LYU1702

Augmented Reality Game with Tango
How does human understand environment

Features:
- Color
- Shape
- Distance (Depth)

Types: Floor, Wall, Obstacle
- Segmentation and Classification
Image Information

Fishing on Lake
Depth Information
Some Previous Work

- AR Implementation
  - Plane Finding
  - Area Description Saving and Recognizing
  - Motion Tracking with Area Learning
- Tower Defense Game
  - Map Generator
  - Dynamic Enemy Navigation (D* Lite)
  - Other Game Elements (A Complete Game Scene)
How to process point cloud

1. Empty Space
2. Norma Estimation and Plane Detection
3. Segmentation
Normal Estimation
Segmentation

- Edge-Based
- Region Growing
- Model Fitting
Application-Navigation in Large Area
Application-Navigation in Multi-Floor
Algorithm

- Voxelize
- Build Hash Index for Voxels
- Calculate Normal Vector for each Non-Empty Voxel
- Find Walkable Surface
- Navigation
Voxelize
If we want to be able to use negative coordinates, we can simply add this to the top of our function:

- $x = \text{if } x \geq 0 \text{ then } 2 \times x \text{ else } -2 \times x - 1$
- $y = \text{if } y \geq 0 \text{ then } 2 \times y \text{ else } -2 \times y - 1$
- $z = \text{if } z \geq 0 \text{ then } 2 \times z \text{ else } -2 \times z - 1$
Calculate Normal Vector

- Based on Hough Transformation
  - Classification by Sampling and Voting
  - The voting procedure is carried out in a parameter space, from which object candidates are obtained as local maxima in a so-called accumulator space that is explicitly constructed by the algorithm for computing the Hough transform.

- Basic Idea:
  - For each voxel, pick fixed number of 3 random points (triple)
  - For each triple, calculate normal vector of the their plane (3 points can define a plane)
  - Vote for all the triples
  - Get the best bin (normal vector range) with most votes
  - Calculate the average normal vector in this bin as the final normal vector
Calculate Normal Vector

- Accumulator

<table>
<thead>
<tr>
<th>$n_\phi$</th>
<th>$M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>171</td>
</tr>
<tr>
<td>20</td>
<td>290</td>
</tr>
<tr>
<td>25</td>
<td>441</td>
</tr>
</tbody>
</table>
Calculate Normal Vector

- Discretization Issues
  - If the main peak of the distribution of normals lies near a bin boundary, votes will be almost equally distributed between two (or more) adjacent bins.
  - Although the above accumulator guarantees the nearly equal area for bins, their shape is different

- How to solve
  - Rotate the points and run algorithm several times
Complexity

- O(k) for each voxel, where k is the sampling size and k << n, n is the number of points in each voxel. So it’s very fast and can be run in real time.

- Compared to RANSAC for same purpose: its complexity is O(kn)
Calculate Normal Vector

The speed can be increased by using multi-thread

The calculation of normal vector for voxels can be parallelized
Upgraded AR Game
- Preparation
Upgraded AR Game - Demo
Further Implementation

- Indoor Navigation

  For example, in a large mall or plaza, the owner can create his own navigation app based on our application. Firstly, walk through the whole mall to remember the entire area description, and Secondly mark the location of different shops and other facilities like the counters, the toilets and the exits. Then the app can firstly use the partial area description nearby to recognize where the device is, and secondly search the route to the desired destination for the user, and finally show the route to lead the user get to his destination.
Further Implementation

- Game
  - Some special venue like the Buzz Lightyear Astro Blasters in Hong Kong Disneyland can create its own AR game based on our system. Firstly, as usual, scan the whole area to remember the entire area description. Secondly make the enemy appearances in some locations. Thirdly implement a First-Person-Shooting game with UI. So that the player can play the game through their phone.
Further Implementation

- Exhibition or Museum
  - Besides an ancient china bowl, the app recognizes the area and then shows the corresponding 3D animation about how the people discovered this bowl and how the ancient people create this bowl for better understanding.
  - Or, besides a famous Chinese calligraphy, the app recognizes where the device is and which exhibit is nearby, then the app shows the image the poem describes and the scene where and how the poet wrote it, the historical background of it.
Reference


  http://dmauro.com/post/77011214305/a-hashing-function-for-x-y-z-coordinates