1 score
- 100×: batch level accuracy, image level accuracy, image level F1 score
- 200×: batch level accuracy, image level accuracy, image level F1 score
- 400×: batch level accuracy, image level accuracy, image level F1 score
First Convolution with Kernel Size 3×3

01

3×3 convolution

Normal model architecture we used

Kernel size 7×7
First Convolution with Kernel Size 3×3

01 3×3 convolution
First Convolution with Stride 2

01 3×3 convolution

02 Stride 2

Normal model architecture we used

Stride 1
First Convolution with Stride 2

01 3×3 convolution

02 Stride 2
Model with Feature Maps Doubled

01 3×3 convolution
02 Stride 2
03 Feature maps doubled
Model with Two Pooling Layers Before ResNet

01 3×3 convolution
02 Stride 2
03 Feature maps doubled
04 Two pooling layers

Normal model architecture we used
Model with Two Pooling Layers Before ResNet

01. 3×3 convolution
02. Stride 2
03. Feature maps doubled
04. Two pooling layers
Model with Dropout

01 3×3 convolution
02 Stride 2
03 Feature maps doubled
04 Two pooling layers
05 Dropout
In general, *stride 2* is the best model architecture. *Feature maps doubled* also makes sense, which means that the results can be better with the increase of model structure’s complexity.
Results of preprocess methods

1. Preprocess method
2. Model structure
3. Segmentation method
Random crop with input size 256×256

Random, 256×256

Random crop

Structure of the model we used with input size 256×256
Random crop with input size 64×64

01 Random, 256×256

02 Random, 64×64

Random crop

Structure of the model we used with input size 64×64
Sliding window crop with input size 128×128

01 Random, 256×256
02 Random, 64×64
03 Sliding window, 128×128

Structure of the model we used with input size 128×128
Sliding window crop with input size 64×64

01 Random, 256×256
02 Random, 64×64
03 Sliding window, 128×128
04 Sliding window, 64×64

Structure of the model we used with input size 64×64
In general, **sliding window crop with input size 128×128** is the best preprocess method. **Random** segmentation method, which increases the variance of train dataset, is a little better than **sliding window** method.
Results analysis

01 Results of different methods
02 Results analysis
03 Comparison with past papers
04 Limitations
Feature maps learned by first convolution layer
Localized prediction

Red color means more likely, blue color means less likely.
Five aggregation methods we apply have slightly different influence on accuracy, in general, \textit{sum/vote/average} are better than others.
Our model achieves high precision on image level, which is very practical because almost all malignant patients can be predicted as malignant.
Lower magnification results have a lower AUC value, which means that more batches are labeled with not solid predictions. (Prediction of probabilities are closer to [0.5,0.5]). Therefore, we can conclude that the model learns less information of low magnification dataset.
Comparison with past papers

01 Results of different methods
02 Results analysis
03 Comparison with past papers
04 Limitations
Comparison with past papers

01. SVM

02. Traditional CNN 1

03. Traditional CNN 2

04. DeCAF
 reuse a previously trained CNN only as feature vectors, which is then used as input for a classifier
Comparison with past papers

Image Level F1 score (%)
Comparison with past papers

![Image Level Accuracy (%)](chart)

- SVM
- Traditional CNN1
- DeCAF
- Our work
Comparison with past papers

- Our work is better than other research using the same dataset in almost all of cases.
- The difference can be as large as 5% in most cases.
- Low magnification factors, such as 40× and 100×, have fewer information and features for the model to catch and learn.
Limitations

01 Results of different methods
02 Results analysis
03 Comparison with past papers
04 Limitations
Overfitting

- We have tried different technical methods to solve the problem, early stop, L2 regularization and dropout, none of them make a huge improvement.
- The result can be better with the increase of model structure’s complexity.
- We think the reason may be the poor dataset, the dataset we use contains only 82 patients.
GPU memory limitation

- ResNet consumes a high GPU memory
- And larger input size means a less possibility to generate noise input. Therefore we may need a larger input size, which also consumes a higher GPU memory.

If red circle indicates a malignant tumor, then blue rectangle can be labeled as malignant correctly while black rectangle will become noise because there is no malignant tumor in it.
GPU memory limitation

- But 128×128 is the maximal size to use a pure ResNet model, otherwise we need a down-sampling operation to reduce the input size of ResNet.
- In our current work, we uses pooling layer/stride with 2 to do down-sampling, which causes a information loss definitely.
05. Future works
Future works

- Diagnosis using histopathological image
- Diagnosis using mammogram
- Tumor detection using mammogram
- Build a automated web-system to help breast cancer diagnosis
Thank you