

Supervised by Prof. LYU Rung Tsong Michael

STUDENT ASSISTANCE SYSTEM BY
CU LINK CARD
LYU1501 Final Year Project Report

Ho Pak Lam (1155034644)

Ng Tsz Kit Jeff (1155033325)

LYU1501: Student Assistance System by CU Link Card

 1

Abstract

Android application development together with the use of the NFC technology is the focus of

this project to enrich course related activities. Homework coupon system is developed in this

semester. “Homework coupon” is a type of coupon that teacher gives to student if students

have answered questions well during class in order to improve interactivity. Student could

also be exempted in doing some homework questions by using coupons, which is now used in

course CSCI3100. Android applications are developed especially for teachers, tutors, and

students. They could use their CU Link card, which is a NFC card, to tap on the android

device as a token to recognize a user. Homework coupon system with CU Link card allows

teachers giving homework coupon to students during class. After class, students could view,

use and exchange their coupons. Tutor could check coupons when marking student’s

homework. All of the above functions are done in android device. Moreover, teachers may

trace each coupon transaction and view coupon detail information at any time.

Apart from the android application, there is a server which contains a database to store those

information. Also, database design, schema, and implementation are discussed in this project.

LYU1501: Student Assistance System by CU Link Card

 2

Contents

1. Introduction .. 5

1.1 Motivation .. 5

1.2 Objective .. 5

1.3 Background .. 6

2. Technical Support and Preliminary study .. 7

2.1 Development Environment .. 7

2.2 Software tool: Android Studio ... 8

2.3 Software tool: Database by phpMyAdmin .. 9

2.4 NFC Technologies ... 10

2.4.1 NFC Operation Mode ... 10

2.4.2 NFC technologies.. 11

3. System Architecture ... 12

3.1 Overall Architecture... 12

3.2 System Overview ... 13

3.3 Activity Diagram ... 15

4. Design and Implementation ... 20

4.1 Server Side ... 20

LYU1501: Student Assistance System by CU Link Card

 3

4.1.1 Database: ER Diagram .. 20

4.1.2 Database: Schema ... 21

4.1.3 Implementation: PHP, JSON, SQL queries .. 25

4.1.4 Data security: SQL injection ... 39

4.1.5 System failure ... 40

4.2 Client Side .. 40

4.2.1 Modules design: Concerning different users .. 40

4.2.2 Module design: Data flow diagram ... 42

4.2.3 User interface design... 43

4.2.4 Modules implementation. Sequence Diagram .. 50

4.2.5 User Interface Implementation ... 59

4.2.6 Java Implementation ... 61

5. Limitation and difficulties.. 67

5.1 NFC security .. 67

5.2 CU Link card.. 68

6. Future works .. 69

6.1 Database design ... 69

6.2 Make a kiosk .. 70

6.3 Database security ... 71

LYU1501: Student Assistance System by CU Link Card

 4

6.4 Deployment .. 71

6.5 Extension.. 72

7. Conclusion ... 73

8. Acknowledgements .. 74

9. References .. 75

LYU1501: Student Assistance System by CU Link Card

 5

1. Introduction

1.1 Motivation

Smart card makes daily life easier. Smart cards that using NFC/ RFID technology like

Octopus cards, student cards are indispensable products which could optimize user

experience by just tapping the card on a card reader.

The Chinese University also used NFC card called CU Link card. However, the card is not

well utilized. Many activities still rely on traditional pattern. For example, when we enroll in

some open seminars, we still need to input personal information on every activities. It is

believed that the procedures could be simplified by tapping the student card to recognize a

user, which could save time and effort. Increasing the usage rate of a NFC card, introducing

more applications on NFC, could optimize the usage of NFC.

1.2 Objective

Our objective is to create an android application which the CU Link card could be used as a

token to enrich course related activities.

To visualize our system effectively, we decided to create a “virtual homework coupon”

system, in order to show the functions which could be used in the app. The system will be

discussed in the following section.

LYU1501: Student Assistance System by CU Link Card

 6

1.3 Background

In our campus, CU link card are commonly used in functions including attendance taking,

book borrowing in libraries and account top-up. Yet, a NFC card could be used more

effectively. Simplifying procedures and functions by tapping the student card rather than

inputting personal information every time could save time and effort. Increasing the usage

rate of a NFC card, introducing more applications on NFC, could optimize the usage of NFC.

Specifically, there exist some courses like CSCI3100 which gives out “homework coupon” to

motivate the interaction between student and

teacher. Students can get a coupon if they answered

some questions well during lesson. By using the

“coupons”, student could be exempted in answering

some questions in the homework assignment.

Students are also allowed to give the coupons they

own to other students like friends if they want.

Physical coupons are given in the current situation. Our system could give out virtual

coupons, which introduces more functions, for example, teacher can track who have given the

coupon to other students.

Figure 1 A sample of “homework coupons” used in

course CSCI3100.

LYU1501: Student Assistance System by CU Link Card

 7

2. Technical Support and Preliminary study

2.1 Development Environment

As a smartphone application with NFC function is going to be build, we use android studio

with Java. We only develop the application on Android environment but not in iOS, because

until iPhone 6, iPhone does not contain NFC module. For iPhone 6 and 6 Plus, Apple has

locked its NFC chip function for apps other than Apple Pay. [1] Therefore, Android is our

focus.

During development, we have set the minimum SDK to API 15: Android 4.0.4

(IceCreamSandwich). According to android studio, 94% of smartphone use this API or

above, which could strike a balance between the number of smartphones could be used and

technology advancement. Although setting the minimum SDK at a lower level allows even

more device to use, but there may be differences in API calls and hence increase development

difficulties. However if we set the minimum SDK too high, most of the devices could not use

our application.

LYU1501: Student Assistance System by CU Link Card

 8

2.2 Software tool: Android Studio

Android studio is chosen instead of Eclipse ADT. The major

reason is that Android Studio is the official IDE. Comparing

with Eclipse, Android Studio has a better integration with apps

development. Android Studio supports Gradle, while Eclipse

require more plugin for that. There are a lot of steps from

coding until an APK is produced. Gradle helps developer build

the project in one click in Android Studio. Moreover, developer only need to “edit the build

the files at the module level” [2], according to Android Studio. Suppose we want to change

the compiling version, editing the plain text in the Gradle build files works.

We are using Android Studio 1.4.0, which is the latest version available at the time we start to

develop our application.

Android Studio comes along with its simulator, but instead we directly connect our android

device to do debugging and testing. The major reason is that NFC function could not be used

with the simulator.

Figure 2 Icon of Android Studio

LYU1501: Student Assistance System by CU Link Card

 9

2.3 Software tool: Database by phpMyAdmin

This homework coupon system stores the coupons in a database

rather than saving it into the student CU Link card or other NFC

cards, as memory in the NFC card is very limited and we need to

keep the states of each coupon up-to-date. As a result, a MySQL

database with phpMyAdmin is used.

We have created tables inside the database to store information of classes, tutors of different

classes, coupons and coupon transaction logs.

phpMyAdmin is used for creating new table, managing database structure and making

modification on database record during the testing and debugging stage.

We have chosen to use phpMyAdmin as it has a GUI which is easy to understand and use.

Moreover, its web interface makes it work well in different platforms, even for a browser of a

smartphone. Moreover, there are “query-by-example” [3] which could be used to create

complex queries.

We are using phpMyAdmin version 4.0.8. The environment is provided by the VIEW Lab.

Figure 3 Icon of phpMyAdmin

LYU1501: Student Assistance System by CU Link Card

 10

2.4 NFC Technologies

2.4.1 NFC Operation Mode

According to NFC forum, NFC has 3 operation mode:

The first one is reader/writer mode (ISO 14443, FeliCa standard) [4]. The NFC device,

smartphone in our case, could read the data of NFC tag, like the ID of the tag The NFC tag is

passive, the active device which is the smartphone initiate the action to read or write data

from/ to the tag. Our project use this mode the get the tag ID as a token for identifying the

person.

The remaining two modes are Peer-to-Peer mode, and Card Emulation mode. For the former

one, a peer is a smartphone device. In this mode, two smartphones can touch each other for

transferring data, just like in Wi-Fi or Bluetooth. For the latter one, the NFC reader creates

EM field to get the information of a NFC device. In another words, the NFC device acts like

a smart card. This operation mode used in mobile payment.

LYU1501: Student Assistance System by CU Link Card

 11

2.4.2 NFC technologies

From the final year project from year 2013, they have summarized some differences between

different types of NFC technologies and tag types. No matter the MIFARE system which

used by the CU Link card, or the FeliCa which used by Octopus card in Hong Kong, they

have similar usage with different memory size and data rate. [5]

In our project, the UID of the NFC card (CU Link card) is used as a token to recognize a

person. The UID is a string attached to the card which are different among CU Link cards.

Worth to note that, there is a protocol called “NFC-A (ISO/IEC 14443 type A) protocol anti-

collision and activation” [6]. The major difference of this type of protocol with others is that

on every time the card tap the reader, a randomly generated UID is shown on the reader. In

this case, the UID could not be used as a token for identifying a user. Both CU Link card and

Octopus card is not using this strategy.

LYU1501: Student Assistance System by CU Link Card

 12

3. System Architecture

3.1 Overall Architecture

The system is divided into two parts: server and client (application).

The server is responsible for storing data in a database. The data in database is always

retrieved by the client.

A client can use the mobile app to do tasks like reading the NFC card. All the NFC

manipulation are done in the app. The UID of the NFC tag is then sent to the server to get

related data.

Figure 4 Simple graph showing the overall architecture of the system

LYU1501: Student Assistance System by CU Link Card

 13

3.2 System Overview

As mentioned in the first section, we use a “virtual homework coupon” application as an

example to explain the function available in the application. For the sake of communication,

we will name the system that currently using, that means giving out “physical homework

coupon”, as the traditional model.

This system is divided in to three parts, namely “Teacher side”, “Tutor side” and “Student

side”.

Figure 5 The flow of homework coupon system

1. First of all, the “Teacher” (Instructor) need to “Create a class”. For example, there is a

class called “CSCI3100 Software Development”. By inputting data to the app, the app

LYU1501: Student Assistance System by CU Link Card

 14

will submit the information to the server. Teacher’s NFC card is scanned as a token to

identify a particular teacher created this class.

2. Tutor corrects homework. Teacher can “Add tutor to class”, this step is optional. By

scanning teacher’s card and tutor’s card, we can know that a particular tutor belongs

to a particular course/ class (say CSCI3100).

3. During lesson, if a student answered a question well, teacher may consider giving out

a “homework coupon”. In the traditional model, a physical homework coupon is

given out. But using this android application, Teacher taps his/ her NFC card, and

then student taps his/ her own card on the same device. The transaction is finished.

4. The student can check his/ her own coupons, e.g. how many coupons he/ she owns, at

what time and date he/ she got the coupon, etc. On the other hand, teacher could also

view how many coupon he/ she has given out, whether the coupon is used or not, etc.

5. The student can also give coupon to other people.

6. The student can mark the coupon as “used”, indicating that the student wants to use

this coupon in the homework for exempting answering some questions. The

uniqueness of a coupon is indicated by a string. In the traditional model, student clips

the coupon into the homework, but now, student need to write the code (string) of the

coupon.

7. Tutor or teacher could mark the coupon as “checked”, that mean it is consumed, this

action could not be undo. Tutor/ teacher input the string given by the student, and then

scan teacher/ tutor’s NFC card that had previously registered in step 1 & 2.

LYU1501: Student Assistance System by CU Link Card

 15

There are some advantages.

1. The instructor can check who has transferred the coupon to other users.

2. The student can check whether the coupon is successfully consumed. In other words,

if the tutor/ teacher has received the coupon.

We could generalize the above event. It means that those functions could also be applied on

different event. For example, as course attendance taking. Similar with the above example,

the teacher need to create a class. The process of “giving homework coupons” now becomes

taking attendance. Teacher’s CU Link card and student’s CU Link card is tapped. The

“coupon” generated is an indicator that the student has attended the lesson. On the student

side, the student can tap his/ her own CU Link card to check the “coupons”, that mean if the

attendance is recorded successfully.

3.3 Activity Diagram

Diagrams are used to shows the activity flow of different functions in brief.

Create class/ event

To create class/ event, user need to type the class information into the application first, and

then tap teacher’s NFC card. After scanning the UID of the card, the information of the class

will be sent to database and saved.

LYU1501: Student Assistance System by CU Link Card

 16

Figure 6 Activity diagram showing the flow of adding a class/ event

Add tutor

To add tutor, user need to scan the teacher NFC card first and the application will read the

UID of the card. If the UID is not found in the database, the application will guide the user to

“create new class” screen. If the UID is found in the database, the application will display all

the classes created by the teacher NFC card in a list. After selecting the class, the application

will ask user to tap the tutor NFC card. After scanning the UID of the NFC card, the

information about the tutor and class is updated to the database.

Figure 7 Activity diagram showing the flow of adding a tutor

LYU1501: Student Assistance System by CU Link Card

 17

Give out coupons

To give coupon, teachers need to tap their teacher NFC card. After scanning the UID of the

card, the UID will be sent to server. If the UID is not found in the database, the application

will guide user to “create new class” screen. If the UID is found in the database, the

application will display all the classes created by the teacher NFC card in a list. After

selecting the class, the application will ask user to tap the student NFC card. After scanning

the UID of the NFC card, coupon will be created and stored in database.

Figure 8 Activity diagram showing the flow of giving out coupons

LYU1501: Student Assistance System by CU Link Card

 18

Transfer coupons between users

To make transaction on coupons, student need to scan their student NFC card first. After

scanning the UID of the card, the application will display all the coupons that the student got

in a list. Student need to select which coupon he/ she want to transact. The application will

display the detail information of the coupon. Student needs to press “exchange coupon” and

scan the student NFC card. Then, the receiver’s student NFC card needs to be scanned. If the

coupon belongs to the sender and the coupon is not mark as used or checked, the new coupon

owner and coupon ID will be saved in the database, else, error message will be shown.

Figure 9 Activity diagram showing the flow of transferring coupon between users

LYU1501: Student Assistance System by CU Link Card

 19

View and Check Coupons

First, type the coupon ID to the application. The detail of that coupon will be shown. Then

tap the teacher / tutor NFC card. If the UID of the card is found in the database and the card is

in the teacher / tutor list of the class, the coupon will be marked as check in the database, else,

error message will be shown.

Figure 10 Activity diagram showing the flow viewing and checking coupons.

LYU1501: Student Assistance System by CU Link Card

 20

4. Design and Implementation

4.1 Server Side

4.1.1 Database: ER Diagram

The graph below shows the structure of our database.

Figure 11 ER diagram showing the structure of our database.

LYU1501: Student Assistance System by CU Link Card

 21

The database is used to store data including the class information, coupon information, etc.,

as mentioned in the previous section. The server offer a large memory size, comparing to the

android smartphone, so the server is capable to handle an increasing number of records. The

server is also used to synchronize information with the android device, user can view the

most updated information once the device is connected to the internet. Related information

will be retrieved from the database. Another reason is security issue. By putting the data in

server, user could only retrieve the part that is related to the user.

4.1.2 Database: Schema

The schema of the database is shown below:

class(eventID: integer, eventTitle: text, eventDate: date,

eventStartTime: time, eventEndTime: time, eventDetail: text,

organizerID: varchar: private: int)

coupon(studentID:varchar, couponID: varchar, eventID: integer,

remarks: text, used: int, checked: int, checkBy: varchar)

trancou(fromStudentID: varchar, fromCouponID: varchar,

toStudentID: varchar, toCouponID: varchar, tranTime: datetime)

tutor(tutorNo: int, eventID: int, tutorID: varchar)

LYU1501: Student Assistance System by CU Link Card

 22

Class Table

Each tuple represents a uniquely identified class/ event. CouponID is the primary key.

When a user create a new class/ event, the user can choose whether the event is a private one

or not. “Private event” means the event is not searchable. “Open event” means it is a

searchable class. For example, “homework coupon” system is a private event, because we do

not want student beyond the specific class to gain access to this event and earn coupons

freely. Furthermore, as mentioned above, this system could be applied on various occasions,

suppose there is an open seminar hold by the university, everyone can join if they are

interested, this will be an “open event”.

Attribute Description Data Type

eventID The ID of the class/ event, unique Integer (Auto

increment)

eventTitle The title of the class/ event String

eventDate Specify the date of the class/ event, optional field Date

eventStartTime Specify the starting time of the class/ event,

optional field

Time

eventEndTime Specify the ending time of the class/ event,

optional field

Time

eventDetail Specify the detail of the class/ event, optional field String

organizerID The card UID of the person who create this event String

private Declare if this event/ class is a private one. “1” if

private, “0” if not private (that means open event)

Integer

LYU1501: Student Assistance System by CU Link Card

 23

Coupon Table

Each tuple represents a uniquely identified coupon. CouponID is the primary key.

eventID is the foreign key (primary key of table class).

Attribute Description Data Type

studentID the card UID of the owner of this

coupon

String

couponID The ID of the coupon, unique String

eventID The ID of the event Integer (Auto increment)

remarks Remarks added to the coupon String

used Mark ‘1’(True) if the student want to

use this coupon, ‘0’ (False) else.

Integer

checkBy The card UID of the tutor/ teacher is

marked if this coupon is consumed.

String

LYU1501: Student Assistance System by CU Link Card

 24

Trancou (Transfer coupon) table

What means by transfer coupon is that one user can give a coupon to another user.

fromCouponID is the primary key. Each tuple represents one transaction. To ensure the

original owner of coupon cannot use the coupon after the transaction, the coupon ID is

regenerated.

Attribute Description Data Type

fromStudentID The card UID of the sender of the coupon String

fromCouponID The original coupon ID, unique String

toStudentID The card UID of the receiver of the

coupon

String

toCouponID The newly generated coupon ID String

tranTime The timestamp of the occurrence time of

this transaction.

Date Time

Tutor table

Each tuple links a tutor with an event/ class. eventID is the foreign key (primary key of

table class). Tutor-Class is a many-to-many relationship, which means one class can have

many tutors, one tutor can join many classes.

Attribute Description Data Type

tutorNo Uniquely identify a tutor in a class. Integer (Auto increment)

eventID The ID of the class/ event,

uniquely identify a event.

Integer

tutorID The card UID of the tutor. String

LYU1501: Student Assistance System by CU Link Card

 25

4.1.3 Implementation: PHP, JSON, SQL queries

In our application, PHP act as a communication channel for the android application to submit

queries to the server, and get back the related records.

There are few reasons of using PHP. PHP is a server-side scripting language, the content is

hided from the viewpoint of a user, all the database configuration are separated from the

android app. The database is more prone to leakage of private information if the

configuration is put inside the app. Moreover, Java and PHP got libraries on JSON.

Therefore, using JSON is a relatively straightforward method to retrieve the data.

The PHP contains of a number of modules, namely:

Major group of modules Module names

Configuration db_config, db_connect

Retrieve record from database get_coupon_details, get_coupon_log,

get_student_coupon, get_teacher_coupon,

view_teacher_class

Insert record to database add_class, add_tutor, give_coupon,

exchange_coupon

Edit record in database mark_used_coupon, mark_checked_coupon

LYU1501: Student Assistance System by CU Link Card

 26

Configuration module

This module include 2 files, db_config and db_connect are used to connect the

database. Here, the part of code for connecting the database in the file db_connect.php is

shown.

function connect() {

 // import database connection variables

 require_once __DIR__ . '/db_config.php';

 // Connecting to mysql database

 $con = mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD) or

die(mysql_error());

 // Selecting database

 $db = mysql_select_db(DB_DATABASE) or die(mysql_error()) or

die(mysql_error());

 // returning connection cursor

 return $con;

}

Retrieve record from database

A lot of data is needed to retrieve from the database, including the coupon details

(get_coupon_details), coupon transaction log (get_coupon_log), number of

coupons that a student got (get_student_coupon), number of coupons that a teacher

given (get_teacher_coupon), and number of courses that a teacher created

(view_teacher_class).

The following code shows an example of getting the records of all the coupons got by a

student, which is the code in get_student_coupon.php

LYU1501: Student Assistance System by CU Link Card

 27

<?php

// array for JSON response

$response = array();

// include db connect class

require_once __DIR__ . '/db_connect.php';

// connecting to db

$db = new DB_CONNECT();

if (isset($_POST["studentID"])){

 $studentID = $_POST['studentID'];

 // get all coupons from coupons table

 $result = mysql_query("SELECT * FROM lyu1501_coupon NATURAL JOIN

lyu1501_class WHERE studentID = \"$studentID\"") or die(mysql_error());

 // check for empty result

 if (mysql_num_rows($result) > 0) {

 // looping through all results

 // coupon node

 $response["coupon"] = array();

 while ($row = mysql_fetch_array($result)) {

 // temp user array

 $coupon = array();

 $coupon["couponID"] = $row["couponID"];

 $coupon["eventTitle"] = $row["eventTitle"];

 $used = $row["used"];

 if(strcmp($used , "0") == 0){

 $coupon["used"] = "Unused";

 } else {

 $coupon["used"] = "Used";

 }

 // push single coupon into final response array

 array_push($response["coupon"], $coupon);

 }

 // success

 $response["success"] = 1;

 // echoing JSON response

 echo json_encode($response);

 } else {

 // no coupons found

 $response["success"] = 0;

 $response["message"] = "No coupon found";

 // echo no users JSON

 echo json_encode($response);

 }

LYU1501: Student Assistance System by CU Link Card

 28

} else {

 $response["success"] = 0;

 $response["message"] = "Required field(s) is missing";

 echo json_encode($response);

}

?>

For other parts of the code, they are similar with different SQL queries. Only SQL queries is

shown for clarity.

Purpose

(Corresponding PHP file)

SQL query

View the general information of

the coupons given by a teacher.

(get_teacher_coupon.php)

SELECT *

FROM lyu1501_coupon

NATURAL JOIN lyu1501_class

WHERE organizerID = \"$teacherID\"

View the details of a particular

coupon.

(get_coupon_details.php)

SELECT *

FROM lyu1501_coupon

NATURAL JOIN lyu1501_class

WHERE couponID = \"$pid\"

View which user gave the coupon

to which user

(get_coupon_log.php)

SELECT *

FROM lyu1501_trancou

WHERE fromCouponID LIKE '$searchID%'

OR toCouponID LIKE '$searchID%'

ORDER BY toCouponID

View the classes/ events that

teacher/ instructor created.

(view_teacher_class.php)

SELECT *

FROM lyu1501_class

WHERE organizerID LIKE '$teacherID'

LYU1501: Student Assistance System by CU Link Card

 29

Insert Record from Database

We have 4 modules for inserting records. Add a new class/ event (add_class), add a tutor

into a class/ event (add_tutor), giving out coupon by a teacher to a student

(give_coupon), and transferring coupon between students (exchange_coupon).

Purpose

(Corresponding PHP file)

SQL query

Create a new class/ event.

1. Insert a new event into

the class table

2. The card UID of teacher

himself/ herself is also

added to the tutor table,

because both teacher and

tutors can validate the

coupon (mark coupon as

“checked”)

(add_class.php)

INSERT INTO lyu1501_class(eventTitle,

eventDate, eventStartTime,

eventEndTime, eventDetail, organizerID,

private)

VALUES ('$eventTitle', '$eventDate',

'$eventStartTime', '$eventEndTime',

'$eventDetail', '$organizerID',

'$isPrivate')

INSERT INTO lyu1501_tutor(eventID,

tutorID)

VALUES ('$pastEvent', '$organizerID')

Add a tutor to a class.

1. Search the corresponding

eventID from class table

2. Insert the tutor card UID

into the tutor

(add_tutor.php)

SELECT eventID

FROM lyu1501_class

WHERE organizerID = '$teacherID'

INSERT INTO lyu1501_tutor

(eventID ,tutorID)

VALUES ('$eventID', '$tutorID')

LYU1501: Student Assistance System by CU Link Card

 30

Giving out coupon by a

teacher to a student

1. Add a new coupon

2. The teacher given a

coupon to student, so a

record is added in the

“trancou” table,

indicating a coupon

transfer action has

performed.

(give_coupon.php)

INSERT INTO lyu1501_coupon(studentID,

couponID, eventID)

VALUES('$studentID', '$nextCoupon',

'$eventID')

INSERT INTO lyu1501_trancou

(fromStudentID , fromCouponID ,

toStudentID , toCouponID , tranTime)

VALUES ('$fromTeacherID', '$logString',

'$studentID', '$nextCoupon',

'$logString')

Giving a coupon from one

student to another.

1. Check if the coupon is

not consumed

(checked = ‘0’), nor

the student is going to

use the coupon (used

= ‘0’).

If the above

conditions are

satisfied, go to step 2

& 3

2. Update the new

coupon owner, and

new coupon ID

3. Log the transaction

(exchange_coupon.php)

SELECT *

FROM lyu1501_coupon

WHERE studentID = '$fromStudentID'

AND couponID = '$fromCouponID'

AND checked = '0'

AND used = '0'

UPDATE lyu1501_coupon

SET studentID = '$toStudentID' ,

couponID = '$nextCoupon'

WHERE CONCAT(couponID) = $fromCouponID"

INSERT INTO lyu1501_trancou

(fromStudentID , fromCouponID ,

toStudentID , toCouponID , tranTime)

VALUES ('$fromStudentID',

'$fromCouponID', '$toStudentID',

'$nextCoupon', '$sqlNowString')

LYU1501: Student Assistance System by CU Link Card

 31

Edit Record in database

There are 2 modules. When the student decided to use the coupon, he/ she can click the

button available in the android app. When the tutor checks the coupon, the tutor can know if

the student wants to use that particular coupon. (mark_used_coupon) The tutor checks

the coupon and mark as checked. The coupon is consumed and cannot be undo.

(mark_checked_coupon)

Purpose

(Corresponding PHP file)

SQL query

A student indicate that he/ she want

to use the coupon.

1. Search the coupon ID.

2. Toggle the “used” flag. That

means, if the student was not

going use the coupon, mark

that he/ she want to use, and

vice versa.

(mark_used_coupon.php)

SELECT checked

FROM lyu1501_coupon

WHERE couponID = \"$couponid\"

(student wants to use the coupon)

UPDATE lyu1501_coupon

SET used = '1'

WHERE couponID = '$couponid'

(student do not want to use the coupon)

UPDATE lyu1501_coupon

SET used = '0'

WHERE couponID = '$couponid'

LYU1501: Student Assistance System by CU Link Card

 32

Mark a coupon as checked/

consumed.

1. Check if the tutor found in the

tutor list.

2. If found, consume the coupon.

(mark_checked_coupon.php)

SELECT *

FROM lyu1501_tutor

WHERE eventID = $eventID

AND tutorID = \"$tid\"

UPDATE lyu1501_coupon

SET used = '1', checked = '1',

checkBy = '$tid'

WHERE couponID = '$couponid'

Database Normalization

The main purpose of doing normalization is to reduce data redundancy, and inconsistence

dependency. [7] If the data are redundant, and update requires multiple queries, the process

will be less efficient. If either one record is not updated, the record becomes inconsistent. By

performing normalization, data consistency is kept and maintainability is increased. There are

different rules regarding normalization of the database. We will analyze our table with

different normal forms.

First Normal Form (1NF):

Our database contains atomic values in each attribute. No repeating groups of data is allowed,

and each table has a primary key. For example, the schema for the tutor table is:

tutor(tutorNo: int, eventID: int, tutorID: varchar)

LYU1501: Student Assistance System by CU Link Card

 33

One tutor may join many classes. One class may have many tutors. Every tutor has a “tutor

ID” and every class/ event has an “event ID”. The primary key is a tutor number, which

uniquely defines the class-tutor pair. It is not allowed that one tutor ID has many event ID in

one tuple. For example

tutor(tutorNo: int, eventID1: int, eventID2: int, ..., tutorID: varchar)

violates 1NF.

Second Normal Form (2NF):

It is in 2NF because it is in 1NF and every non-key attribute depends on all the entire primary

key. For every table in our database, there is only one primary key. All the attributes within

the table depends on the primary key.

 For the “class” table: eventID is the primary key, and it is a representation of a class/

event. Fields like title, date, time, details, organizerID, depend on the eventID.

 For the “coupon” table: couponID is the primary key, a coupon belongs to a class/event,

belongs to one student. Each coupon could have fields like its own remarks, whether it is

consumed. All attributes depend on the primary key.

 For the “trancou” table: all data depends on the original coupon ID (primary key),

including the ID of the sender and receiver, the newly generated coupon ID, time of

having that transaction.

LYU1501: Student Assistance System by CU Link Card

 34

 Finally, for “tutor” table: tutor number, which is the primary key, indicates the event ID

and tutor ID.

Potential problem of 2NF: Update anomaly problem. It is known that the set of information

“studentID” and “couponID” in the “coupon” table also exists in “toStudentID” and

“toCouponID” in the “trancou” table, update anomaly may occur if update are not carried out

consistently. [8] Reviewing our SQL queries, such problem should not occur even though our

database is not in 3NF (mentioned in the next part) yet, as both table are updated on every

transactions.

Third Normal Form (3NF):

The table is in 3NF if it is in 2NF and there are no transitive dependencies. This database is

not in 3NF. For example, in the table “trancou”, the attribute toStudentID depends on

toCouponID, which a non-prime attribute depends on another non-prime attribute. Similarly

the pair fromStudentID and fromCouponID are dependent. However, as “fromCouponID” is

declared as primary key, it is not the concern of 3NF. We focus of the pair “toStudentID” and

“toCouponID”.

LYU1501: Student Assistance System by CU Link Card

 35

The following changes could be made to the database. Strikethrough lines means the attribute

should be removed so as to fit 3NF. An additional table is created, called “belong”, which is a

table indicates the dependency of couponID with studentID.

coupon(studentID: varchar, couponID: varchar, eventID: integer,

remarks: text, used: int, checked: int, checkBy: varchar)

trancou(fromStudentID: varchar, fromCouponID: varchar,

toStudentID: varchar, toCouponID: varchar, tranTime: datetime)

belong(couponID: varchar, StudentID: varchar);

Advantage of 3NF: 3NF ensures that the database is free of update, insertion, and deletion

anomalies. It is not needed to edit multiple tables regarding the same set of data, and hence

eliminate data inconsistencies.

There is trade-off between achieving a higher normalization form and readability. At the time

the database is created, in order to comprehend the structure of database effectively, it is

decided to use one table called “trancou” to log the basic information of coupon transaction.

If the database is in 3NF, multiple joins are required for getting same set of useful result.

LYU1501: Student Assistance System by CU Link Card

 36

Query optimization

Manipulating table joins and selections generate useful results. The speed of executing a SQL

query depends on the strategies used in joins and selections. Select useful attributes before

perform table join is generally more efficient then performing selection after joins. Such

difference in speed is not noticeable when there are a little number of tuples, but become

more obvious when the amount of tuple grows.

For example, the following query appeared previously gets the detailed information of a

particular coupon a student got. For simplicity, SELECT * (select all attributes) is written

here, but in actual application, only one attribute is not needed, which is “organizerID”.

SELECT *

FROM lyu1501_coupon

NATURAL JOIN lyu1501_class

WHERE couponID = \"$pid\"

By looking at the following schema, the only attribute for joining two table is “eventID”,

which is the primary key for “class” table and foreign key for “coupon” table.

LYU1501: Student Assistance System by CU Link Card

 37

class(eventID: integer, eventTitle: text, eventDate: date,

eventStartTime: time, eventEndTime: time, eventDetail: text,

organizerID: varchar: private: int)

coupon(studentID:varchar, couponID: varchar, eventID: integer,

remarks: text, used: int, checked: int, checkBy: varchar)

When consider choosing a suitable join, natural join is the most “natural” choice because

only useful result is produced. Inner join also produce same set of useful result but the join

attribute is duplicated. If we choose inner join, “eventID” will appear 2 times in every tuples,

which is redundant. Not specifying type of joins is also allowed in MySQL, i.e.:

FROM lyu1501_coupon, lyu1501_class

Which we sometimes adapted when we start to construct the SQL query. Not specifying the

type of join is equivalent to Cartesian product, also known as cross join. [9] No matter

natural join or Cartesian product both produce the correct result, but of course, in real

practice, natural join is used, as Cartesian product produces a huge table before we filter the

useful one by the WHERE clause, which is time-wasting, and undesirable.

The process of executing the query is like this:

1. Join “coupon” table and “class” table.

2. For this new table, select a particular tuple, which means a particular coupon the user

requested.

3. Do “project” operation, eliminates the attribute “organizerID”.

LYU1501: Student Assistance System by CU Link Card

 38

The logical query plan is as the following diagram.

Figure 12 Logical query plan of “join, select, project”

If there are many rows in the database. Do selection and projection before join may help

increasing the speed for getting the result. The logical query plan becomes the follow form:

Figure 13 Logical query plan of doing “select, project, join”

LYU1501: Student Assistance System by CU Link Card

 39

At this moment, there are very few number of rows in the database. After consideration, it is

not necessary to change our query plan as there are no difference on which plan is chosen.

The readability of the SQL query is higher if we keep the SQL query unchanged.

4.1.4 Data security: SQL injection

Data security is important for any system. Although there are no bullet-proof system, but

using strategies could reduce the chance of being invaded. SQL injection is one of the

methods to attack the database. User can destroy the database by this method. Until now, the

function “mysql_real_escape_string” is used in PHP code to avoid some SQL injection

problem. This function escapes special characters such as single quotes, by prepending a

backslash. [10] For example, the following code in “add_class.php” shows the usage of

this function for the field event title and details where users can input any string.

$eventTitle = mysql_real_escape_string($eventTitle);

$eventDetail = mysql_real_escape_string($eventDetail);

$result = mysql_query("INSERT INTO `viewtech`.`lyu1501_class`

(`eventID` ,`eventTitle` ,`eventDate` ,`eventStartTime` ,`eventEndTime` ,

`eventDetail` ,`organizerID` ,`private`)VALUES ('$pastEvent',

'$eventTitle', '$eventDate', '$eventStartTime', '$eventEndTime',

'$eventDetail', '$organizerID', '$isPrivate');");

However, using the above solution is not the best one. The wildcards in LIKE operator are

not escaped. Moreover, a large calls of “mysql_real_escape_string” slows down the database

LYU1501: Student Assistance System by CU Link Card

 40

as it calls MySQL library every time [11]. In next semester, we will use MySQLi to fix this

problem.

4.1.5 System failure

System failure may occur. All the records in the database are needed to back up regularly. In

case the system is down or the database is corrupted, there still one more copy of database, so

as to protect the data, preventing from loss.

4.2 Client Side

4.2.1 Modules design: Concerning different users

In the “homework coupon” system, we could divide functions available in the android app

into 7 major modules. The following UML use-case diagram shows the permission of

different users in using those modules. We have 3 kinds of actors, namely “student”,

“teacher”, and “tutor”.

LYU1501: Student Assistance System by CU Link Card

 41

Figure 14 UML use-case diagram showing 7 major functions on basis of actors and actions

LYU1501: Student Assistance System by CU Link Card

 42

4.2.2 Module design: Data flow diagram

The following data flow diagram shows the 5 major functions that the teacher could use.

Additionally, tutor can use the function “check coupon”.

Figure 15 Data flow diagram showing the major functions related to teacher & tutor

LYU1501: Student Assistance System by CU Link Card

 43

The UML use-case diagram in the previous section shown that a student can use 3 major

functions. One of the functions “View given coupons” is described in the table above. The

remaining 2 functions are described below.

Figure 16 Data flow diagram showing the major functions related to student

4.2.3 User interface design

A simple and intuitive design of a system is important in terms of user experience. A good

user experience can attract user in using the application. We try to reduce the number of

buttons need to be click when using the app. As our application have 3 types of users,

teacher, tutor and students, we separate into 3 apps, each app designed for the particular type

of user. The following diagrams shows the wireframe of our android application.

LYU1501: Student Assistance System by CU Link Card

 44

Tutor App

The tutor app is the simplest one. The main page is for searching coupons by coupon ID.

User can click on the “view coupon transition log” button to go to next page to the transfer

histor. The record is shown on the screen.

Figure 17 Graph showing the flow of screen for tutor

1. Main Page (search coupon ID)

2. View coupon transition log

Student App

The main function of student part is to view the coupons he/ she got. The coupons consumed

are also shown on the screen. When the student chooses a record, the details are shown. On

pressing the “Decide to use this coupon” button, the coupon will be marked as “used”. So

when he/ she submit the homework with this coupon, the tutor who corrects the homework

LYU1501: Student Assistance System by CU Link Card

 45

knows if the student intended to use that coupon. Moreover, the student can give his/ her

coupon to other users.

Figure 18 Graph showing the flow of screen for student

1. Home screen (tap student card)

2. List of coupon a student got

3. Details of a particular coupon

4. Give coupon to others

Teacher App

The teacher has the highest permission, he/ she has 5 major functions. The flow is shown in

the following diagrams.

LYU1501: Student Assistance System by CU Link Card

 46

Figure 19 Graph showing the flow of screen for teacher.

1. Main page

2. Create class

3. Add tutor to a class (step 3a request teacher’s NFC card, 3b: teacher choose a class,

3c: request tutor’s NFC card)

4. Give coupon to student (step 4a request teacher’s NFC card, 4b: teacher choose a

class, 4c: request student’s NFC card)

LYU1501: Student Assistance System by CU Link Card

 47

Screen 2 is the interface of creating class. When a class is successfully created, the teacher

can go back to the main page.

When the teacher pressed the second button “add tutor to class” on the main page. First of all,

screen 3a is shown, requesting teacher to tap his/ her CU Link card. After that, screen 3b is

shown if the teacher has created more than 1 class. Teacher need to choose the correct class.

If the teacher has created 1 class only, screen 3b will be skipped and directly go to screen 3c.

Screen 3c request tutor to tap his/ her card, success or failure message will be shown after the

card is tapped. The app remains at screen 3c if the user has not pressed the “back” button at

the bottom of the screen. If there are more tutors in the same course, he/ she can continue to

tap one by one.

For the third function, that is “giving coupons to student”, belongs to screens 4a through 4c.

Screen 4a and 4b are same as screen 3a and 3b respectively. Screen 4c is similar with 3c

except that the system request student to tap the card. A coupon is given on every tap.

The following figure shows the remaining 2 functions of the app. Which are “check/ consume

coupons” and “view coupons”.

LYU1501: Student Assistance System by CU Link Card

 48

Figure 20 Graph showing the flow of screen for teacher.

1. Home page

5a. Search coupon ID

5b. View coupon transaction log

6a. Tap teacher’s card

6b. List of coupon a teacher give out

LYU1501: Student Assistance System by CU Link Card

 49

Screen 5a and 5b belongs to the function consume coupon. The usage is the same as the tutor

app. Teacher got the permission to mark the coupon as checked, or say consumed. Same with

tutor, teacher can view the coupon transaction log.

Screen set number 6 are for viewing the coupons given out. First of all, teacher’s card is read

(screen 6a), then all the coupons are listed out (screen 6b).

LYU1501: Student Assistance System by CU Link Card

 50

4.2.4 Modules implementation. Sequence Diagram

New Class/ Event

The client using the android app is teacher. When a teacher clicks the button to add a new

class/ event, he/ she need to input some basic information about the class/ event, including

the class/ event title, which is a mandatory field, other optional fields including date, starting

time, ending time, details. The UID of CU Link card of the teacher is also retrieved and send

to the PHP (server). PHP then adds the following information to the database. After that, PHP

sends an echo back to the client to indicate that the class is successfully added.

Figure 21 UML sequence diagram showing the data exchange of adding a new class/ event.

LYU1501: Student Assistance System by CU Link Card

 51

Add tutor

A teacher can add tutors to the class. Teacher’s CU Link card UID and Tutor’s CU Link card

UID are required. Those information is sent to the PHP server. PHP will add a record to the

database. Normally, PHP will send a success message to the android device. The following

UML sequence diagram supposed the one using android application is teacher. If the one

using the app is tutor, the arrow in dotted lines indicating “success or fail” from server to

teacher will become from server to tutor.

Figure 22 UML sequence diagram showing the data exchange of adding a tutor to a class.

LYU1501: Student Assistance System by CU Link Card

 52

Give out coupons

The following diagram shows how a teacher gives out a coupon to students. Similar with

adding a tutor, Teacher’s CU Link card UID and student’s CU Link card UID is retrieved and

sent to PHP. The server will check whether teacher’s card is a legitimate one, which means

the one who create the class/ event and giving out the coupon belong to the same person. If

so, a coupon is created by PHP, inserted into the database. Finally, a success message is

returned. If the teacher’s card is not a legitimate one, the PHP echo a fail message back to the

android device.

Figure 23 UML sequence diagram showing the data exchange of giving out a coupon.

LYU1501: Student Assistance System by CU Link Card

 53

Use Coupon

To use a coupon, there are two parts of activities, the first part involving the student

indicating he/ she wants to use a particular coupon. The following diagram describes this

module. Another part is the tutor checks the coupon and mark as consumed, which is

described after this part. The student who is using the app presses the “use coupon” button. A

message is sent to PHP. Then the PHP will query the database if the student decides to use/

not to use coupon, also if the coupon has been consumed. We can summarize into 3 cases, as

shown in the “Alt” part in the diagram.

1. Situation: The student was not going to use the coupon, and the coupon is not consumed.

Action: Server send a query to update the database, mark that the student is decide to use

this coupon. Success message is sent back to the client.

2. Situation: The student was going to use the coupon, and the coupon is not consumed.

Action: Server send a query to update the database, mark that the student make up his/ her

mind, not to use this coupon. Success message is sent back to the client.

3. Situation: The coupon is consumed.

Action: As it is consumed already, the server sends a failure message to the app.

The diagram is shown on the next page.

LYU1501: Student Assistance System by CU Link Card

 54

Figure 24 UML sequence diagram showing the data exchange of a student indicating whether he/ she is going to use a

coupon.

LYU1501: Student Assistance System by CU Link Card

 55

Check Coupons

The tutor checks the coupon provided by the student and mark as consumed. The coupon ID

is sent to PHP. PHP then finds relating records in the database and return the record. Similar

with the situation, there are 3 situations:

1. Situation: The student was not going to use the coupon, and the coupon is not consumed.

Action: Note that tutor knows the student is not going to use the coupon before he/ she

press the button as the information is shown on the page. He/ she may consider follow up

action. If he presses the button to consume the coupon, server sends a query to update the

database, mark the coupon as consumed, and set that student want to use the coupon.

Success message is sent back to the client (tutor).

2. Situation: The student was going to use the coupon, and the coupon is not consumed.

Action: Server sends a query to update the database, mark that the coupon is checked and

consumed. Success message is sent back to the client.

3. Situation: The coupon is consumed.

Action: As it is consumed already, the server sends a failure message to the app.

The diagram is shown on the next page.

LYU1501: Student Assistance System by CU Link Card

 56

Figure 25 UML sequence diagram showing the data exchange of searching out a particular coupon to validate (mark the

coupon as consumed).

LYU1501: Student Assistance System by CU Link Card

 57

View Coupon Details

The client taps the NFC card to the device, the UID is read and sent to the PHP server. PHP

then search the database by the UID and return a list of coupons. The PHP returns an array of

JSON records to the client. On the client side, the application read every entry of JSON and

display in a list manner. The client can click on a particular entry, that particular coupon ID is

sent to the server and the server queries the database again. Detailed information related to

the coupon including the title, date, time, and details.

Figure 26 UML sequence diagram showing the data exchange of viewing the detail of coupons the user has.

LYU1501: Student Assistance System by CU Link Card

 58

Giving Coupons from one student to another

Coupons could be given from student to another. On pressing the button in the view coupon

details page, the android app will check if the coupon consumed based on the information got

in previous queries. The system does not allow such function if the coupon is consumed or

the student decided to use the coupon. If the client could give out coupons, his/ her CU Link

card UID and the receiver’s CU Link card UID is retrieved and sent to PHP. Similar with the

previous module, the UIDs together with the coupon ID is used to search the database.

Finally return success.

Figure 27 UML sequence diagram showing the data exchange of exchanging coupons between students.

LYU1501: Student Assistance System by CU Link Card

 59

4.2.5 User Interface Implementation

The user interface aims for simplicity. Note that the image for reference only. The actual user

interface may have slight differences based on the model and dimension of the device. Some

sample interface is shown below.

The image on left hand side below shows the main page which the tutor can input coupon ID

and search. If the search is success, related information is shown in the middle part. The

middle screenshot shows a wrong input, such coupon does not exist. A toast is shown on the

bottom. If the coupon code is correct, the image on the right hand side is shown. Details are

available. A note in green color is displayed to prompt the user that they can tap the NFC

card in order to consume the coupon.

Figure 28 Main page of tutor’s app

Figure 29 Simulating wrong input

Figure 30 Prompting the user to tap

CU Link card

LYU1501: Student Assistance System by CU Link Card

 60

If the user press “view coupon transition log”, a log showing coupon transitions is available.

If the owner of coupon did not gave the coupon to others nor received coupons from other

students, “Log not found” is shown; otherwise, a log is available listing out the records.

Figure 31 Sample screenshot showing “Log not found”

For other pages, both in student app and teacher app, on button pressed, the toast appear if it

is failed.

The first page of the student app request user to tap the CU Link card. Also, the design in the

teacher app for tapping CU Link card is similar, either appear as the design below, or as the

image shown in Figure 30, a text in green is shown to prompt user to tap the card any time to

perform a particular function.

LYU1501: Student Assistance System by CU Link Card

 61

Figure 32 Screenshot prompting the user to tap CU Link card to view the coupons.

Viewing the details of a particular coupon is similar with the previous screenshot that

showing the main page of tutor app, except that a search box is omitted. The design of

functions buttons are also similar, with an icon and text description next to it. For simplicity,

not all of the screenshots showing the design are shown.

4.2.6 Java Implementation

The system mentioned above is implemented by Java. There are some main points including

reading UID from NFC card, doing internet connection, manipulating records with server and

using toasts to show prompts.

LYU1501: Student Assistance System by CU Link Card

 62

Reading UID from NFC card

A part which is commonly used in our system is NFC scanning. The UID of the CU Link

card is read when the user taps his/ her card on the android phone. Enabling NFC permission

is needed, by adding the following line to AndroidManifest.xml

<uses-permission android:name="android.permission.NFC" />

The UID is get and stored at “scanNFC” when the CU Link card is tap on the device. The

data got is originally a byte array, we then convert the array of bytes to hexadecimal string.

As the back side of CU Link card contains the hexadecimal string, therefore converting to

hexadecimal string enable us to verify whether the data read is correct. The following code in

“Use_Coupon.java” in the tutor app shows the action performed after scanning the UID.

protected void onNewIntent(Intent intent) {

 if (intent.getAction().equals(NfcAdapter.ACTION_TAG_DISCOVERED)) {

 scanNFC = ByteArrayToHexString(intent.getByteArrayExtra

 (NfcAdapter.EXTRA_ID));

 }

 tutorID = scanNFC;

 new UseCoupon().execute();

…

}

The function of the above part is to get the UID in the NFC, then consume the coupon.

Actually not only CU Link card, the UID all NFC cards could be read.

LYU1501: Student Assistance System by CU Link Card

 63

Internet connection

Android application does not allow user to do internet related task in the main thread, so

instead a new thread is created for doing these tasks. AsyncTask is simpler to manipulate, it

allows user to “perform background operations and publish results on the UI thread” [12],

according to android studio. AsyncTask has 4 steps, the important one is

“doInBackground()”, which is the task, usually uploading or downloading data. Another one

is “onPostExecute(Result)”, the data downloaded is displayed after execution of the previous

step.

Manipulating records

First of all, AsyncTask is created, then an http request is made to get the coupon transaction

log, then followed by a loop to put the record into an array. The related code are shown

below. These tasks are done in the background. 3 examples are shown to describe the process

of submitting and getting records from/ to the database.

The following code shows a view of coupon transition log of a particular coupon ID. The

variable “success” is used for indicating whether there is successful return.

JSONObject json = jParser.makeHttpRequest(url_coupons_log, "POST", params);

try {

 // Checking for SUCCESS TAG

 int success = json.getInt(TAG_SUCCESS);

 if (success == 1) {

 coupons = json.getJSONArray(TAG_COUPONS);

 for (int i = 0; i < coupons.length(); i++) {

LYU1501: Student Assistance System by CU Link Card

 64

 JSONObject c = coupons.getJSONObject(i);

 String fromSID = "From Student ID " + c.getString(TAG_FROMSID);

 String toSID = "To Student ID " + c.getString(TAG_TOSID);

 String tTime = "Time : " + c.getString(TAG_TRANTIME);

 // creating new HashMap

 HashMap<String, String> map = new HashMap<String, String>();

 // adding each child node to HashMap key => value

 map.put(TAG_FROMSID, fromSID);

 map.put(TAG_TOSID, toSID);

 map.put(TAG_TRANTIME, tTime);

 // adding HashList to ArrayList

 couponList.add(map);

 }

 } else {

 existLog = 0;

 }

} catch (JSONException e) {

 e.printStackTrace();

}

The following example search a particular coupon, which is available in the tutor app. For the

string variable “deleteResult”. It is used for storing the fail message. The message is then

shown using toast.

JSONObject json;

json = jsonParser.makeHttpRequest(url_use_coupon, "POST", params);

try {

 int success = json.getInt(TAG_SUCCESS);

 if (success == 1) {

 deleteResult = "Coupon successfully used.";

 findResult = "";

 foundCouponID = "";

 foundStudentID = "";

 foundEventTitle = "";

 foundEventDate = "";

 foundEventStartTime = "";

 foundEventEndTime = "";

 foundEventDetail = "";

 foundEventOrg = "";

 foundUsed = "";

 foundChecked = "";

 deleteSuccess = 1;

 } else {

LYU1501: Student Assistance System by CU Link Card

 65

 deleteResult = "Failed, please check input or try again later. " +

json.getString(TAG_MESSAGE);

 deleteSuccess = 0;

 // failed to create coupon

 }

} catch (JSONException e) {

 e.printStackTrace();

}

The following example is the part of giving coupons from one student to another. The UID of

2 NFC cards (sender and receiver) and the coupon ID which the user selected to give out is

sent to server. Again, the “success” variable is for indicating whether there is successful

return from server.

List<NameValuePair> params = new ArrayList<NameValuePair>();

params.add(new BasicNameValuePair("fromStudentID", fromStudentID));

params.add(new BasicNameValuePair("fromCouponID", fromCouponID));

params.add(new BasicNameValuePair("toStudentID", toStudentID));

JSONObject json;

json = jsonParser.makeHttpRequest(url_exchange_coupon, "POST", params);

try {

 int success = json.getInt(TAG_SUCCESS);

 if (success == 1) {

 exchangeResult = "Coupon given successfully.";

 exchangeSuccess = 1;

 } else {

 exchangeResult = "Failed, please check input or try again later. " +

json.getString(TAG_MESSAGE);

 exchangeSuccess = 0;

 }

} catch (JSONException e) {

 e.printStackTrace();

}

For other http requests, their implementations are similar.

LYU1501: Student Assistance System by CU Link Card

 66

Using Toasts

Using toasts is a simple and effective method to prompt user some information, for instance

success message and fail message. Take the previous code as example. The toast will show

“Failed, please check input or try again later.” if the coupon ID is not found on the system.

Figure 33 A sample screenshot showing the usage of toast

LYU1501: Student Assistance System by CU Link Card

 67

5. Limitation and difficulties

5.1 NFC security

We rely on using the UID in the NFC card as the token, so we hypothesize that other types of

card could also be used. When we try to use other cards apart from CU Link card, however,

we occasionally found that a particular NFC card could not be used, which is the EZ-link

card from Singapore. The problem is that EZ-link card generates random UID on every

touch. Therefore, this type of card cannot be used in our system. The following table shows

the type of card we have tested:

Cards that are tested Tag Type Technology UID randomness

CU Link card ISO 14443-3A MIFARE NfcA Constant on every

tap EasyCard # ISO 14443-3A MIFARE NfcA

Octopus JIS 6319-4 FeliCa NfcF

Pasmo # JIS 6319-4 FeliCa NfcF

EZ-Link # ISO 14443-4 IsoDep, NfcB Different on every

tap

These cards have similar applications as the Octopus card in Hong Kong, but available in

different countries.

Although our system focus on CU Link card, the above test discovered a limitation on our

system.

LYU1501: Student Assistance System by CU Link Card

 68

5.2 CU Link card

The CU Link card contains useful information, for example the unique identification number

(UID), student number, college, but most of them are encrypted. Our current approach is

using the UID in CU Link card which is not encrypted as a token to recognize the user, while

keeping the real name/ student ID of the user unknown.

LYU1501: Student Assistance System by CU Link Card

 69

6. Future works

We have stated some problems and deficiencies in our project. Therefore, in the next

semester, we aim to do the following tasks:

 Database design: Improves our database to comply with 3NF.

 Make a Kiosk: Make a kiosk for students who do not have an NFC android phone to

view the coupons they got.

 Database security: Coping with SQL injection.

 Deployment: Examine the feasibility of deploying “Virtual homework coupon”

system on course CSCI3100 in semester 2.

 Extension: Using the same set of functions/ modules created in first term, extend the

system.

6.1 Database design

The current database system works and it is in second normal form (2NF). We aim to

improve it into 3NF. 3NF ensures the database will not have update, insertion, and deletion

anomalies.

Some changes are needed to the schema of the database which is also mentioned in part 4.1.2,

the discussion of database normalization. Changes in SQL queries are also required as the

schema is changed. There are no changes need to made for the android application. We aim

LYU1501: Student Assistance System by CU Link Card

 70

to finish this task before others, because migrating data would be easier if there are fewer

records stored in database. It is estimated that this update could be finished quickly.

6.2 Make a kiosk

As we need to read a student’s CU Link card and get its UID for a token of system, our

system required user having android device with stable network connection and NFC

function. However, not every student has an android device with NFC function. To serve

those students, we aim to make a kiosk which allows students to view and mark their

coupons.

We could make use of the kiosk that is currently not in use in the VIEW lab. By adding

hardware including NFC reader, pointing device and software including Android emulator

and simplified student client, student could view and mark their coupon in the kiosk with

their own CU Link.

As the kiosk needs a power supply and a stable network connection, we consider placing the

kiosk outside the VIEW Lab, which is at the first floor of Ho Sin-Hang Engineering Building.

LYU1501: Student Assistance System by CU Link Card

 71

6.3 Database security

Database is the most important part of our project. Protecting the database is required. PHP

documentation gave out some suggestions on database security. One of the suggestions is to

establish the connections over SSL. This method will be investigated in the coming semester.

Another strategy for hacking the database is by SQL injection. User could destroy the

database by such method. In this semester, we have done some measures on preventing SQL

injection, previously mentioned in part 4.1.4. The major loophole is the data input field of the

teacher app, since string is allowed. We will make use of MySQLi in semester 2 to prevent

such problem.

6.4 Deployment

The “virtual homework coupon” system allows more functions than the existing one,

including viewing the coupon transitions, knowing whether the coupon are really used

successfully, etc. But there are more considerations if we really deploy the system in next

semester. To get prepared of deployment.

Considerations:

1. Some students may not have NFC device.

2. Some of them may purposely intrude/ corrupt the system.

3. Measures to be done in case of system failure.

4. Method of deployment.

LYU1501: Student Assistance System by CU Link Card

 72

For point 1, it could be solved and it is mentioned in the section 6.2.

For point 2, we try to improve the security level and reduce possibilities of having SQL

injection by using MySQLi in the coming semester, also mentioned in section 6.3.

For point 3, database backup is performed regularly to prevent data loss.

For point 4, we consider parallel operation, which the virtual coupon system runs, at the same

time physical coupons are also given. Even there is any problem in the new system, students

need not suffer a loss. It is considered that a brief introduction of the system should be given

to students who takes the course.

6.5 Extension

“Virtual homework coupon system” is one of the applications of our system. In the next term,

we consider extend our system to include taking attendance function. Student could take

attendance with their CU Link and teacher could view attendance information with their

Android phone. This may lower the cost of buying or renting a CU Link reader.

LYU1501: Student Assistance System by CU Link Card

 73

7. Conclusion

In this semester, the technologies of NFC are briefly studied. We have also discovered a

special type of NFC card which generates random UID.

Although it is our first time to build an android application. It is great for us to have a chance

to develop an application with NFC, also a server with PHP and MySQL database. In the

beginning, we already experienced a barrier that the ITSC of the university could not give us

any information nor access to the encrypted information. We then turns out the using UID as

a token to identify users. Throughout the brainstorming process, we came up with different

idea, and we found that “virtual homework coupon” is an interesting and useful example to

visualize our project in this semester. Moreover, data security is a crucial yet sophisticated

field, we start to notice this issue when we consider how this project could be deployed in a

real life situation. Although we faced different minor difficulties in coding, the mobile app

could be finished at last.

Despite the limitations and difficulties, will do continuous improvement to our system. We

also aimed to provide more function in the coming semester and deploy the project in a real

life situation if possible.

LYU1501: Student Assistance System by CU Link Card

 74

8. Acknowledgements

We would like to express our gratitude to Prof. Lyu Rung Tsong Michael for his guidance to

our project. Moreover, we would also like to give thanks to Mr. Edward Yau for giving us

technical and hardware support, also exchanging valuable ideas towards the project. Without

the help from Prof. Lyu and Mr. Yau, our project must face more difficulties and barriers.

LYU1501: Student Assistance System by CU Link Card

 75

9. References

[1] C. Colby, "The Pay-off: Can you lose the plastic and use only Apple Pay or Android

Pay?," [Online]. Available: http://download.cnet.com/blog/download-blog/the-pay-off-

can-you-lose-the-plastic-and-use-only-apple-pay-or-android-pay/.

[2] "Configuring Gradle Builds," Android Developers, [Online]. Available:

http://developer.android.com/tools/building/configuring-gradle.html.

[3] "phpMyAdmin: Introduction. Supported features," phpMyAdmin, [Online]. Available:

https://phpmyadmin.readthedocs.org/en/latest/intro.html.

[4] "What are the operating modes of NFC devices?," NFC Forum, [Online]. Available:

http://nfc-forum.org/resources/what-are-the-operating-modes-of-nfc-devices/.

[5] H. N. H. Chan and S. Y. Chan, "Mobile Application Using NFC.," The Chinese

University of Hong Kong, [Online]. Available:

http://www.cse.cuhk.edu.hk/lyu/_media/students/lyu1301_term1report.pdf.

[6] "Host-based Card Emulation," Android Developers, [Online]. Available:

http://developer.android.com/guide/topics/connectivity/nfc/hce.html.

[7] "Description of the database normalization basics," Microsoft, [Online]. Available:

https://support.microsoft.com/en-hk/kb/283878.

LYU1501: Student Assistance System by CU Link Card

 76

[8] "Second Normal Form," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Second_normal_form.

[9] "CROSS JOIN opereation," Oracle, [Online]. Available:

http://docs.oracle.com/javadb/10.8.3.0/ref/rrefsqljcrossjoin.html#rrefsqljcrossjoin.

[10] "PHP: mysql_real_escape_string," The PHP group, [Online]. Available:

http://php.net/manual/en/function.mysql-real-escape-string.php.

[11] "mysql_real_escape_string SQL injection," SQLINJECTION.NET, [Online].

Available: http://www.sqlinjection.net/advanced/php/mysql-real-escape-string/.

[12] "AsyncTask," Android Studio, [Online]. Available:

http://developer.android.com/reference/android/os/AsyncTask.html.

