

Morse Code

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Final Year Project 2013 (1
st
 Term)

LYU 1305

Real-Time Morse Code Communication App

Supervisor: Prof. LYU Rung Tsong Michael
Students: LUO Xin (1155026046)

 ZOU Lei (1155026057)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

1

<This is a blank page>

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

2

Abstract

Real time Morse Code Communication App is an application focused on Morse Code

emission and reception in light. Our goal of the project is to implement this application in

Android devices.

In this report, we will go through the whole process related to our interesting project. A table

of content will guide us to each individual part of this report. At the beginning, Introduction

part gives a rough idea about why we do this project and what our objectives are. We did

some research on the Morse code and the main technology OpenCV used in this project.

Some key concepts are explained so that we can understand all the things in a reasonable way.

Then we present our design and implementation of the application. Some special functions

usage and realization process accompanied with some pictures helping explain in a detail way.

Testing is always necessary in any project. In the following Experiment and Testing part, we

present how we find problems, solve problems and improve our application’s performance.

Finally, in the conclusion part, we show how we implement our application step by step. In

the implementation process, we found that there still exist some limitations in our application,

so we give an overview to these limitations and express our expectations in future

development in the end.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

3

Table of Contents
Abstract ... 2

Table of Contents ... 3

Chapter 1: Introduction .. 6

1.1 Background .. 6

1.2 Motivation .. 7

1.3 Objectives ... 10

1.4 Development Environment ... 11

Chapter 2: Morse Code ... 12

2.1 Overview .. 12

2.2 Coding Rule ... 12

2.3 Symbol Representation ... 13

2.3.1 Letters ... 13

2.3.2 Numbers .. 13

2.3.3 Punctuation ... 13

2.4 Speeds ... 14

2.5 Instance .. 15

Chapter 3: OpenCV ... 16

3.1 Overview .. 16

3.2 Algorithms and Usage ... 16

3.3 Development Platform .. 17

3.4 OpenCV and Android ... 18

3.4.1 Canny edge detection ... 18

3.4.2 Color blob detection ... 19

3.4.3 Face Detection .. 20

3.4.4 Puzzle .. 21

3.5 OpenCV and Our App .. 22

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

4

Chapter 4: Problems in Environment Setup ... 23

4.1 Overview .. 23

4.2 Problems in installing Eclipse and Android SDK .. 23

4.3 Problems in importing OpenCV into the workspace ... 25

4.4 Problems in building a new project ... 26

Chapter 5: Design and Implementation ... 27

5.1 Design Overview .. 27

5.2 Encoding ... 28

5.2.1 UI Design... 28

5.2.2 Flashlight control ... 29

5.2.3 Time control ... 32

5.2.4 Encoding Morse code ... 33

5.3 Decoding ... 39

5.3.1 Overview ... 39

5.3.2 Open the camera .. 40

5.3.3 Set parameters for camera .. 41

5.3.4 Process frame values .. 41

5.3.5 Decode ... 47

Chapter 6: Experiments and Testing ... 48

6.1 Light ON/OFF testing ... 48

6.1.1 Light ON condition .. 48

6.1.2 Light OFF condition .. 50

6.2 Light ON duration testing .. 51

6.3 Distance and transmission rate testing .. 52

6.4 Results Analysis ... 54

6.5 Symbol testing .. 59

Chapter 7: Conclusion ... 59

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

5

7.1 Progress .. 60

7.1.1 Encoding ... 60

7.1.2 Decoding.. 61

7.2 Difficulties .. 62

7.2.1 Encoding ... 62

7.2.2 Decoding.. 63

7.3 Current limitations .. 65

Chapter 8: Future development ... 66

Chapter 9: Acknowledgement .. 68

Chapter 10: Reference ... 69

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

6

Chapter 1: Introduction

1.1 Background

Morse code is a method of transmitting text information as a series of on-off tones, lights, or

clicks that can be directly understood by a skilled listener or observer without special

equipment. It is initially invented by Samuel Finley Breese Morse in 1937. And it has been in

use for more than 160 years—longer than any other electrical coding system. What is called

Morse code today is actually somewhat different from what was originally developed by Vail

and Morse. After some changes, International Morse Code was standardized at the

International Telegraphy Congress in 1865 in Paris, and was later made the standard by

the International Telecommunication Union (ITU). International Morse code today is most

popular among amateur radio operators
[1]

.

Morse code is useful in many fields, such as radio navigation, amateur radio, warship, the

signal lamp included in a submarine periscope and so on. Besides, Morse code has been

employed as an assistive technology, helping people with different native languages or

people with a variety of disabilities to communicate. For the general public, an important

application is signaling for help through SOS, “···— — — ···”. This can be sent by many

ways: keying a radio on and off, flashing a mirror, toggling a flashlight and similar methods.

http://en.wikipedia.org/wiki/Electrical
http://en.wikipedia.org/wiki/International_Telecommunication_Union
http://en.wikipedia.org/wiki/Amateur_radio
http://en.wikipedia.org/wiki/Disability

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

7

This will be very useful especially when you are in wild and your phone is out of power or no

signal.

1.2 Motivation

Nowadays, there are many kinds of Android Apps of Morse Code in the android market.

Here are some examples:

Morse Code Trainer
[2]

:

This is an app helping users to learn Morse Code. One can choose either

transmitting or receiving mode to practice corresponding skill and

receive the performing feedback immediately. It includes the functions

of letter training (both transmitting and receiving), word training (only transmitting), free

mode, speed adjusting (WPM), sound effects adjusting and electronic handbook.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

8

Morse Code Translator
[3]

:

This is an app allowing users to send short flashlight text messages

using the International Morse Code.

The apps includes the features that the flashlight can transmits short

messages of lights (Morse Code); there are some template stored in the database for

emergencies. For example, SOS; allowing users to save new messages; changing frequency

of the transmitted signal.

Simple Morse Code Translator
[4]

:

This app allows users to input any text by keyboard or voice or select a

commonly transmitted word or phrase. The app translates the received

message and broadcast the translated text via camera flash.

SMS2CW - Convert to Morse Code
[5]

:

This is an app to convert incoming SMS or TXT messages into audible

Morse Code. Once the user enable it and set the options, it will

intercept incoming text messages and beep them out in Morse Code.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

9

In summary, present Morse code apps in Android market mainly includes the following

features:

 Helping users to learn Morse code;

 Allowing users to type Morse code;

 Encoding and Decoding between text message and Morse code (dot and dash);

 Decoding audible Morse code (beeps) to text message;

 Play Morse code with audible messages (beeps);

 Play Morse code with flashlight.

However, we didn’t find an app that can receive a light message and decode it to a text

message. Therefore, in addition to encoding Morse code by light sequences, we consider

developing an android app to decode the Morse code generated by light. This will be very

useful when you are in a disaster, in wild with a power-off cellphone or in other similar

situation and you want to ask for help (sending “SOS” signal). Furthermore, in some movies,

there will sometimes appear some Morse code message generated by light. For entertainment,

if we can decode those Morse code ourselves, that would be very interesting.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

10

1.3 Objectives

In our final year project, we are going to study the Morse Code, android programming, image

processing, computer vision, real-time processing and develop a Real-time Morse Code

Communication App for Android mobile device. The video camera of the Android mobile

device is used to capture the flash light of another Android mobile device and decode the

Morse code light pattern through the recognition of the image sequences.

Therefore, in our final year project, we want to achieve following objectives:

 Encoding Morse code and displaying it by flashlight;

 Decoding Morse code of light pattern;

 Allowing users to change transmission rates;

 The decoding part can decode messages with any transmission rate in some range.

 Storing some template in a database for convenience and in case of emergency, for

example, SOS.

 Allowing users to save their words or sentences frequently used to the template

database.

 Implement the bi-directional communication in the standard way.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

11

1.4 Development Environment

Development platform: Windows 7

Application platform: Android OS

Development tool: Eclipse

Programming language: Java

Open source library: OpenCV

Encoding testing device: SAMSUNG GALAXY S4

Decoding testing device: SAMSUNG GALAXY S3

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

12

Chapter 2: Morse Code
[6]

2.1 Overview

At the beginning of this report, we’ve already had a rough idea about what Morse code is and

what Morse code can do. Here we introduce the mechanism of Morse code in detail, like

what Morse code is composed of and how it works. International Morse code will be

introduced and used here.

2.2 Coding Rule

 International Morse code is composed of five elements:

1) Short mark, dot or “dit” (●) which is one time unit long.

2) Longer mark, dash or “dah” () which is three times units long.

3) Inter-element gap between the dots and dashes within a character which is one dot’s

duration (one unit long).

4) Short gap between letters which is three times units long.

5) Medium gap between words which is seven times units long.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

13

2.3 Symbol Representation

2.3.1 Letters

Character Code Character Code Character Code

A ● J ● S ●●●

B ●●● K ● T

C ● ● L ● ●● U ●●

D ●● M V ●●●

E ● N ● W ●

F ●● ● O X ●●

G ● P ● ● Y ●

H ●●●● Q ● Z ●●

I ●● R ● ●

2.3.2 Numbers

Character Code Character Code

0 5 ●●●●●

1 ● 6 ●●●●

2 ●● 7 ●●●

3 ●●● 8 ●●

4 ●●●● 9 ●

2.3.3 Punctuation

Character Code Character Code

Period [.] ● ● ● Colon [:] ●●●

Comma [,] ●● Semicolon [;] ● ● ●

Question mark [?] ●● ●● Double dash [=] ●●●

Apostrophe [‘] ● ● Plus [+] ● ● ●

Exclamation mark

[!]

 ● ● Hyphen, Minus

[-]

 ●●●●

Slash [/] ●● ● Underscore [_] ●● ●

Parenthesis open [(] ● ● Quotation mark

[“]

● ●● ●

Parenthesis close [)] ● ● Dollar sign [$] ●●● ●●

Ampersand [&] ● ●●● At sign [@] ● ● ●

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

14

2.4 Speeds

An operator must choose two speeds when sending a message in Morse code. One is the

character speed, or how fast each individual letter is sent. The other is text speed, or how fast

the entire message is sent. An operator could generate the characters at a high rate, but by

increasing the space between the letters, send the message more slowly.

Therefore, duration of a dot plays an important role in speed deciding.

For example, if dot = 0.5 seconds (one time unit), we will have:

 dash = 3 * dot = 1.5 seconds

 space = 7 * dot = 3.5 seconds.

The lower the dot duration, the higher the speed of the message is sending. Generally more

experienced operators can send and receive at faster speeds.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

15

2.5 Instance

Here is an example of phrase “F Y P” in Morse Code format, each letter is separated by a

space:

 ●● ● ● ● ●

 F Y P

Morse Code is often spoken or written with “dah” for dashes, “dit” for dots located at the end

of a character, and “di” for dots located at the beginning or internally within the character.

Thus, “F Y P” is orally:

Di-di-dah-dit Dah-di-dah-dah Di-dah-dah-dit.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

16

Chapter 3: OpenCV

3.1 Overview

OpenCV (Open Source Computer Vision Library) is an open source computer

vision and machine learning software library. It functions similar to other

common libraries in programming languages. With its advantage in real time

processing, OpenCV plays a fundamental role in computer vision applications and

acceleration of the use of machine perception in the commercial products. As a BSD-licensed

product, OpenCV also makes it easy for businesses to utilize and modify the code
[7]

.

3.2 Algorithms and Usage

More than 2500 optimized algorithms were included into OpenCV now, like a comprehensive

set of both classic and state-of-the-art computer vision and machine learning algorithms.

These algorithms can be used to detect and recognize faces, identify objects, classify human

actions in videos, track camera movements, stich images together to produce a high

resolution image of an entire scene
[8]

.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

17

3.3 Development Platform

OpenCV was designed to be cross-platform. The library was written in C which makes

OpenCV portable to almost any commercial system, from PowerPC Macs to robotic dogs.

OpenCV also includes its traditional C interface and the new C++ one; Python and Java were

included as well which encourage a wider audience’s using. OpenCV’s running on both

desktop (Windows, Linux, Android, MacOS, FreeBSD, OpenBSD) and mobile (Android,

Maemo, iOS) encouraged a variety of developers at the same time
[9]

.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

18

3.4 OpenCV and Android
[10]

Since 2010 OpenCV was ported to the Android environment, it allows using the full power of

the library in the development of mobile applications. Several fundamental applications in

Android are introduced below:

3.4.1 Canny edge detection

It was implemented by a canny edge detection operator that uses a multi-stage

algorithm to detect a wide range of edges in images. Implementation in Android with

the help of OpenCV is shown below:

We can see that the edges of the keyboard were detected and displayed in a different

way.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

19

3.4.2 Color blob detection

A trivial color blob tracker was implemented in Android through the use of OpenCV.

When user points to some region, the algorithm tries to select the whole blob of a

similar color. Work with touch interface and contours are demonstrated in this way:

After we point the camera to the keyboard, parts with similar color (were draw in the

red line part) were selected successfully.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

20

3.4.3 Face Detection

It is the simplest implementation of the face detection functionality on Android. It

supports 2 modes of execution: available by default Java wrapper for the cascade

classifier, and manually crafted JNI call to a native class which supports tracking.

Even Java version is able to show close to the real-time performance on a Google

Nexus One device
[11]

.

We used a picture searched from the Internet to do the test. We can see that the face

of the person was marked in the phone.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

21

3.4.4 Puzzle

A simple puzzle game was implemented by dividing the real time image into 15

parts and disrupting the order of those small images. It can be developed with just a

few calls to OpenCV.

The picture captured by the phone kept changing all the time. We can move each

part to the empty slot in order to make it locate in right position. In this way, we can

recover the origin picture.

Empty slot

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

22

3.5 OpenCV and Our App

Our App’s Morse Code detection part mainly depends on the use of OpenCV. OpenCV

provides a platform for us to process the image in real time. Its high efficiency in image

processing makes the detection of Morse Code Possible. After obtaining frames of images in

every second, those frames will then be analyzed to detect the ON/OFF condition of the flash

light, the duration of each flash light and the flashing rule of the light. All these information

contribute a lot to the decoding of the Morse Code.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

23

Chapter 4: Problems in Environment

Setup

4.1 Overview

Our application is built in Android Operating System (OS) and developed in Eclipse

combined with Android SDK in Windows. OpenCV is used as the main library in our project.

The thing we need to do is to install Eclipse into our computer and set up all the parameters

for the project development. However, things didn’t go that smoothly. We met several

problems in the setting process.

4.2 Problems in installing Eclipse and Android SDK

Eclipse provides an integrated development platform for us to develop application in Java

basically. Android SDK is a Software Development Kit which provides a comprehensive set

of development tools for developers.

Follow the normal steps of installing software to install Eclipse and SDK, we couldn’t run the

project correctly. Then we found that if they are not installed in the same folder, several path

parameters need to be settled to ensure that the project can be built successfully which may

bring a lot of trouble.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

24

After all the installation, open eclipse and set configuration to SDK in this way:

In the above interface, corresponding

 Tools and

 Versions of Android OS

need to be selected to make it possible for our application to run in a range of Android

mobile phone. At first we didn’t install necessary tools, the project couldn’t run

successfully as well. After doing things above, the lowest running environment for our

application can be ensured.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

25

4.3 Problems in importing OpenCV into the workspace

OpenCV plays the most important role in the whole development process. Necessary libraries,

efficient algorithms, useful image processing tools are all provided by it. When we tried to

run the samples in the folder, errors like “library can’t be found” appeared. So we found that

we need to import like this:

Only when the OpenCV folder was located in the same root directory can the later project run

successfully. Otherwise, many other cumbersome parameters need to be changed achieve the

same goal.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

26

4.4 Problems in building a new project

Building a new Android Application project in Eclipse is an easy thing. However, when we

tried to run it, several problems appeared, like library doesn’t exist in some path or no

appropriate Android device can be found. Thus we found that several parameters need to be

changed to build the project successfully:

 Versions of Android OS

 OpenCV library

Just click on the lowest version of platform we need and add OpenCV library into the Library

part, the sample project could run successfully.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

27

Chapter 5: Design and Implementation

5.1 Design Overview

Data Flow Diagram:

Finish

Message

Ending signal

Morse code

Message Decoded

message

Message

Beginning signal

Encoded

message

Morse code Text
Text

Send ending

signal

Morse code array

Receive

ending

message
Display

“Translation

finishes”

Detection

button

pushed by

user

Wait for

beginning signal

Decode

message

Text message

typed by user

Translate Button

pushed by user

Push

Button
Get Text

Send beginning

signal

Encode

message

Morse code array Text array

Send

message

Ready to

receive

message

Receive

message

Display

message

Encoding Decoding

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

28

5.2 Encoding

5.2.1 UI Design

 Input message. See figure 5.1.1-1.

 When translation begins, the button turns blue. See figure 5.1.1-2.

 When the encoding is finished, the note “Translation finishes” will appear and

the button returns to gray. See figure 5.1.1-3.

 Click twice to exit the app. The first click will appear note “click again to

exit” at the bottom of the screen. The second click will totally exit. See figure

5.1.1-4.

Figure 5.1.1-1 Figure 5.1.1-2

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

29

5.2.2 Flashlight control
 [12]

1) Declaring permissions：

To open the flashlight, we have to use the android API android.hardware and the

class camera.

To access the device camera, we must declare the CAMERA permissions in the

Android Manifest. Because we use the camera and flashlight features, the Manifest

includes the following:

<uses-permission android:name="android.permission.CAMERA" />

 <uses-feature android:name="android.hardware.camera" />

 <uses-feature android:name="android.hardware.FLASHLIGHT" />

Figure 5.1.1-3 Figure 5.1.1-4

http://developer.android.com/reference/android/Manifest.permission.html#CAMERA

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

30

 2) Open camera:

 Obtain an instance of Camera from using open(int).

private Camera camera = null;

 if (null == camera)

 camera = Camera.open();

 3) Call startPreview() to start updating the preview surface.

camera.startPreview();

4) Get existing (defaut) settings with getParameters(). If necessary (open and close

flashlight), modify the returned Camera.Parameters object and

call setParameters(Camera.Parameters).

Camera.Parameters parameters = camera.getParameters();

5) Open Flashlight:

To open flashlight, modify the parameter to FLASH_MODE_TORCH mode and

call setParameters(Camera.Parameters).

//open flashlight

private Parameters parameters = null;

http://developer.android.com/reference/android/hardware/Camera.html#open(int)
http://developer.android.com/reference/android/hardware/Camera.html#startPreview()
http://developer.android.com/reference/android/hardware/Camera.html#getParameters()
http://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://developer.android.com/reference/android/hardware/Camera.html#setParameters(android.hardware.Camera.Parameters)
http://developer.android.com/reference/android/hardware/Camera.html#setParameters(android.hardware.Camera.Parameters)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

31

parameters.setFlashMode(Camera.Parameters.FLASH_MODE_TORCH);

 camera.setParameters(parameters);

6) Close Flashlight:

To close flashlight, modify the parameter to FLASH_MODE_OFF mode and

call setParameters(Camera.Parameters).

//close flashlight

parameters.setFlashMode(Parameters.FLASH_MODE_OFF);

 camera.setParameters(parameters);

 7) Release Camera:

Call stopPreview() to stop updating the preview surface.

Call release() to release the camera for use by other applications.

if (camera != null)

 {

 camera.stopPreview();

 camera.release();

 camera = null;

 }

http://developer.android.com/reference/android/hardware/Camera.html#setParameters(android.hardware.Camera.Parameters)
http://developer.android.com/reference/android/hardware/Camera.html#release()

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

32

5.2.3 Time control

 1) Open duration control

 lastTime records the beginning time when the flashlight opens.

 curTime records what time it is now.

openTime records how long the flashlight has opened, that is, openTime =

curTime – lastTime.

 codeTime is the duration that the flashlight should open.

At the beginning, lastTime = curTime, flashlight opens and the program enters an

while loop. The program will not jump out of the loop until openTime = codeTime,

and then the flashlight closes.

 2) Stop duration between dit and dah:

 unit denotes the duration of one dit.

Similar to open time control, at the beginning, lastTime = curTime, flashlight closes

and the program enters an while loop. The program will not jump out of the loop

until curTime - lastTime = unit, and then the flashlight is on.

 3) stop time between symbols or words

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

33

 stopTime = unit * 0.3 for stop duration between symbols;

 stopTime = unit * 0.7 for stop duration between words.

Similar to the above, at the beginning, lastTime = curTime, flashlight closes and the

program enters an while loop. The program will not jump out of the loop until

curTime - lastTime = stopTime, and then the flashlight is on.

5.2.4 Encoding Morse code

1) Save the Morse code in a two-dimensional array int[][] code. Each row of the array

save the corresponding Morse code of a symbol (a letter or a punctuation). Instead of

using dot and dash, we use digits 1 and 3 to represent dit and dah, respectively.

2) Write a function code_index(char symbol) to return an integer that points to the index

where the symbol is in the array code[][]. For example, code_index（A）= 0, then we

have the modified Morse code for A is {1, 3} (See table 5.2.4-1), which means the

Morse code for A is “dit dah”. Since we have codeTime = array[i][j] * unit, for A, the

flashlight will be on for 1 unit time, off for 1 unit time, and on for 3 units time, and

finally off. For words, for example, “A A”, the on-off sequence is “on(1 unit), off(1 unit),

on(3 units), off(7 units), on(1 unit), off(1 unit), on(3 units), off(until the next decoding

process)”.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

34

 The entire encoding process is indicated by the Process Flow Chart 5.2.4-2.

Index Code[index] Correspon-

ding symbol

Index Code[index] Correspon-

ding symbol

0 {1, 3} A/a 27 {1, 3, 3, 3, 3} 1

1 {3, 1, 1, 1} B/b 28 {1, 1, 3, 3, 3} 2

2 {3, 1, 3, 1} C/c 29 {1, 1, 1, 3, 3} 3

3 {3, 1, 1} D/d 30 {1, 1, 1, 1, 3} 4

4 {1} E/e 31 {1, 1, 1, 1, 1} 5

5 {1, 1, 3, 1} F/f 32 {3, 1, 1, 1, 1} 6

6 {3, 3, 1} G/g 33 {3, 3, 1, 1, 1} 7

7 {1, 1, 1, 1} H/h 34 {3, 3, 3, 1, 1} 8

8 {1, 1} I/i 35 {3, 3, 3, 3, 1} 9

9 {1, 3, 3, 3} J/j 36 {1, 3, 1, 3, 1, 3} .

10 {3, 1, 3} K/k 37 {3, 3, 1, 1, 3, 3} ,

11 {1, 3, 1, 1} L/l 38 {1, 1, 3, 3, 1, 1} ?

12 {3, 3} M/m 39 {1, 3, 3, 3, 3, 1} ’

13 {3, 1} N/n 40 {3, 1, 3, 1, 3, 3} !

14 {3, 3, 3} O/o 41 {3, 1, 1, 3, 1} /

15 {1, 3, 3, 1} P/p 42 {3, 1, 3, 3, 1} (

16 {3, 3, 1, 3} Q/q 43 {3, 1, 3, 3, 1, 3})

17 {1, 3, 1} R/r 44 {1, 3, 1, 1, 1} &

18 {1, 1, 1} S/s 45 {3, 3, 3, 1, 1, 1} :

19 {3} T/t 46 {3, 1, 3, 1, 3, 1} ;

20 {1, 1, 3} U/u 47 {3, 1, 1, 1, 3} =

21 {1, 1, 1, 3} V/v 48 {1, 3, 1, 3, 1} +

22 {1, 3, 3} W/w 49 {3, 1, 1, 1, 1, 3} -

23 {3, 1, 1, 3} X/x 50 {1, 1, 3, 3, 1, 3} _

24 {3, 1, 3, 3} Y/y 51 {1, 3, 1, 1, 3, 1} ”

25 {3, 3, 1, 1} Z/z 52 {1, 1, 1, 3, 1, 1, 3} $

26 {3, 3, 3, 3, 3} 0 53 {1, 3, 3, 1, 3, 1} @

Table 5.2.4-1: Modified Morse code Table

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

35

cm[]: the array of message inputted. len: length of cm[]. ‘ ‘: space

index: the index of Morse code array. Code[][]: The Morse code array.

T

F

T

F

N

i++

index < 54 ?
F

T

j = 0

j < code[index].length ?

Open flashlight

code[index][j]*unit seconds

j < code[index].length-1 ?

Close flashlight unit seconds

j++

i < len ?

T

cm[i] == ‘ ’ ?

F

T

i < len – 1 && cm[i+1] == ‘ ’?

Start i = 0

stopTime = unit * 7 stopTime = unit * 3

T F

index = code_index(cm[i])

End

i < len-1 ?

Close flashlight stopTime seconds

T

F

Figure 5.2.4-2: Process Flow chart

Close flashlight

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

36

Explanation of Process Flow Chart:

Set the message “A A” as an example again. cm[] = {‘A’, ‘ ’, ‘A’}.

The variables changes as the following table.

And the descriptions of each step are introduced later.

Step i len =

cm[].length

cm[i] stopTime (s) Index =

code_index(cm[i])

j code[index].length Code[index][j]

1 0

2 0 3

3 0 3 ‘A’

4 0 3 ‘A’ 7 units

5 0 3 ‘A’ 7 units 0

6 0 3 ‘A’ 7 units 0 0

7 0 3 ‘A’ 7 units 0 0 2

8-9 0 3 ‘A’ 7 units 0 0 2 1

10 0 3 ‘A’ 7units 0 1 2

11 0 3 ‘A’ 7 units 0 1 2 3

12-13 0 3 ‘A’ 7 units 0 2 2

14 1 3

15 1 3 ‘ ‘

16 2 3

17 2 3 ‘A’

18 2 3 ‘A’ 3 units

19 2 3 ‘A’ 3 units 0

20 2 3 ‘A’ 3 units 0 0

21 2 3 ‘A’ 3 units 0 0 2

22-23 2 3 ‘A’ 3 units 0 0 2 1

24 2 3 ‘A’ 3 units 0 1 2

25 2 3 ‘A’ 3 units 0 1 2 3

26 2 3 ‘A’ 3 units 0 2 2

27 2 3 ‘A’ 3 units 0 2 2

28 3

29 3

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

37

1. At the beginning, i = 0. The program jumps in the first for loop.

2. Since the length of “A A” len = 3 and i < 3, the program continues and goes to the

next step.

3. Since cm[0] is ‘A’, not space, the program goes to the next conditional statement.

4. Since i < len – 1 && cm[i+1] == ‘ ’, stopTime = unit * 7.

5. Since code_index(‘A’) = 0, index = code_index(cm[i]) = 0.

6. Since index = 0 < 54, the program goes to the second for loop and j = 0.

7. Since code[0] = {1, 3}, code[index].length = 2.

8. Since j < 2, the flashlight is on and lasts for 1 unit second (code[index][j] = 1).

9. Since code[index].length – 1 = 1 and j < 1, the flashlight in off for 1 unit second.

10. j = j + 1 = 1.

11. Since j = 1 < 2, the second for loop continues and the flashlight is on for 3 unit

seconds (code[index][j] = 3).

12. Since code[index].length – 1 = 1 and j = 1, j = j + 1 = 2.

13. Since j = 2, the program jumps out of the second for loop and the flashlight closes for

7 unit seconds (stopTime = unit * 7) since i = 0 < len -1.

14. i = i + 1 = 1. The program continues the first for loop since i < 2.

15. Since cm[1] is a space, i = i + 1 = 2.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

38

16. The first for loop continues since i < len.

17. Similar to step 3.

18. Since i = len – 1, stopTime = unit * 3.

19-26. Similar to steps 5-12.

27. Since j = 2, the program jumps out of the second for loop and the flashlight

 closes finally since i = 2 = len – 1.

28. i = i + 1 = 3.

29. Since i = 3 = len, the program jumps out of the first for loop and ends the

 encoding process.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

39

5.3 Decoding

5.3.1 Overview

The decode part is basically is basically an image processing thing. What we need to do

can be simply explained as gets the image and analyzes the image. Details can be

realized in this way:

The problems here are how we can address image efficiently (when the image changes

all the time) and how we can decide the light ON/OFF time precisely. Different devices’

cameras have different fps (frames per second) as well. The emission frequency is

seriously limited by the fps value. If the emission frequency was not controlled

appropriately, the reception part may not able to receive the flash light frequency

correctly.

Detect light

ON/OFF

Determine the

ON/OFF duration

Convert duration into

dot/dash/pause

Decode from

Morse code

Display the

result sequence

Figure 5.3.1-1

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

40

5.3.2 Open the camera

Firstly, override the LoaderCallbackInterface which add OpenCV library initialization

to our activity. The camera was activated here.

We want to make use of some efficient algorithms in OpenCV, so the class

JavaCameraView in OpenCV was used to get each frame of the real time image in an

efficient manner. Have a look on how it works:

JavaCameraView:

It’s an implementation of the Bridge View between OpenCV and Java Camera. Through

the connectCamera which opens Java camera and sets the PreviwCallback to be

delivered, preview frame can be obtained through this callback.

When frame is delivered via the above callback, it processed via OpenCV to be

converted to RGBA32 and then passed to the external callback for later use.

Our subsequent work is mainly focused on the frame obtained here.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

41

5.3.3 Set parameters for camera

When the activity is first created, the parameters value need to be settled.

FLAG_KEEP_SCREEN_ON: Keep the screen on all the time.

setVisibility: Set the enable state of the view (which is the view created in step 1) of the

activity.

5.3.4 Process frame values

onCameraFrame is the main function here. It is invoked when the delivery of the frame

needs to be done which means, as soon as the frame changed, it will be invoked. It

provides the current camera frame for us to work on.

1) Draw rectangle on the image

Rectangle is the area we used to limit the range that light can be detected. After we

got the RGBA Matrix with frame, we need to calculate the position for the rectangle.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

42

RGBA of the input frame:

 m11 m12 m13 m14 m15 m16 …

 m21 m22 m23 m24 m25 m26 …

 mRgba = m31 m32 m33 m34 m35 m36 …

 m41 m42 m43 m44 m45 m46 …

 … …

 mx1 …

 w11 w12 w13 …

mZoomWindow = w21 w22 w23 …

 ... …

 wn1 …

The size of mZoomWindow depends on the rectangle size we want. After that, we

can decide the position the corner of the rectangle. Use Core.rectangle() combined

with mZoomWindow and its position to draw the rectangle on the image.

Get sub matrix

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

43

2) Determine the threshold value for light on and off

We’ve already got the RGBA of rectangle area: mZoomWindow. Then we need to

check the value of each point in the rectangle area under different light condition.

At first, we use Core.sumElems to compute the sum of all the elements in the above

matrix. And then we got the average value of the sum to get a rough idea about

RGBA value when the light is ON. In this way, we need to ensure that the light fully

fills the rectangle. Although the implementation is limited to that condition, we got

the rough threshold value for RGBA which can be used later.

Finally, we found a function that can extract every element value from the matrix.

Then we did some test on the pixel value and compare to the rough threshold value

we find in last method, and got this:

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

44

After analyzing the data, we found that pixels with obvious light ON state are inside

the blue circle part and pixels with light OFF state are inside the red circle part.

Thus, we choose the threshold value for each channel to be:

 V(R) = 210 V(G) = 210 V(B) = 210

Which means only when V(R) and V(G) and V(B) all exceed 210 can this pixel be

defined as light on.

Light ON

Light OFF

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

45

There are so many pixels in this rectangle area, so we need to decide how much

percent pixels are above the threshold value can the area be defined as light on. Here

we choose P = 10%.

3) Calculate the duration of light ON/OFF

According to the light ON/OFF state of the rectangle area, we record the time of the

state change to calculate the duration.

However, until now, the threshold value was not that precise which may cause error

happen when deciding the duration time. This will be discussed in the experiment

part.

Threshold

value

Light OFF

time

Light ON

time

RGB value

Time

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

46

4) Analyze the raw data

We can see that the duration time is varied in some range, so we need to classify

them into dot and dash. If we specify the value of the “dot” time, after several tests,

we decide:

 dot 0.7 * dot < realTime < 1.3 * dot

 newTime = 3 * dot 2.5 * dot < realTime < 3.5 * dot

 7 * dot 6.5 * dot < realTime < 7.5 * dot

 (dash = 3 * dot)

Under this range limiting, the state of light can be determined in a much more

flexible manner.

Raw time

data

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

47

5.3.5 Decode

According to this tree, using if-else-if to decide whether the code exists or not and

display correct code.

When come across dot, enter the left sub tree, when come across dash, enter the right

sub tree.

Besides the tree above, we also add an end signal. In any node inside the tree, when

come across the end signal, just stop decoding.

Start Signal

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

48

Chapter 6: Experiments and Testing

To ensure that the final interaction part (encode-decode) goes well, we do testing step by step.

Once one basic part passed through the test, we go to another complex one next.

6.1 Light ON/OFF testing

Whether a Morse code can be received directly depends on whether the Light ON/OFF state

can be detected correctly. In the program we decided that, when the percent of Light-ON state

pixels in the rectangle area is bigger than 10%, the rectangle area should be considered as

Light-ON state.

6.1.1 Light ON condition

 Denote the percent of Light-ON state pixels in the rectangle area as P.

 We can see that, the Light-ON state actually depends on the P:

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

49

Comparing the two test cases:

The value of P in the second pictures is smaller than the value of P in the firstly picture

and the second one is in Light OFF state which means, the threshold value of P actually

works.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

50

6.1.2 Light OFF condition

When there is no bright area in the rectangle, the result is correct as well:

Note: Some errors appeared in the test. When we shake the phone, the camera may deflect

the environment light and the rectangle area was mistakenly considered as Light-ON

state.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

51

6.2 Light ON duration testing

We knew that DOT and DASH in the Morse code have different flash time, so after the light

can be detected by our app, the duration of the Light ON/OFF state should be detected as

well.

Show the actual light ON time (raw time data) and comparing it with the actual time range:

The time showed in the screen totally matches to the actual time. However, it’s not exactly

equal to the actual Light ON time. We don’t have a precise rule to determine whether the

Light is ON or not, because when the light is turning off, its brightness will experience a

decay process.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

52

6.3 Distance and transmission rate testing

When the Light Signal sequence is being transmitted, the ON/OFF duration will be

influenced by the brightness of the Light Signal, while the brightness of Light Signal will

be influenced by the distance between the emission terminal and reception terminal.

In this part, we controlled the variables distance, minimum RGB values and OFF duration

ranges respectively to analyze their influence.

6.3.1 Fixed parameters:

Min(R) = 210, Min(G) = 210, Min(B) = 210

Denote Dot duration as Dd.

OFF duration ranges: 2.5 * Dd < OFF duration (between letters) < 3.5 * Dd

6.5 * Dd < OFF duration (between words) < 7.5 * Dd

 0.25 0.5 0.75 1.0 1.25 1.5

1.0 √ √ √ √ √ √

0.5 X - - X X X

0.4 X X X X X X

(Note:

“√”: the possibility that the message is decoded correctly >= 75%.

“X”: the possibility that the message is decoded correctly =< 25%.

“-”: the message decoded is partially correct.)

Distance
(m) Dd(s)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

53

6.3.2 Fixed parameters:

Min(R) = 220, Min(G) = 220, Min(B) = 220

Denote Dot duration as Dd.

OFF duration ranges: 2.0 * Dd < OFF duration (between letters) < 4.0 * Dd

6.0 * Dd < OFF duration (between words) < 8.0 * Dd

 0.25 0.5 0.75 1.0 1.25 1.5

1.0 √ √ √ √ √ √

0.5 √ √ √ √ √ -

0.4 X X X X X X

(Note:

“√”: the possibility that the message is decoded correctly >= 75%.

“X”: the possibility that the message is decoded correctly =< 25%.

“-”: the message decoded is partially correct.)

6.3.3 Fixed parameters:

Min(R) = 210, Min(G) = 210, Min(B) = 210

Denote Dot duration as Dd.

OFF duration ranges: 2.0 * Dd < OFF duration (between letters) < 4.0 * Dd

6.0 * Dd < OFF duration (between words) < 8.0 * Dd

 0.25 0.5 0.75 1.0 1.25 1.5

1.0 √ √ √ √ √ √

0.5 √ √ √ √ √ √

0.4 X X X X X X

Distance
(m) Dd(s)

Distance
(m) Dd(s)

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

54

6.4 Results Analysis

1) Given a Dot duration, minimum RGBA values and the OFF duration ranges, the

accuracy is high in the middle range of time duration. Going to the two ends of that

range, the accuracy gradually decreases. There is a brightness increasing process

when the flash light was opened and there is a brightness decreasing process when

the flash light was turned off. Therefore, the RGBA value was influenced by these

two processes that the accuracy was influenced as well.

2) When the Dot duration decreases, the distance between the emission terminal and

the reception terminal should be longer enough so that the Light state can be

determined correctly in some degree.

3) The longer the distance between the emission terminal and the reception terminal is,

the weaker the brightness of the light is. In this way, if the threshold value of RGB

is too high, the number of Light-ON-state pixels that can be detected will decrease,

which means the Light ON time becomes shorter and the Light OFF time becomes

longer. Error happens easily.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

55

At the same time, the lower the threshold value is, the shorter the Light OFF time

is and the longer the Light ON time is. When the threshold value is too low,

sometimes the flashlight state will be falsely considered to be ON, while it should

have been detected to be OFF, which may cause error as well.

Therefore, we need to find a threshold value and the rough corresponding Light

OFF duration and Light ON duration to ensure that most messages can be decoded

correctly.

Threshold Value 1

Light OFF time 1 Light ON time 1

Light ON time 2 Light OFF time 2

Threshold Value 2

RGB value

Time

Figure 6.4-1

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

56

4) The relationship of emitting frequency and receiving frequency

For signal emission and reception, we need to ensure that the receiving frequency is

2 times the emitting frequency at least. We’ve already known that the approximate

value of FPS of the receiving terminal, according to the above rule, the emitting

period, which is “1 / (Dot duration)”, should be 0.5 times the FPS at least.

In our project, we found that the camera’s receiving frequency is approximate 8 fps

which means the camera can receive 8 frames per second at most. Then, the 1 / (Dot

duration) should be at least 0.5 * 8 = 4 Hz, which means

Min (Dot duration) = 1 / 4 second = 0.25 second.

However, the limitation is now we can only receive correctly when Dot duration >=

0.5 second.

Here is the reason why Min (Dot duration) = 2 / FPS:

For the emission part, suppose the emitting frequency

F1 = n Hz, Dot duration = 1 / n seconds.

Denote the frequency of the receiving part as F2 which means FPS = F2.

And receiving period T = 1 / F2 second.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

57

The timing diagram of the emitting Light shown below:

If F2 = F1 = n, suppose it receives the first emitting message at time point A. Then

it will receive the next message after 1 / n second, which is in point B. We can see

that it misses the peak part in interval [A, B] which means the peak message can’t

be received. Then, error happens.

If F2 < F1, we also suppose it receives the first emitting message at time point A.

We calculate that T2 = 1 / F2 > 1 / F1 = 1 / n, which means the next receiving point

is in the right of point B, for example in point C. It misses the peak again.

Therefore, we need to ensure that the receiving terminal can receive the “peak

message” in interval [A, B] at least. It means that the next receiving point must

between point A and point D. When it’s in D, we got the maximum value for T2,

which implies

C B A D

Brightness

of the

emitting

light

Time

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

58

 T2 <= (Dot duration / 2)

F2 >= 2 / (Dot duration)

Thus, Dot duration >= (2 / F2) which means

Min (Dot duration) = 2 / F2 = 2 / FPS.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

59

6.5 Symbol testing

According the above testing, we choose parameter as follows, which makes the testing more

stable, to test all the letters/numbers/punctuations in the Morse code and the results are

correct. (See figure 6.5-1 and 6.5-2.)

Distance: 0.5m

RGB values: Min(R) = 210, Min(G) = 210, Min(B) = 210

OFF duration ranges: 2.0 * Dd < OFF duration (between letters) < 4.0 * Dd

 6.0 * Dd < OFF duration (between words) < 8.0 * Dd

26 Letters and 10 numbers:

Punctuations:

Figure 6.5-1

Figure 6.5-2

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

60

Chapter 7: Conclusion

7.1 Progress

The encoding part and the decoding part are implemented simultaneously.

7.1.1 Encoding

1) Study on Android programming;

2) Try to write a simple android program to open and close the flash light of android

device;

3) Try to control the on and off duration of the flash light;

4) Add the function that a user can type some text to a textbox and click the

"translate" button, and then the flash light will continue opening with different

durations of different letters;

5) Study the Morse code and try to implement the encoding;

6) Testing.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

61

7.1.2 Decoding

1) Study on Android programming and OpenCV;

2) Try to open the camera preview and know the working mechanism;

3) Obtain the average RGBA value of a limit area and obtain the RGBA value of

each pixel in the rectangle;

4) Optimize the detection area and get the threshold value of the state of the light;

5) Analyze the threshold value and determine the Light ON/OFF state;

6) Calculate the duration of the light ON state and the duration of light OFF state;

7) Analyze the raw data and classify each flashlight into “dot” and “dash, then letter

and word;

8) Decode the flashlight and display the result;

9) Testing.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

62

7.2 Difficulties

7.2.1 Encoding

1) At first, we didn’t know how to use android programming to control the flashlight.

We seek the solutions on the internet, but some methods were not compatible with out

device. Finally, we found a method, modified it and controlled the flashlight

successfully.

2) At the very beginning, the first symbol of one message is always decoded falsely. We

thought that the decoding part is responsible for computing the on and off durations of

flashlight, so the problem must be in the decoding part, but we were wrong. Somehow

we finally found that it was the problem about encoding. The problem is about time

variables declarations and the process procedure. At first, we declared

“double lastTime = System.currentTimeMillis()/1000;”,

but the return value of System.currentTimeMillis() should be long.

Then we modified the codes to as follows:

long lastTime = System.currentTimeMillis();

long curTime = System.currentTimeMillis();

double openTime = (double)(curTime - lastTime) / 1000.0;

3) Since when we meet a space while encoding, the flashlight should be off 7 unit

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

63

seconds, the process between two words is a little complex. At the beginning, we meet

some problem. For example, consider the input message “cuhk cse”, the flashlight will

be off 3 unit seconds after very letter. However, there is a space after the last letter “k”

and the flashlight will be off 7 unit seconds for that space. Overall, after “k”, the

flashlight will be off 10 unit seconds, which is not correct. And we added some

conditional statement to fix it out.

7.2.2 Decoding

1) No idea about android programming and OpenCV, all we can do is start from scratch.

We went through every example in the OpenCV tutorial and tried to figure out what

those functions do. After that, we got functions we need and applied it to the Light

detection part.

2) At first, our program can only detect the light that totally fills the rectangle. We got

the sub matrix we need from a matrix and used functions to calculate the sum of all

the elements in that sub matrix. Then we used the result to obtain the average value

of the sum, in this way we got the average RGBA value of the rectangle area.

Finally we find a way to extract the value of each element in the matrix, so that we

can decide the RGBA value of each pixel in the rectangle area. When there are above

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

64

10% pixels in the rectangle area satisfy the Light-ON condition, the rectangle area

then can be considered as Light ON.

3) The emission Light ON/OFF time is not exactly equals to the Light ON/OFF that

was received. Then we need to determine the Light ON duration that was

corresponding to a DOT/DASH, while it is a little hard. Because in the ideal state,

the inter-element gap between dot and dash is one time unit, while the actual time

being detected fluctuated up and down with respect to the ideal one. We

experimented on it for many times and tried different time range and finally we

found an appropriate one.

4) Since the flashing frequency was determined by ourselves, at first we could only

detect the Morse code whose time unit was at least 1 second. After several

experiments on the threshold of RGBA value, Light ON/OFF duration decision and

distance testing, we can detect Morse code in higher frequency whose time unit was

0.5 second.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

65

7.3 Current limitations

 The encoding part and the decoding part were separated as two applications.

 The emission frequency cannot be changed by user.

 The detection area was limited to a specific area.

 Detection of light was easily disturbed by those reflecting light.

 When emission frequency is too high, the app couldn’t decode precisely or even

couldn’t decode.

 The program can’t change the parameter of the environment light, like exposure

value.

 The app couldn’t decode the Morse code automatically, which means it can’t

decode the Morse code if it doesn’t know the emission frequency.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

66

Chapter 8: Future development

8.1 For the whole project:

 Combine the encoding part and the decoding part to one app.

 Try to implement the bi-directional communication in the standard way. For example,

when the emission terminal send a signal which tells it’s ready to send the signal, after

receiving the signal, the reception terminal can reply a signal to tell it’s ready to

receive the signal as well. The emission terminal will not send message until the

reception terminal is ready.

8.2 For the encoding part:

 Optimize the User Interface and make it user friendly.

 Increase the accuracy of sending the Morse code.

 Implement the function that a user can change the emission frequency before

encoding.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

67

8.3 For the decoding part:

 Increase the receiving accuracy and decoding accuracy.

 Try to receive and decode the Morse code whose frequency is higher than present.

 Realize longer distance Morse code emission and reception.

 Try to implement auto-detection of Morse code, which means the Morse code can be

decoded without knowing its emission frequency.

 Implement the decoding part in a different way in which we can change the

parameters of the environment, like exposure, brightness and so on.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

68

Chapter 9: Acknowledgement

We would like to give our sincere thanks to Prof. Michael R. Lyu who met us every week to

follow our progress in the project. Prof. Lyu gave many useful comments and suggestions on

our project’s modifications and improvements.

Besides, we would also like to thank VIEW Lab’s researcher, Mr. Edward Yau, without his

inspiring idea and practical instructions, our application wouldn’t be developed so smoothly.

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

69

Chapter 10: Reference

[1] Wikipedia. “Morse code,” Wikipedia.org. [Online]. Available:

http://en.wikipedia.org/wiki/Morse_code [Last Modified: 23 November 2013, 04:22].

[2] Google Play. “Morse Code Trainer,” Google.com. [Online]. Available:

https://play.google.com/store/apps/details?id=hunt.morseDit [Accessed: November. 24, 2013]

[3] AppsZoom. “Morse Code Translator,“ AppsZoom.com. [Online]. Available:

http://cn.appszoom.com/android_applications/tools/morse-code-translator_gnfkp.html [Accessed:

November. 24, 2013]

[4] AppsZoom. “Simple Morse Code Translator,“ AppsZoom.com. [Online]. Available:

http://cn.appszoom.com/android_applications/tools/simple-morse-code-translator_grsdw.html

[Accessed: November. 24, 2013]

[5] AppsZoom. “SMS2CW – Convert to Morse Code,“ AppsZoom.com. [Online]. Available:

http://cn.appszoom.com/android_applications/communication/sms2cw-convert-to-morse-code_ceze.ht

ml [Accessed: November. 24, 2013]

http://en.wikipedia.org/wiki/Morse_code
https://play.google.com/store/apps/details?id=hunt.morseDit
http://cn.appszoom.com/android_applications/tools/morse-code-translator_gnfkp.html
http://cn.appszoom.com/android_applications/tools/simple-morse-code-translator_grsdw.html
http://cn.appszoom.com/android_applications/communication/sms2cw-convert-to-morse-code_ceze.html
http://cn.appszoom.com/android_applications/communication/sms2cw-convert-to-morse-code_ceze.html

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

70

[6] Wikipedia. “Morse code,” Wikipedia.org. [Online]. Available:

http://en.wikipedia.org/wiki/Morse_code [Last Modified: 23 November 2013, 04:22].

[7] OpenCV. “OpenCV ABOUT,” opencv.org. [Online]. Available:

http://opencv.org/about.html [Accessed: November. 24, 2013]

[8] OpenCV. “OpenCV ABOUT,” opencv.org. [Online]. Available:

http://opencv.org/about.html [Accessed: November. 24, 2013]

[9] OpenCV. “OpenCV PLATFORM,” opencv.org. [Online]. Available:

http://opencv.org/platforms.html [Accessed: November. 24, 2013]

[10] OpenCV. “OpenCV PLATFORM,” opencv.org. [Online]. Available:

http://opencv.org/platforms.html [Accessed: November. 24, 2013]

[11] OpenCV. “OpenC4Android Samples,” opencv.org. [Online]. Available:

http://opencv.org/platforms/android/opencv4android-samples.html [Accessed: November. 24,

2013]

http://en.wikipedia.org/wiki/Morse_code
http://opencv.org/about.html
http://opencv.org/about.html
http://opencv.org/platforms.html
http://opencv.org/platforms.html
http://opencv.org/platforms/android/opencv4android-samples.html

Final Year Project 2013-2014

LYU1305 Real-Time Morse Code Communication App Fall 2013

Department of Computer Science and Engineering, CUHK

71

[12] Android. “Developers,” android.com. [Online]. Available:

http://developer.android.com/reference/android/hardware/Camera.html [Accessed: November.

24, 2013]

http://developer.android.com/reference/android/hardware/Camera.html

