
LYU1203
Final Year Project 2012/13

vPresent

Prepared by Jimmy, Sinn Lok Tsun (1155002358)
Supervisor: Professor Michael R. LyuSpring 2013

Report

Collaborative Presentation System on Mobile Devices

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Abstract

vPresent is a project promoting a new concept of presentation Collaborative presenta-

tion. Collaborative presentation is the concept of presentation allow multiple presenters

to make contribution to presentation, and making the presentation more interesting and

unique. With raising popularity of mobile operating systems and mobile applications,

we implement applications on mobile platform for promoting collaborative presenta-

tion. By introducing more features that are familiar to the general public, it helps

promoting collaborative presentation in a more friendly way. The concept of collabo-

rative presentation do not limit or require form of presentation by the application. It

points to a new direction for improving presentation style.

Contents

1. Introduction 4

1.1. Background and Objective . 4

1.2. Summary of Fall 2012 . 5

1.3. Highlight in Spring 2013 . 6

2. Collaborative Presentation 11

2.1. Concept and Terminology . 11

2.2. Features . 14

2.3. Deployment Scenario . 16

3. System Design 19

3.1. System Overview . 19

3.2. Presentation Content . 20

3.3. External Display . 24

3.4. Inter-Devices Communication . 26

4. User Interface and Experience 48

4.1. Initial Approach and Proposals . 48

4.2. Final Design . 50

4.3. Interface Update . 51

2

Contents

5. Implementation Detail 53

5.1. PDF . 53

5.2. Video Playback . 54

5.3. External Display . 58

5.4. Network Connection . 64

5.5. File System . 65

5.6. User Interface . 66

6. Progress and Evaluation 70

6.1. Source Control . 70

6.2. Schedule . 71

7. Contribution and Reflection 72

7.1. Contributaion . 72

7.2. Reflection . 74

8. Conclusion 75

9. Acknowledgement 77

10.Reference 78

Appendix A. Network Message Specification 79

3

Chapter 1
Introduction

1.1. Background and Objective

Presentation systems was a large market for both education, business etc. In educa-

tion aspect, teachers, lectures and professors use slides show and presentation software

for lecture. Other than lecture, presentation system is also used in conferences. Pre-

senting a thesis, researchers and scholars would also use slides to present their thesis

in conference. Presentation is widely used in transferring knowledge on educational

purpose.

In traditional slide-based presentation, usually only one presenter dominate the whole

presentation. If there are two or more presenters responsible for the presentation, taking

turn would introduce inconveniences and interruptions towards presentation flow.

Therefore, we are trying to promote a new concept of presentation, namely collabo-

rative presentation. Collaborative presentation aimed at preventing single presenter

dominate whole presentation by allowing others join and contribute to presentation,

and the ultimate goal is to vague the boundary between presenters and viewers. Pro-

moting the new concept of presentation, we are going to develop an application on iOS,

4

1.2. Summary of Fall 2012

demonstrating characteristics of collaborative presentation.

1.2. Summary of Fall 2012

1.2.1. Implemented Features

This project is started from Summer 2012, and we have achieved few milestones by Fall

2012.

Firstly, we have made two prototype applications for collaborative presentation, for pre-

senters and moderators respectively. Moderator app and presenter app are connected

via wireless network. Moderator app act as server, while presenter app act as client.

Client-server model of at most 255 client (restrict by protocol) is support.

Apart from network communication, we have also worked on synchronization of multiple

views with external display. External display is connected with an VGA or HDMI

adapter, and the presentation could be display in both device display and external

display.

With both network communication and external display synchronization, presenter

could control moderator wirelessly. While moderator is connected to external display,

presenter could control slides and images show in external display such as projector.

The following types of media supported in the prototype with wireless synchronization

with external display:

• PNG images as slides

• Drawing Pad with arbitrary path drawing

5

1. Introduction

1.3. Highlight in Spring 2013

In Spring 2013, we have decided to work on two main directions, refining scenario of col-

laborative presentation, completing presentation work flow and enriching presentation

content by supporting more types of media.

1.3.1. Refinement of Collaborative Presentation

Collaborative presentation is a good idea in reinventing presentation. However, it

is not applicable to any scenario, as well as causing disturbance during presentation.

Therefore, we have made refinement on the scenario and concept, to make collaborative

presentation more practical in real world presentation.

From the feedback of previous prototype, we have refine some concept and scenario of

collaborative presentation.

�� ��Focus in Meeting and Conference

We have chosen two scenarios as our main focus: meeting and conference, and design-

ing the interface and user experience focusing on those scenarios. The former scenario

require strong communication and collaboration, and would fit to collaborative presen-

tation concept. The latter one is our originate, which is similar to meeting with large

group of people. Detail of deployment scenario for Group Meeting and Conference are

discussed in subsection 2.3.

�� ��Focus in Moderator and Presenter

Under the scenarios mentioned, we decided to only focus in collaboration between

6

1.3. Highlight in Spring 2013

presenters. In those scenario, viewers is a minority and they would not have the right

to speak in most cases. In case viewers need to express their opinion, they can still

register with moderator and act as presenter in a short period of time.

1.3.2. Completion of Presentation Flow

A presentation work flow could be divided into three stages: preparing materials, dis-

tributing materials and presenting materials.

Preparing Materials Presenting Materials

Distributing Materials

Figure 1.1.: Work Flow of a Presentation

We have been focusing on the stage of presenting materials for a long time. However,

we did not address of preparing the presentation material, as well as distributing it. In

the previous semester, the presentation materials are composed of multiple image files

together with an index file, which is difficult to distribute or manage. Therefore, we

are going to consider how to create the materials, as well as distributing the materials

in a convenient way.

We have thought about developing a new format of presentation content for our ap-

plication, but it is not friendly our existing presentations. Therefore, we start explore

some existing presentation format and supporting the format in our application.

7

1. Introduction

Mainstream presentation content creation software are Microsoft PowerPoint, Apple

iWork Keynote and Google Docs presentation. Those softwares are having their own

format, such as .ppt , .pptx for Microsoft PowerPoint, and .key for Apple

Keynote, while Google Docs also support exporting to .ppt . In addition, all of those

could export presentation content to .pdf . Considering .ppt and .pptx format,

both of them are in binary and Office Open XML format, which need a large effort for

parsing without sufficient of documentation. On the other hand, despite PDF file are

binary, iOS API could parse them and render each page into image. There are also

external libraries and engines that could parse PDF files.

Apart from creation of presentation, PDF could have annotation which could be in form

of text, path drawing, regular shapes etc. Those annotation are useful for expressing

idea during meeting and presentation, which is similar to the drawing pad from the

previous prototype. Moreover, the annotation is able to save within the PDF file, and

allow further distribution and review afterward.

As .pdf is easy to create, with common presentation creation software, and handy

to distribute, as well as popular for exchanging nowadays. Therefore, we decided to

support PDF file in the applications.

1.3.3. Enrichment of Presentation Content

Portable Document Format (PDF)

A PDF file could include the following types of element:

• Text

– Embed with font

8

1.3. Highlight in Spring 2013

– In different encoding

• Raster graphics

• Vector graphics

• Annotation

Supporting PDF as presentation content allow users to enrich slides with the above

elements, as well as enhancing the quality of slides.

In order to speed up the implementation process, we used PSPDFKit, a third party

framework, as PDF parser and renderer. The PSPDFKit provide functions for decod-

ing, parsing of a PDF document, a view controller that show the rendered document

and control of page view, as well as annotation editing functions. We are using a free

trial of the framework in our app prototype.

Using the PSPDFKit, we then focus on integrating the view controller and those func-

tionalities with our app, demonstrating collaborative presentation concept with PDF

presentation. The main focus of integration including sending and exchanging the PDF

documents, synchronization with moderator’s device as well as external display. The

implementation detail will be discussed in chapter 5.

Video Content

Another enrichment feature is to integrate video playback into the presentation content.

As it is a common feature provided by common presentation formats, it it proved that

video is an essential element in nowadays presentation. Our goal is to allow presenters

to display video clips prepared by presenters on the projector screen, while they can

9

1. Introduction

remotely control the playback of the clips. Challenges exist when introducing such kind

of feature in collaborative presentation.

Exploring PSPDFKit API, we found it is possible to embed video link inside the PDF

file. However, it is using PSPDFKit own protocol and format which is not compatible or

readable by other application. Therefore, we decide not to use the built-in PSPDFKit

function to play video. Thus, we have to design our own implementation in order to

introduce this feature into our application.

Since video files are generally large in file size, while handling them are resource demand-

ing, both in terms of networking and computational power. Moreover, the presentation

content will not be available on the moderator side until the actual presentation is

carried out, video playback on the remote side will not an easy task if we have to en-

sure smooth video playback while minimize any performance effects to the presentation

flow. New controlling mechanisms and video content delivery methods are essential to

complete this task.

10

Chapter 2
Collaborative Presentation

2.1. Concept and Terminology

Collaborative presentation is trying to make more people could shout their voice out

during the presentation, as well as providing a simple way for multiple people taking

turn in presenting their materials.

Firstly, we categorized people presence in a presentation into three major types: mod-

erator, presenter and viewer.

11

2. Collaborative Presentation

Wireless Connection

Presenters

Viewers

Moderator
Projector

Figure 2.1.: Collaborative Presentation Overview

2.1.1. Roles

Moderator is unique in a presentation. The duty of moderator is to monitor the

presentation, as well as coordinating the presenters with other presenters. The device

of moderator also act as a server, receiving connections from presenters’ device. In

addition, moderator is connected to the external display such as monitor or projector,

showing presentation content. Moreover, moderator is a subset of presenter, which is

also allowed to do presentation.

12

2.1. Concept and Terminology

Presenter is a group of people, of which are going to present their material during the

presentation. They will bring their own material to attend the presentation. Presen-

ter who is presenting is considered as active presenter, while the remaining those are

inactive presenter.

Viewers are people who attend to the presentation without their own content. The

idea of allowing viewers involve more in presentation is shelved in order to focus on

presenter at preliminary stage. Therefore, they will only listening to presentation and

may only give short comment.

2.1.2. Connections

The connections between presenters and moderator, or among presenters are wireless.

Wireless connection is available in most of hand-held devices Including smartphone

and tablets. This benefit in allowing presenters to have physical movement during

presentation, or having interactive presentation with viewers.

However, the connection between moderator and external display have to be in wired. It

is possible that to have streaming to external display using AirPlay or Wi-Fi Miracast,

but the performance and fluency may be affected. Moreover, the bandwidth of single

moderator would be too large if we use wireless streaming in addition to presenters’

connection. The connection might be by 30-pin or lightning to VGA or HDMI for

Apple devices.

13

2. Collaborative Presentation

Moderator Presenter A Presenter B Presenter C

Se
am

le
ss

 P
re

se
nt

at
io

n

Ex
te

rn
al

 D
is

pl
ay

Figure 2.2.: Collaborative Presentation Flow

2.1.3. Presentation Flow

2.2. Features

2.2.1. Seamless Handover of Presentation Control

When there are multiple presenters in a presentation, it is troublesome when a active

presenter handover the presentation to another presenter. Regarding the presentation

14

2.2. Features

content are not merged together, presenters may have to reconnect their laptop with

the external display, or switching presentation content to another file. Despite the time

for those actions are short, it is still affecting fluency of presentation. Technical issues

always pop up while the transition action as well. Another solution is only using one

computer with single presentation slides file, which this require presenters to gather

their materials before the presentation. However, there do not have time for such

merging process in many scenario.

With seamless handover of presentation control, presenters could pass the control to

another presenter easily without disturbance. When a presenter finish his own section

of presentation, he / she only need a click, notifying moderator that the section is

finished. Once moderator receive the signal, another presenter is chosen to present the

next section. The presentation materials of the next presenter is send to moderator

device in real-time via wireless connection, and can start the presentation in a short

time.

The seamless handover of presentation control brings the following advantages: do

not need wired connection for presenter, do not need any merging and preparation

of presentation content needed before presentation, handy handover of presentation

control, and improve of presentation fluency when passing presentation control.

2.2.2. Temporary Presentation Control Passing

This feature is a variation of seamless handover of presentation control. With this

feature, active presenter could invite another presenter to give a short feedback and

opinion on current presentation.

The main difference of temporary presentation control passing from handover of presen-

15

2. Collaborative Presentation

tation control is that the permission is grant by active presenter instead of moderator.

During the presentation, active presenter may receive requests from another presenter,

or actively invite another presenter to give feedback. However, this may cause distur-

bance of current presentation and implementation should provide several methods to

avoid this.

A idea is to provide a “do not distrub” function, thus the presenter could focus on

presentation and look for any pending requests when the presentation is paused. On

the other hand, implementation could limit only one request could be sent from single

presenter, or making limited number of request being visible for active presenter.

2.2.3. Presentation Functionalities

Basic presentation functionalities should also be provided apart from collaborative pre-

sentation. Following listed few functionalities from current presentation software, and

need to be implemented together with collaborative presentation features:

• Showing slides or presentation content

• Support of external display

• Drawing on presentation slides

2.3. Deployment Scenario

We set the deployment scenario focusing to involving and need communication. The

following are examples:

16

2.3. Deployment Scenario

2.3.1. Group Meeting

One of the most common scenarios that suitable to deploy collaborative presentation

will be a small group meeting that happen every day at offices and campuses.

In this case, we do not fix a size of participants, but only considering a controllable size

for moderator. The chairman of meeting, who will have to control the meeting flow

and right of speak of participants, need to be the moderator, while other participants

are act as presenters. Moreover, the external display may show information, such as

agenda, report as well as related materials for discussion.

At the beginning of meeting, moderator connect his/her own device to external dis-

play, and connect to an access point wirelessly. Other presenters could connect to the

same access point, and therefore could connect and register to moderator’s device with

local network IP address. Once presenters are registered, moderator can see all con-

nected presenters. Moderator could start the meeting, and pass the control to other

participants based on agenda and meeting progress.

During the handover processes, no external files needed to be exchanged between the

presenters and moderators device. This saves the overhead when performing handover

actions in traditional presentation, either transmitting files between the two devices or

reconnecting the external displaying unit. Once the presenters have been granted the

control, they can use their own machines and prepared material just have the same

experience as their devices have been directly connected to the projectors.

17

2. Collaborative Presentation

2.3.2. Conference

Another suitable deployment scenario would be council meetings or conference meetings

in larger scale.

In a conference, moderator is the president while other attendees are presenter. Presi-

dent have to control and manage the flow of discussion, allowing attendees to speak one

by one. With collaborative presentation, it is handy for president to pass the control

to another presenter.

Once the presentation control is passed to a presenter, he / she could present materials

to all other attendees. If other attendees have opinion or feedback on the presentation

content, it could ask for presenter, as well as the moderator for temporary permission.

In this case, the moderator could have a centralized control of the meeting progress,

while other attendees could have their chance to present their materials, without ex-

changing files through wires. Collaborative presentation help in this scenario much.

However, there should be a point need to be mentioned. As the attendee size might be

large in this case, the moderator might be overloaded by the large amount of requests,

as well as for active presenter. Therefore, limit of request number and “do not disturb”

mode should be available for this scenario.

18

Chapter 3
System Design

3.1. System Overview

Please refer to Figure 3.1

3.1.1. Class Diagram - Moderator

Please refer to Figure 3.2

3.1.2. Class Diagram - Presenter

Please refer to Figure 3.3

19

3. System Design

3.2. Presentation Content

3.2.1. PDF

The PDF is done with PSPDFKit framework. Functionalities of the framework is rich,

but we may not need all of those functions. Following is a table list all features from

PSPDFKit, and features we needed in our application:

Funcions Features in our application

Annotation 3 Drawing on slides

Zooming and Moving 3 Focus in presentation

Text Search 7

Multimedia 7

Links 7

Encryption 7

Bookmark 7

PDF Manipulation 3 Export single PDF for whole presentation

Internal Web Browser 7

Multiple Tabs 7

Table 3.1.: Summary of Functionalities of PSPDFKit

From Table 3.1, we could easily conclude the functions we used from PSPDFKit and

adopt to our application.

20

3.2. Presentation Content

Annotation: Drawing on Slides

Annotation features is an important concern in our applications. From Fall 2012, we

have implemented a drawing pad with arbitrary drawing features, allowing presenter

to drop down important notes and emphasize points in the slides. We could make

use of the annotation feature to have similar functions of drawing pad, and export the

drawing to the same PDF file.

Zooming and Moving: Focus in Presentation

Zoom is helpful for presenters to focus to a region that is presenting. In addition, as

PDF support vector graphics, zooming is also useful to view a small elements in PDF.

PDF Manipulation: Export single PDF for whole presentation

With seamless presentation, each presenter could have their own presentation slides.

It is easy for each presenter to distribute their own slides in PDF format by their

own. However, it is difficult to have a single PDF file that include all slides from each

presenter in presentation sequence. Therefore, with PDF manipulation feature, we

could export single PDF file for the whole presentation after each presenter finish their

part. Moderator or the organizer may easily distribute the whole presentation with a

single PDF file.

3.2.2. Video

In order to play presenter content through the moderator, using currently available

infrastructures, the video content, either part of the content or the whole video clip,

has to be available on the moderator before it can be played on the projector screen

21

3. System Design

through the moderator device.

The major challenge is how video contents from presenters can be effectively delivered

to the moderator device while without affecting much of the presentation flow and

the overall performance of the whole system. Also, playback control messages are also

required to send from the presenter devices to the moderator, so that the video playing

on the moderator side is under the respective presenters control.

Content Delivery

Regrading these requirements, the following video content delivery strategies have been

considered.

�� ��Direct Transmission of Video Contents

During the presentation is being carried out, the presenter can select a video clip

orginally prepared and saved on the presenters device. Then the presenter send the

whole video clip to moderator device. After the video clip have been transmitted, the

moderator will spawn out the media player and wait for the presenter to start playing

the video. The media player disappear after the video is finished and resume back to

the static presentation content.

This approach is easy to implement, as the whole video file can be treated as a lump of

data and send to the moderator using a simple TCP connection. Once the download

completed, the video clip will be saved at the local storage. Since the video is locally

stored, video playback quality and smoothness can be ensured. On the other hand,

sending the video file is time consuming and resource consuming, especially when the

video quality is high or the network condition is unstable. These two drawbacks can

22

3.2. Presentation Content

greatly affect the user experience and system performance if the application is poorly

implemented.

�� ��Video playback by streaming through external video streaming servers

The presenter can first upload their video content to any external video streaming

servers which support Apple HTTP Live Streaming (Apple HLS) standard. During the

presentation, the presenter can send the HLS-format playlist to the moderator, then

the moderator will load this playlist into the media player and start streaming the

video.

The network overhead is low for presenters, and the video is likely to be readily available

since the video can be started when the enough video buffer is downloaded from the

video streaming server. The drawbacks would be the video quality is likely to be down-

graded and the video playback may become lag if the connection between moderator

and streaming server is poor.

�� ��Video playback by streaming through self-contain video streaming server

The moderator works exactly the same as the method using external video streaming

servers. The difference is that all the encoding and streaming workflow of producing

the video streams will be done on presenter device. The original video is loaded into

the device, when the presentation starts, the device encodes the video and start the

HTTP service. When the moderator receives the HLS-format playlist, it will get the

video data stream from the presenter and start playing when there is enough buffer

downloaded.

The main advantage of this approach is that no external streaming server is needed,

23

3. System Design

and the presenter do not need to upload their content to the media servers first, as the

video streams will be prepared by the application on the device. Also, as local network

is usually more stable then Internet, the video playing on the moderator side is less

likely to be choked. Still, this approach introduce large networking and computational

overheads to presenters device, as encoding videos and hosting HTTP services are

power-consuming tasks. Also, no current implementations or libraries are available for

iOS devices to encoding video or hosting a HTTP server. So theoretically this approach

should work, but implementation would be very complex and difficult.

Playback Mechanism

Apart from the delivery of video contents, we have to design a video playback controlling

mechanism for presenters to play, pause, stop or seek their videoes. New controlling

protocols and user interfaces are needed in order to provide this function.

Also, as the moderator have the right to interrupt any ongoing presentations, there

is essential designing another mechanism for the moderator to stop the video and

inactivate the current presenter.

3.3. External Display

The moderator would connect to external display, and show the slides on external

screen. While the projector showing slide, screen on device should also show the slide

so the user can focus on the device screen and audiences, without frequently looking at

projection. In addition to slides and presentation content, there should be presentation

control and configuration detail shown only in device but not projecting to screen.

Therefore, we have to make presentation content synchronizing in device and screen,

24

3.3. External Display

as well as having control only showing in the device.

Another concern is the resolution and resizing. Resolution of iPad, iPad 2 and iPad

Mini is 1024 × 768 while resolution of the New iPad is 2048 × 1536. However, typical

resolution of projector or external screen is 1280× 1024 and 1920× 1080. We separate

the problem into two cases: same aspect resolution and different aspect ratio. If the

aspect ratio is the same, simply resize the image by multiplying size by a constant ratio.

However, if the aspect ratio is different, we need to handle re-calculate the size in order

to maintain the aspect ratio. Moreover, center the image and handling of extra space

is another concern when making best-fit resizing.

4:3
Control
Panel

Control and
Information

Not full iPad resolution

16:9

16:9

Device Slide Size
4:3

Projector Resolution
Resize

Device Slide Size

4:3

Figure 3.4.: Scaling and Fitting for External Display

25

3. System Design

3.4. Inter-Devices Communication

As a client-server system, we have to consider about connection between clients and

server. Regarding networking and Open Systems Interconnection (OSI) model, there

are 7 abstract layers in communications system or network.

Despite it is an abstract concept, it is still worth to make decision about message

transmission based on few layers which is more in practical, including data link layer,

transport layer and application layer.

Regarding the data link layer, there are much implementation including Wi-Fi and

Bluetooth, which are both native supported by iOS devices. We have considered both

data link interfaces to implement the inter-device communication, and we decided to

use Wi-Fi as our data link layer interface.

There are two main implementation of transport layer, user datagram protocol (UDP)

and transmission control protocol (TCP). We use TCP instead of UDP because TCP

could ensure that received data is correct. This is important when user send slides

from own device to server. In addition, this can also avoid a possibility of error and

bug during development process.

Application layer protocol is important for message being understand by both devices.

As it is self-defined, the information would be more and we will discuss it in the next

session.

26

3.4. Inter-Devices Communication

3.4.1. Application Layer Protocol

Sending message on network is a costly operation, therefore we have to minimize the

size of message by considering the protocol in byte.

There are several type of message being sent. During the design of protocol, we should

make the type be easily differentiated and distributed to other object for processing.

Header

We decided to make an application layer header for easy distinguishing command and

presenter. The header is total of 8-byte long, including command, presenter ID, check-

sum and message size.

0 7 8 15 16 23 24 31

Command Presenter ID Checksum
Reserved

Message Size

Content
hhh

hhh

Figure 3.5.: Application layer protocol packet structure

Specifications of Field

Regarding the presenter ID, it is a single byte unique value for each presenter. The

range of presenter ID is from 1 to 254 inclusively, and 0 is reserved for server, 255 is

reserved for unregistered presenter. In usual, presenter ID in a message would not be

27

3. System Design

0 as the value in message means the client communicate with server. The only case for

presenter ID equals 0 is moderator is broadcasting message to all registered presenter.

Checksum is a two-byte field reserved for message integrity. However, it is not used

in current stage as TCP guaranteed correctness of received data. This could be useful

if some message are sent via UDP.

Message length is a four-byte integer in network byte ordering, representing the

length of whole message including the eight-byte header. By referring to this value, we

ensure the whole message is received from stream before calling the delegate handling

method.

Command is used to distinguish type of message. Adding this field ease the difficulty

in partitioning message. Each type of message is associated with a single-byte command

value. For detail please refer to Table 3.2.

28

3.4. Inter-Devices Communication

Type Action From Command
Register Request Client 0x01

Success Response Server 0x02
Failure Response Server 0x03

Unregister Request Client 0x04
Response Server 0x05

Control Permission Request Client 0x06
Response of Request Server 0x07

Grant Permission Server 0x08
Withdraw Permission Server 0x09

Control Signal Request Client 0x0C
Success Respond Server 0x0D
Failure Respond Server 0x0E

Video Playback Request Client 0x20
Success Response Server 0x21

Pause Request Client 0x22
Pause Success Response Server 0x23

Stop Request Client 0x24
Stop Success Response Server 0x25

Goto Request Client 0x26
Goto Success Response Server 0x27
Prepare Send Request Client 0x28

Prepare Send Response Server 0x29
Prepare Send Client 0x2A

Prepare Send Complete Response Client 0x2B
Sending PDF PDF Data Client 0x30

Response Server 0x31
Annotation Request Client 0x34

Response Server 0x35

Table 3.2.: Command List Table

29

3. System Design

Message Sending Chart and Callback

2.3 Failure Respond
0 7 8 15 16 23 24 31

0x03
Command

0xFF
Presenter ID

Checksum
Reserved

Message Size

2.4 Message Send Chart

Client Server

Call

RequestReturn

Handle

Return

Respond

Callback

msc Registration

6

Figure 3.6.: Message Sending Chart for Most Message

30

3.4. Inter-Devices Communication

VPPresenterD
etail

VPPresenter
VPPresenter
NetworkAgent

TCP
Connection

VPModerator
Server

VPModerator
VPModerator

Detail
VPSlide

Control Signal

VPCanvas
U

ser

superview

networkAgent

sendRequest:

detail
slides

request

response

return
return

Success?

return
return

<<delegate>>
controlSignalCompleted

controlSignalFailed:detail:

return

return

return

receiveHandle:

control:

<<delegate>>
handleRequest:

perform:

Screen Change

Error Prompt (if fail)

Figure 3.7.: Sequence Diagram of Handling Requests

31

3. System Design

Message Specification

Following list all message, its message structure and field description. Packet structure

diagram could be found in A.

�� ��Register

Command 0x01

Direction Client Ô Server

Argument Count 2

Argument 1 Length of Name (4 bytes)

Argument 2 Presenter Name (Vary length)

Package Structure Diagram Figure A.1

Table 3.3.: Register Request

Command 0x02

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.2

Table 3.4.: Register Success Response

Command 0x03

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.3

Table 3.5.: Register Failure Response

32

3.4. Inter-Devices Communication

�� ��Unregister

Command 0x04

Direction Client Ô Server

Argument Count 0

Package Structure Diagram Figure A.4

Table 3.6.: Unregister Request

Command 0x05

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.5

Table 3.7.: Unregister Response

�� ��Control Permission

Command 0x06

Direction Client Ô Server

Argument Count 0

Package Structure Diagram Figure A.6

Table 3.8.: Control Request

33

3. System Design

Command 0x07

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.7

Table 3.9.: Control Response

Command 0x08

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.8

Table 3.10.: Grant Control

Command 0x09

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.9

Table 3.11.: Withdraw Control

34

3.4. Inter-Devices Communication

�� ��Control Signal

Command 0x0C

Direction Client Ô Server

Argument Count 2

Argument 1 Control Signal Type (1 bytes)

Argument 2 Control Signal Parameter (3 bytes)

Package Structure Diagram Figure A.10

Table 3.12.: Register Request

The control signal is specified in Table 3.13

Type Description Parameters

0x01 Next Slide

0x02 Previous Slide

0x03 Jump to Slide Slide Number (1 byte)

0xF0 Black Screen As boolean of useWhite (1 byte)

0xFD Handover Control Presenter ID (1 byte)

0xFE Withdraw Control Counter (1 byte)

0xFF Return Control

Table 3.13.: List of Control Signal

35

3. System Design

Command 0x0D

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.11

Table 3.14.: Control Signal Success Response

Command 0x0E

Direction Server Ô Client

Argument Count 2

Argument 1 Error Code (1 bytes)

Argument 2 Error Detail (3 bytes)

Package Structure Diagram Figure A.12

Table 3.15.: Control Signal Failure Response

�� ��Video Playback

Command 0x20

Direction Client Ô Server

Argument Count 2

Argument 1 Length of Video Filename (4 bytes)

Argument 2 Video Filename (Vary length)

Package Structure Diagram Figure A.13

Table 3.16.: Video Play Request

36

3.4. Inter-Devices Communication

Command 0x21

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.14

Table 3.17.: Video Play Success Response

Command 0x22

Direction Client Ô Server

Argument Count 0

Package Structure Diagram Figure A.15

Table 3.18.: Video Pause Request

Command 0x23

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.16

Table 3.19.: Video Pause Success Response

Command 0x24

Direction Client Ô Server

Argument Count 0

Package Structure Diagram Figure A.17

Table 3.20.: Video Stop Request

37

3. System Design

Command 0x25

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.18

Table 3.21.: Video Stop Success Response

Command 0x26

Direction Client Ô Server

Argument Count 1

Argument 1 Second (8 bytes)

Package Structure Diagram Figure A.19

Table 3.22.: Video Goto Request

Command 0x27

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.20

Table 3.23.: Video Goto Success Response

Command 0x28

Direction Client Ô Server

Argument Count 0

Package Structure Diagram Figure A.21

Table 3.24.: Video Prepare Send Request

38

3.4. Inter-Devices Communication

Command 0x29

Direction Server Ô Client

Argument Count 1

Argument 1 Listening Port (2 bytes)

Package Structure Diagram Figure A.22

Table 3.25.: Video Prepare Send Response

Command 0x2A

Direction Client Ô Server

Argument Count 4

Argument 1 Length of Video Filename (4 bytes)

Argument 2 Video Filename (Vary length)

Argument 3 Length of Video (4 bytes)

Argument 4 Video File (Vary length)

Package Structure Diagram Figure A.23

Table 3.26.: Video Send

Command 0x2B

Direction Client Ô Server

Argument Count 0

Package Structure Diagram Figure A.24

Table 3.27.: Video Send Complete Respond

39

3. System Design

�� ��PDF Data

Command 0x30

Direction Client Ô Server

Argument Count 2

Argument 1 Length of PDF Data (4 bytes)

Argument 2 PDF Data (Vary length)

Package Structure Diagram Figure A.25

Table 3.28.: PDF Data

Command 0x31

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.26

Table 3.29.: PDF Data Acknowledge

�� ��Annotation

Command 0x34

Direction Client Ô Server

Argument Count 3

Argument 1 Annotation Type (2 bytes)

Argument 2 Data Length (2 length)

Argument 3 Data (Vary length)

Package Structure Diagram Figure A.27

Table 3.30.: Annotation Request

40

3.4. Inter-Devices Communication

Command 0x35

Direction Server Ô Client

Argument Count 0

Package Structure Diagram Figure A.28

Table 3.31.: Annotation Response

41

3. System Design

Figure 3.1.: Overall Structure

Moderator Presenter

Slides View Controller

PDF File

Video File

PDF Data

Video Data

Device View

ClientServer

Slides View ControllerPDF Data

Video Data

Device View

PDF File

Video File

External Display
View

Network Connection

Presenter
List

Requests
Handler

Requests
ManagerTimer Timer

Presenter

Client

Presenter

Client

Network
Connection Network Connection

Requests

Commands and Data

42

3.4. Inter-Devices Communication

Moderator Presenter

Slides View Controller

PDF File

Video File

PDF Data

Video Data

Device View

ClientServer

Slides View ControllerPDF Data

Video Data

Device View

PDF File

Video File

External Display
View

Network Connection

Presenter
List

Requests
Handler

Requests
ManagerTimer Timer

Presenter

Client

Presenter

Client

Network
Connection Network Connection

Requests

Commands and Data

43

3. System Design

Figure 3.2.: UML Class Diagram of Moderator

- (void)addSubview: (UIView *)inputView
- (void)addSubview: (UIView *)inputView withKey: (NSString *)key+ (void)enableExternalView: (UIScreen
*)externalScreen
+ (void)setPDFControllerRoot:(UINavigationController)navController
+ (void)disableExternalView
+ (void)addSubview: (UIView *)inputView withKey: (NSString *)key withTag: (NSInteger)tag
+ (void)perform: (void (^) (UIView *))action onKey: (NSString *)key
+ (void)perform: (void (^) (UIView *))action onTag: (NSInteger)tag
+ (void)perform: (void (^) (UIView *, CGPoint))action withPoint: (CGPoint)point onKey: (NSString *)key
+ (void)perform: (void (^) (UIView *, CGPoint))action withPoint: (CGPoint)point onTag: (NSInteger)tag
+ (void)performOnPDF:(void (^) (UIView *))action
+ (void)performOnPDF: (void (^) (UIView *, CGPoint))action withPoint: (CGPoint)point

- (NSMutableSet *)subviews
- (UIWindow *)externalWindow
- (NSMutableDictionary *)subviewsKeyTagPair
- (CGFloat)externalViewZoomRatio
+ (UIColor *)backgroungColor
+ (UIView *)deviceView
+ (UIView *)externalView
- (PSPDFController *)devicePDFController
- (PSPDFController *)externalPDFController

VPSlides
void (^)(UIView *)
Block with one parameter type (UIView *)

void (^)(UIView *, CGPoint)
Block with two parameters type (UIView *) and (CGPoint)

+ (void)start
+ (void)pause
+ (void)end
+ (int)currentTime
+ (NSString *)currentTimeInString
+ (void)setEachSecondAction:target selector:
(SEL)selector
+ (void)resetEachSecondAction

- (int) ticker
- (NSTimer*) timer
- (id) target
- (SEL) selector

Timer

+ (BOOL)listenTo:(unsigned short)listenPort
+ (void)closeAcceptSocket
+ (void)sendDataToClient:(NSFileHandle *)fileHandle
data:(NSData *)data

- (CFSocketRef)socket
- (NSFileHandle)fileHandle
- (unsigned short)listenPort
+ (int)state
+ (NSMutableDictionary *)clients

TCPServer

+ (VPModeratorServer *)initWithController:
(VPModeratorSplitViewController *)controller
- receiveData: (NSFileHandle *)fileHandle
data: (NSData *)data
- handleData: (NSFileHandle *)fileHandle
data: (NSData *)data

- (NSMutableData *)buffer
- (unsigned int)expectedDataLength

VPModeratorServer

+ (NSString *)getAddressString:(struct sockaddr_in)addr
+ (struct sockaddr_in)getStructSockaddr:(NSString *)str
+ (struct sockaddr_in)getStructSockaddr:(NSString *)ip
withPort:(short)port inHostByteOrdering:(BOOL)hostByteOrdering
+ (NSString *)deviceIPAddress

NetworkUtilities

+ (VPModeratorPresenter *)init:(char)inPresenterID fileHandle:
(NSFileHandle *)inFileHandle server:(TCPServer *)inServer

+ (void)grantControl
+ (void)withdrawControl
+ (void)receiveHandle:(NSData *)data

- (void)sendData: (NSData *)data
- (void)receiveHandle: (NSData *)data
- (void)handleRegister: (NSData *)data
- (void)handleUnregister
- (void)handleRequestControl
- (void)handleSlide: (NSData *)data
- (void)handleControlSignal: (NSData *)data
- (void)handlePathDrawing:(NSData *)data
- (void)handleSendVideo
- (void)handlePlayVideo:(NSString *) videoFilename
- (void)handleStopVideo;
- (void)handlePauseVideo;
- (void)handleSeekVideo:(double) second
- (void)handlePDFData:(char)presenterID data:(NSData*)data
- (void)handlePDFAnnotation:(char)presenterID type:(char)type
data:(NSData*)data

+ (char)presenterID
+ (NSString *)presenterName
+ (id<VPModeratorPresenterHandle>)delegate
+ (Timer *)timer
+ (NSMutableArray *)videoFilelist
- (NSFileHandle *)fileHandle
- (TCPServer *)server

VPModeratorPresenter

- (BOOL)registerRequest
- (BOOL)handleUnregister: (char)presenterID
- (BOOL)handleControlRequest: (char)presenterID
- (char)handleControlSignal: (char)presenterID signal: (char)signal
- (void)handleSendVideo
- (void)handlePlayVideo:(NSString *) videoFilename
- (void)handleStopVideo
- (void)handlePauseVideo
- (void)handleSeekVideo:(double) second
- (void)handlePDFData:(char)presenterID data:(NSData*)data
- (void)handlePDFAnnotation:(char)presenterID type:(char)type data:
(NSData*)data

<<interface>>
VPModeratorPresenterHandler

+ (void)startServer
+ (void)stopServer
- (void)viewDidLoad

+ (NSMutableDictionary *)presenterList
+ (VPModeratorPresenter *) currentPresenter
+ (NSMutableArray *)requestList
+ (UIImage *)currentImage
+ (MPMoviePlayerViewController *) moviePlayerVC
- (Timer *)timer

VPModerator

1

0..*

- (void) configureView
- (void) appendLog: (NSString *) msg
- (void) screenDidChange: (NSNotification *) notification
- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
- (void) viewDidLoad
- (void) displayAlert:(NSString *) str
- (void) listFilesFromDocumentsFolder:(NSString*) indexFileName
- (void) prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sende
-(void)updateTimer

+ (id) detailItem
+ (UIView *)mainSlidesContainer
+ (UILabel *)timerLabel
+ (UILabel *)presenterLabel
+ (VPSlidesViewController *)slides
+ (NSInteger)numberOfScreen
+ (NSString *)debugString
- (UIPopoverController *)masterPopoverController
- (VPModeratorSplitViewController) *splitVC

VPModeratorDetail

- (id)initWithNibName:(NSString *)nibNameOrNil
bundle:(NSBundle *)nibBundleOrNil
- (void)viewDidLoad

+ (UINavigationItem *)leftBarNavi
+ (UITabBar *)leftBarTabBar

VPModeratorMaster

- (void) screenDidChange: (NSNotification *) notification
- (void) viewDidLoad
- (void) viewWillAppear:(BOOL)animated
- (void) loadContent
- (void) externalSwitchChanged:(id)sender
- (void) viewDidUnload

- (NSArray*) cellLabels
- (NSArray*) sectionLabels
- (UITableView *)mainTableView
- (bool) isConnectingExternal

VPModeratorSystemStatus

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels
- (UITableView *)mainTableView

VPModeratorVideoControl

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels
- (UITableView *)mainTableView

VPModeratorPresenterList

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels
- (UITableView *)mainTableView

VPModeratorPendingRequests

1

1

1

1

44

3.4. Inter-Devices Communication

- (void)addSubview: (UIView *)inputView
- (void)addSubview: (UIView *)inputView withKey: (NSString *)key+ (void)enableExternalView: (UIScreen
*)externalScreen
+ (void)setPDFControllerRoot:(UINavigationController)navController
+ (void)disableExternalView
+ (void)addSubview: (UIView *)inputView withKey: (NSString *)key withTag: (NSInteger)tag
+ (void)perform: (void (^) (UIView *))action onKey: (NSString *)key
+ (void)perform: (void (^) (UIView *))action onTag: (NSInteger)tag
+ (void)perform: (void (^) (UIView *, CGPoint))action withPoint: (CGPoint)point onKey: (NSString *)key
+ (void)perform: (void (^) (UIView *, CGPoint))action withPoint: (CGPoint)point onTag: (NSInteger)tag
+ (void)performOnPDF:(void (^) (UIView *))action
+ (void)performOnPDF: (void (^) (UIView *, CGPoint))action withPoint: (CGPoint)point

- (NSMutableSet *)subviews
- (UIWindow *)externalWindow
- (NSMutableDictionary *)subviewsKeyTagPair
- (CGFloat)externalViewZoomRatio
+ (UIColor *)backgroungColor
+ (UIView *)deviceView
+ (UIView *)externalView
- (PSPDFController *)devicePDFController
- (PSPDFController *)externalPDFController

VPSlides
void (^)(UIView *)
Block with one parameter type (UIView *)

void (^)(UIView *, CGPoint)
Block with two parameters type (UIView *) and (CGPoint)

+ (void)start
+ (void)pause
+ (void)end
+ (int)currentTime
+ (NSString *)currentTimeInString
+ (void)setEachSecondAction:target selector:
(SEL)selector
+ (void)resetEachSecondAction

- (int) ticker
- (NSTimer*) timer
- (id) target
- (SEL) selector

Timer

+ (BOOL)listenTo:(unsigned short)listenPort
+ (void)closeAcceptSocket
+ (void)sendDataToClient:(NSFileHandle *)fileHandle
data:(NSData *)data

- (CFSocketRef)socket
- (NSFileHandle)fileHandle
- (unsigned short)listenPort
+ (int)state
+ (NSMutableDictionary *)clients

TCPServer

+ (VPModeratorServer *)initWithController:
(VPModeratorSplitViewController *)controller
- receiveData: (NSFileHandle *)fileHandle
data: (NSData *)data
- handleData: (NSFileHandle *)fileHandle
data: (NSData *)data

- (NSMutableData *)buffer
- (unsigned int)expectedDataLength

VPModeratorServer

+ (NSString *)getAddressString:(struct sockaddr_in)addr
+ (struct sockaddr_in)getStructSockaddr:(NSString *)str
+ (struct sockaddr_in)getStructSockaddr:(NSString *)ip
withPort:(short)port inHostByteOrdering:(BOOL)hostByteOrdering
+ (NSString *)deviceIPAddress

NetworkUtilities

+ (VPModeratorPresenter *)init:(char)inPresenterID fileHandle:
(NSFileHandle *)inFileHandle server:(TCPServer *)inServer

+ (void)grantControl
+ (void)withdrawControl
+ (void)receiveHandle:(NSData *)data

- (void)sendData: (NSData *)data
- (void)receiveHandle: (NSData *)data
- (void)handleRegister: (NSData *)data
- (void)handleUnregister
- (void)handleRequestControl
- (void)handleSlide: (NSData *)data
- (void)handleControlSignal: (NSData *)data
- (void)handlePathDrawing:(NSData *)data
- (void)handleSendVideo
- (void)handlePlayVideo:(NSString *) videoFilename
- (void)handleStopVideo;
- (void)handlePauseVideo;
- (void)handleSeekVideo:(double) second
- (void)handlePDFData:(char)presenterID data:(NSData*)data
- (void)handlePDFAnnotation:(char)presenterID type:(char)type
data:(NSData*)data

+ (char)presenterID
+ (NSString *)presenterName
+ (id<VPModeratorPresenterHandle>)delegate
+ (Timer *)timer
+ (NSMutableArray *)videoFilelist
- (NSFileHandle *)fileHandle
- (TCPServer *)server

VPModeratorPresenter

- (BOOL)registerRequest
- (BOOL)handleUnregister: (char)presenterID
- (BOOL)handleControlRequest: (char)presenterID
- (char)handleControlSignal: (char)presenterID signal: (char)signal
- (void)handleSendVideo
- (void)handlePlayVideo:(NSString *) videoFilename
- (void)handleStopVideo
- (void)handlePauseVideo
- (void)handleSeekVideo:(double) second
- (void)handlePDFData:(char)presenterID data:(NSData*)data
- (void)handlePDFAnnotation:(char)presenterID type:(char)type data:
(NSData*)data

<<interface>>
VPModeratorPresenterHandler

+ (void)startServer
+ (void)stopServer
- (void)viewDidLoad

+ (NSMutableDictionary *)presenterList
+ (VPModeratorPresenter *) currentPresenter
+ (NSMutableArray *)requestList
+ (UIImage *)currentImage
+ (MPMoviePlayerViewController *) moviePlayerVC
- (Timer *)timer

VPModerator

1

0..*

- (void) configureView
- (void) appendLog: (NSString *) msg
- (void) screenDidChange: (NSNotification *) notification
- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
- (void) viewDidLoad
- (void) displayAlert:(NSString *) str
- (void) listFilesFromDocumentsFolder:(NSString*) indexFileName
- (void) prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sende
-(void)updateTimer

+ (id) detailItem
+ (UIView *)mainSlidesContainer
+ (UILabel *)timerLabel
+ (UILabel *)presenterLabel
+ (VPSlidesViewController *)slides
+ (NSInteger)numberOfScreen
+ (NSString *)debugString
- (UIPopoverController *)masterPopoverController
- (VPModeratorSplitViewController) *splitVC

VPModeratorDetail

- (id)initWithNibName:(NSString *)nibNameOrNil
bundle:(NSBundle *)nibBundleOrNil
- (void)viewDidLoad

+ (UINavigationItem *)leftBarNavi
+ (UITabBar *)leftBarTabBar

VPModeratorMaster

- (void) screenDidChange: (NSNotification *) notification
- (void) viewDidLoad
- (void) viewWillAppear:(BOOL)animated
- (void) loadContent
- (void) externalSwitchChanged:(id)sender
- (void) viewDidUnload

- (NSArray*) cellLabels
- (NSArray*) sectionLabels
- (UITableView *)mainTableView
- (bool) isConnectingExternal

VPModeratorSystemStatus

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels
- (UITableView *)mainTableView

VPModeratorVideoControl

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels
- (UITableView *)mainTableView

VPModeratorPresenterList

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels
- (UITableView *)mainTableView

VPModeratorPendingRequests

1

1

1

1

45

3. System Design

Figure 3.3.: UML Class Diagram of Presenter

+ (NSString *)getAddressString:(struct sockaddr_in)addr;
+ (struct sockaddr_in)getStructSockaddr:(NSString *)str;
+ (struct sockaddr_in)getStructSockaddr:(NSString *)ip
withPort:(short)port inHostByteOrdering:(BOOL)hostByteOrdering;
+ (NSString *)deviceIPAddress;

NetworkUtilities

+ (void)setPort:(unsigned short)port;
- (BOOL)connectTo:(struct sockaddr_in)addr;
+ (BOOL)connectToIP:(NSString *)ip port:(unsigned short)port
hostByteOrder:(BOOL)hostByteOrder;
+ (BOOL)connectToFullIP:(NSString *)ipWithPort;
+ (void)sendData:(NSData *)data;
+ (void)close;

TCPConnection
- (NSFileHandle *)fileHandle
- (CFSocketRef) socket
- (struct sockaddr_in) server
+ (int) state

1

+ (VPPresenterNetworkAgent *)initWithConnect:(NSString *)ipWithPort
+ (void)sendRegisterRequest:(NSString *)presenterName
+ (void)sendUnregisterRequest
+ (void)sendControlRequest
+ (void)sendControlSignalRequest:(char)control
+ (void)sendControlSignalRequest:(char)control withParameter:(char *)parameters
- (void)sendSlide:(NSData *)imageData size:(CGSize)size
+ (void)sendSlide:(UIImage *)image
+ (void)sendVideo
+ (void)playVideo:(NSString *) videoFilename
+ (void)stopVideo;
+ (void)pauseVideo;
+ (void)seekVideo:(double) second
+ (void)handleReceive:(NSData *)data
+ (void)closeConnect
+ (void)sendPDFData:(PSPDFDocument *)document
+ (void)sendPDFAnnotation:(char)type data:(NSData*)data

+ (id <VPPresenterNetworkAgentDelegate>)delegate
- (TCPConnection *)connection
- (char)presenterID

VPPresenterNetworkAgent

1

- (void)registerCompleted;
- (void)registerFailed;
- (void)unregisterCompleted;
- (void)requestControlCompleted;
- (void)controlGranted;
- (void)slideSendCompleted:(short)slideNumber;
- (void)controlSignalCompleted;
- (void)controlSignalFailed:(char)errorCode detail:(NSData *)detail;
- (void)sendPDFDataAcknowledge
- (void)sendPDFAnnotationResponse

<<interface>>
VPPresenterNetworkAgentDelegate

+ (NSString *)presenterName
+ (VPPresenterNetworkAgent *)networkAgent
+ (ConnectionStatus) status
+ (int)currentImageIndex
+ (NSString *)serverAddress;
+ (NSMutableArray *)localVideoList
+ (NSMutableArray *)moderatorVideoList
+ (BOOL)startConnection
+ (void)closeConnection
- (void)viewDidLoad
- (NSString*)serverFullAddress
- (NSString *)serverReachability: (NSString
*)ipWithPort
-(void)listFilesFromDocumentsFolder

VPPresenter

typedef enum {
 Disconnected,
 Connected,
 Presenting
} ConnectionStatus;

+ (void) showErrorPrompt: (NSString *) title description: (NSString *) description;
+ (void) appendLog: (NSString *) msg;
+ (void) displayAlert:(NSString *) str ;
- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
- (void)viewDidLoad
- (void)listFilesFromDocumentsFolder:(NSString*) indexFileName
- (IBAction)btnPrevSlide:(UIButton *)sender
- (IBAction)btnNextSlide:(UIButton *)sender
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
- (void)viewDidUnload

+ (UILabel *)timerLabel;
+ (UILabel *)presenterLabel;
+ (UIView *)slides;
+ (NSInteger) numberOfScreen;
+ (NSInteger) currentImageIndex;
+ (NSMutableArray *)imageList;
+ (NSMutableString *)debugString;
- (UIPopoverController *)masterPopoverController;
- (VPPresenterSplitViewController *) splitVC;
- (PSPDFController *)pdfController

VPPresenterDetail

+ (void)start
+ (void)pause
+ (void)end
+ (int)currentTime
+ (NSString *)currentTimeInString
+ (void)setEachSecondAction:target selector:
(SEL)selector
+ (void)resetEachSecondAction

- (int) ticker
- (NSTimer*) timer
- (id) target
- (SEL) selector

Timer

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) cellLabels;
- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;
- (NSArray *)sectionTitle;
- (NSString *)tempUsername;
- (VPPresenterSplitViewController *)splitVC;

VPPresenterBasicSetting

<delegate>

- (id)initWithNibName:(NSString *)nibNameOrNil
bundle:(NSBundle *)nibBundleOrNil
- (void)viewDidLoad

+ (UINavigationItem *)leftBarNavi;
+ (UITabBar *)leftBarTabBar;

VPPresenterMasterTabBar

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;

VPPresenterSlidesList

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;

VPPresenterVideoControl

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;

VPPresenterServer

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

46

3.4. Inter-Devices Communication

+ (NSString *)getAddressString:(struct sockaddr_in)addr;
+ (struct sockaddr_in)getStructSockaddr:(NSString *)str;
+ (struct sockaddr_in)getStructSockaddr:(NSString *)ip
withPort:(short)port inHostByteOrdering:(BOOL)hostByteOrdering;
+ (NSString *)deviceIPAddress;

NetworkUtilities

+ (void)setPort:(unsigned short)port;
- (BOOL)connectTo:(struct sockaddr_in)addr;
+ (BOOL)connectToIP:(NSString *)ip port:(unsigned short)port
hostByteOrder:(BOOL)hostByteOrder;
+ (BOOL)connectToFullIP:(NSString *)ipWithPort;
+ (void)sendData:(NSData *)data;
+ (void)close;

TCPConnection
- (NSFileHandle *)fileHandle
- (CFSocketRef) socket
- (struct sockaddr_in) server
+ (int) state

1

+ (VPPresenterNetworkAgent *)initWithConnect:(NSString *)ipWithPort
+ (void)sendRegisterRequest:(NSString *)presenterName
+ (void)sendUnregisterRequest
+ (void)sendControlRequest
+ (void)sendControlSignalRequest:(char)control
+ (void)sendControlSignalRequest:(char)control withParameter:(char *)parameters
- (void)sendSlide:(NSData *)imageData size:(CGSize)size
+ (void)sendSlide:(UIImage *)image
+ (void)sendVideo
+ (void)playVideo:(NSString *) videoFilename
+ (void)stopVideo;
+ (void)pauseVideo;
+ (void)seekVideo:(double) second
+ (void)handleReceive:(NSData *)data
+ (void)closeConnect
+ (void)sendPDFData:(PSPDFDocument *)document
+ (void)sendPDFAnnotation:(char)type data:(NSData*)data

+ (id <VPPresenterNetworkAgentDelegate>)delegate
- (TCPConnection *)connection
- (char)presenterID

VPPresenterNetworkAgent

1

- (void)registerCompleted;
- (void)registerFailed;
- (void)unregisterCompleted;
- (void)requestControlCompleted;
- (void)controlGranted;
- (void)slideSendCompleted:(short)slideNumber;
- (void)controlSignalCompleted;
- (void)controlSignalFailed:(char)errorCode detail:(NSData *)detail;
- (void)sendPDFDataAcknowledge
- (void)sendPDFAnnotationResponse

<<interface>>
VPPresenterNetworkAgentDelegate

+ (NSString *)presenterName
+ (VPPresenterNetworkAgent *)networkAgent
+ (ConnectionStatus) status
+ (int)currentImageIndex
+ (NSString *)serverAddress;
+ (NSMutableArray *)localVideoList
+ (NSMutableArray *)moderatorVideoList
+ (BOOL)startConnection
+ (void)closeConnection
- (void)viewDidLoad
- (NSString*)serverFullAddress
- (NSString *)serverReachability: (NSString
*)ipWithPort
-(void)listFilesFromDocumentsFolder

VPPresenter

typedef enum {
 Disconnected,
 Connected,
 Presenting
} ConnectionStatus;

+ (void) showErrorPrompt: (NSString *) title description: (NSString *) description;
+ (void) appendLog: (NSString *) msg;
+ (void) displayAlert:(NSString *) str ;
- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
- (void)viewDidLoad
- (void)listFilesFromDocumentsFolder:(NSString*) indexFileName
- (IBAction)btnPrevSlide:(UIButton *)sender
- (IBAction)btnNextSlide:(UIButton *)sender
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
- (void)viewDidUnload

+ (UILabel *)timerLabel;
+ (UILabel *)presenterLabel;
+ (UIView *)slides;
+ (NSInteger) numberOfScreen;
+ (NSInteger) currentImageIndex;
+ (NSMutableArray *)imageList;
+ (NSMutableString *)debugString;
- (UIPopoverController *)masterPopoverController;
- (VPPresenterSplitViewController *) splitVC;
- (PSPDFController *)pdfController

VPPresenterDetail

+ (void)start
+ (void)pause
+ (void)end
+ (int)currentTime
+ (NSString *)currentTimeInString
+ (void)setEachSecondAction:target selector:
(SEL)selector
+ (void)resetEachSecondAction

- (int) ticker
- (NSTimer*) timer
- (id) target
- (SEL) selector

Timer

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) cellLabels;
- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;
- (NSArray *)sectionTitle;
- (NSString *)tempUsername;
- (VPPresenterSplitViewController *)splitVC;

VPPresenterBasicSetting

<delegate>

- (id)initWithNibName:(NSString *)nibNameOrNil
bundle:(NSBundle *)nibBundleOrNil
- (void)viewDidLoad

+ (UINavigationItem *)leftBarNavi;
+ (UITabBar *)leftBarTabBar;

VPPresenterMasterTabBar

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;

VPPresenterSlidesList

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;

VPPresenterVideoControl

- (void)viewDidLoad
- (void)viewWillAppear:(BOOL)animated
- (void)loadContent
- (void)viewDidUnload

- (NSArray*) sectionLabels;
- (UITableView *)mainTableView;

VPPresenterServer

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

47

Chapter 4
User Interface and Experience

4.1. Initial Approach and Proposals

Last semester, we have proposed some initial designs of the user interface layout, the

first design is a primitive layout which looks simple but unorganized. Thus we discov-

ered the need of user interface design.

48

4.1. Initial Approach and Proposals

Slide Screen
(Aspect ratio: 4:3)

Top navigation bar

(Current Presenter) (Timer)

Other
Tabs

Other
Tabs

Other
Tabs

Active
Tab

Active Tab Title

Controlling Items,
classified by functions

Figure 4.1.: Initial Portrait Interface design

Then we started to try different view elements. Including navigation bars on the top of

the screen and tab bars at the bottom of the device screen, and we drafted the second

proposal.

The tab bar consists of some tab bar items, each of them was responsible for a category

of functions, for example the status and switch for external monitors can group into

49

4. User Interface and Experience

the same group named Screen. These items would only be visible when the respective

tab bar button was touched, then a pop up dialog box would appear and overlay on

the screen. This dialog box would fade out if the user tab outside the window of the

screen

Still we discovered a major defect of this interface design, which that the dialog boxes

of the active tabs would partially cover the slide screen. For the moderators, iit would

greatly affect the effectiveness of the flow controlling ability. For example, if the current

presenter displayed some inappropriate contents on the slide screen but the moderator

was busy in handling some requests displaying on the dialog box of an active tab, the

dialog box may covered the banned contents and the moderator was not noticed. In

order to resolve this problem, we finally proposed another interface.

4.2. Final Design

We finally decided to use the split view framework design. This kind of interface is

officially supported by iOS and only available on iPad. Based on the this user interface

framework, we have extended the view hierarchy as shown the following chart:

Detail View
Controller

Master View Controller
(Tab Bar Controller)

Split View Controller
(Root View)

Figure 4.2.: Overall View Hierarchy of the application

50

4.3. Interface Update

Tab Bar Titles

Slide View
(Aspect ratio: 4:3)

TabTab Tab Tab

Previous
Slide

Next
Slide

Current Presenter

Time used

Control Items

Figure 4.3.: Overview of the user interface of our application

The most remarkable layout of this kind of interface is that the monitor display is

divided into two parts. In our design, master views are used to show the controlling

options and show the system status. On the other hand, the detail view shows the slide

contents and the items related to the presentation flow, such as the current presenter

and timer.

4.3. Interface Update

After the development and testing of effectiveness of the user interface, the split view

layout is believed to work effectively on our application. Based on this assumption, the

51

4. User Interface and Experience

overall layout will not change much, only some items need to be rearranged or changed.

Regarding the previous slide view in the detail view part, which was originally an image

view, is replaced by the PDF view controller provided by the PSPDFKit library. The

overall layout does not changed much, but all the transitional animations and segue

provided by the library make the user experience better. In addition, the button for

switching slides on the presenter side can also be removed, as changing pages can be

done by simply swipe right or left on the PDF view controller.

Secondly, drawing master view originally on the presenter side of application can be

removed. Since the current implementation of the drawing features have been already

integrated with the PSPDFKit Library, all drawings will be implemented by the PDF

annotations. The original drawing interfaces will be replaced by the annotation editing

tools inside the PDF view controller.

In contrast, new controlling items are needed for the video playback feature. On the

presenter side, a new master view controller is added to the left hand side of the screen.

This view controller display all the local video which have been loaded in by the user

through iTunes using the Document folder, and the video already uploaded to the

moderator. In addition, all the playback controlling items will be available.

For the moderator side, some previous controlling interface items will be reorganized.

Screen Tab and Control Tab are grouped up to be one single tab named Status, and

there will be a new tab for handling the video playback function. This view displays

all video received from the moderators, with the name of the video file and which

presenters they belong to. Also, playback controlling items will be shown in this view.

52

Chapter 5
Implementation Detail

5.1. PDF

5.1.1. View and Annotation

The implementation of PDF view and annotation is mainly based on the PSPDFController

. The PSPDFController handled all elements, animation and detail for us.

It should be mentioned that the PSPDFController have to be placed inside a

UINavigationController , and the annotation bar could only be visible when it

is placed to a appropriate controller.

There is no much to discuss about PDF viewing and annotation itself. Instead, the

technique used for synchronization is more valuable to discuss. For those topics, refer

to section 5.3.

5.1.2. Manipulating PDF

The manipulation of PDF file is done in the moderator device with the PSPDFProcessor

class. Once moderator received presenter’s PDF document, it store in a temporary

53

5. Implementation Detail

space, and import it into PSPDFController for showing on screen. By implement-

ing the delegate methods, the SlidesController could keep monitoring changing

page of the PDF document. With these detail, we could reconstruct a PDF file con-

taining all slides.

To extract particular pages from a PDF document, we use generatePDFFromDocument:

pageRange:outputFileURL:options:progressBlock:error: from

PSPDFProcessor , and create a list of PDF file. After the presentation is finished,

it is combined together and available to retrieve via iTunes’ file sharing.

5.2. Video Playback

5.2.1. Network Communication and Data Transmissions

Extension of network protocol and handling

�� ��Sending and Receiving Video

Presenters are allowed to send videos before the moment that is actually needed. Since

sending a video file takes significant amount of time even when the network condition is

good, if the video transmission process is still rely on the user triggering event originated

from the Cocoa user interface framework (i.e.: Performing the whole sending process

on the main thread), the application will appeared to be frozen after the touch event

triggered, which comes out a bad user experience.

In order to resolve this problem for providing better user experience and enhance the

stability of the system during the transmission of the video files, a new strategy is

developed. Figure 5.1 shows the process sequence concerning the video transmission

54

5.2. Video Playback

process.

Presenter
(Main Thread) Moderator

Presenter
(New Thread)

Preparation
Messages

Video
Contents

Call

Return

Notify

Figure 5.1.: Calling sequence of video transmission process

Firstly, the presenter will first send a video sending request to the moderator. Just like

other controlling protocols, this will be done on the main thread. Once the moderator

device received this request, it will immediately start a temporary TCP server socket

and start accepting new connection. After that, the moderator respond the respective

55

5. Implementation Detail

presenter with the port number of the newly setup server socket.

After the temporary port number is received by the respective presenter, the presenter

side application will create a new thread to establish the connection with the moderator

and send the video content through the network. When the transmission is finished,

the video file will be stored in the local storage of moderator. The moderator will

once again notify the respective present that the transmission is completed. Then the

temporary connection will be closed and the connection thread on the presenter side

will also be terminated.

Each presenter will have a list of uploaded video, which is updated after each video

transmission. Then the presenter can choose to play the uploaded video anytime.

�� ��Playback Control

Given that a list of uploaded video stored at the moderator side, presenters can send

request to play and control the video playback processes though the network.

Play When the presenter send the play control request to the moderator, it embed

with the video file name, which ensure the moderator to play the same file as the

presenter want.

Pause, Stop and Seek Similar to the playing request, except seeking will also send

out the seeking position in seconds, to the moderator.

�� ��Moderator Control

As moderator have the power to interrupt any ongoing presentation, the moderator

have the right to stop any control from the presenters. Moderator also have the right of

56

5.2. Video Playback

controlling the progress of the video, and the right to blank the screen if the presentation

is judged to be inappropriate.

�� ��NSThread and pthread

Regrading the thread programming of iOS applications, Objective-C language support

both Cocoa Thread Library and the traditional-styled POSIX-C Thread Library. Al-

though the official iOS development documents stated that both thread libraries are

fully supported by iOS and they can be mixed up to use, we decided to use the Cocoa

Thread Library calls when implementing the video transmission sequence.

It is because Cocoa Thread Library consists of a series of thread-safe library call. Also,

enjoying the benefits from the well documented library calls and class references of the

Objective-C iOS libraries, there are documentations labelled which classes within the

Cocoa framework are thread-safe or thread-unsafe. Moreover, the function calls from

the NSThread Class and for its instances are useful and easy to use. For example,

the main thread instance can be found at anytime through the static class function call

[NSThread mainThread] . Another useful function call is to send direct messages

between threads using performSelector:onThread:withObject:waitUntilDone:

.

These simplify much of the codes when comparing to implement the application using

POSIX functions. As we need to declare a lot more global variables for inter-threading

communications, or using global scope pthread pointers to retain the main thread.

57

5. Implementation Detail

5.2.2. Playback

The MPMoviePlayerController Class is provided by the Media Player framework

natively available in the iOS Objective-C Library. We have chosen this class to be our

video player as it natively support all video or audio formats and codecs provided by

iOS.

Typical movie files with extension .mov , .mp4 , .mpv , .3gp with the video

contents compressed with MPEG-4 or H.264 Baseline Profile can be played by this

movie player. Moreover, this movie player also support streamed video content from

server provide HLS Standard video streaming services. Thus this class make the whole

application flexible and extensible as the whole video playback component do not need

to be reimplemented when providing the video streaming feature.

In our current implementation, we use this class to play local videos. This class have

a lot of useful properties which can be accessed to obtain useful information, including

the durations, resolution and media type of the movie. Also, the style of the controlling

items of the movie player can also be modified to the correct behaviour of displaying

the video on the screen.

5.3. External Display

When implementing the external display, we have two concerns: detection of external

display and drawing on external display.

58

5.3. External Display

5.3.1. Detection

To detect the external display, we, again, use the NSNotificationCenter for

detecting broadcast. Registering handleScreenDidConnectNotification and

handleScreenDidDisconnectNotification , we can handle the external screen

immediately when it is connected or disconnected.

After the connection of external monitor, we have to manage the content of exter-

nal monitor. The setup of external monitor involve two classes, UIScreen and

UIWindow . UIScreen contain settings of the connected external monitor includ-

ing resolution and brightness. In addition, UIScreen contains available resolution

setting of connected monitor. Based on the resolution available, of which preferred

resolution is used in prototype, we create an instance of UIWindow . Adding root

view to the created UIWindow object, we are able to add subview on it, showing

custom content to external screen.

5.3.2. Synchronization

The next step is to make content to show in external screen, synchronizing with device

view. To manage those actions, we have create a new view controller, handling opera-

tions regarding external screen called VPSlidesViewController . Moreover, we

are trying to hiding that there are two view hierarchies in the controller. Thus classes

using this controller may only consider it as normal view controller.

Exiting Views - Cloning

Copying a view, we found a view may not be able to make deep copy and sometime may

need custom copying in order to have a deep copy of view. To handle different class

59

5. Implementation Detail

in VPSlidesViewController for copying, we have use introspection for deter-

mining class of an object, including isKindOfClass: and isMemberOfClass:

, then handle each class differently.

Add
 Sub

vie
w

View

View

View
Copy

Duplicate and Scale

SlidesController

Device View
Controller

External View
Controller

Add subview

Add Subview

Figure 5.2.: Cloning an object

Another issue is to duplicate a view controller instead of view. The solution is native:

we duplicate the view controller with similar technique. However, the scaling and

frame adjustment is done based on the view property, as well as the addSubview:

method.

Handling Changes - Duplicating Message

In order to duplicate a message, we first need to make a message, or a piece of code,

become easy to handle in program. A good solution is to use block as parameter,

abstracting programming logic.

60

5.3. External Display

SlidesController

Device View
Controller

External View
Controller

M
essage to perform

Scaled Message

Original Message

Figure 5.3.: Duplicating a message

The block basically having one parameter, the view, and the block content assume

valid view is passed into it and able to perform operation on the block. Following is

implementation of perform:onTag: without additional parameter:� �
1 - (void) perform:(void (ˆ) (UIView *))action onTag:(NS

Integer) tag {

2 action([self.deviceView viewWithTag: tag]);

3 action([self.externalView viewWithTag: tag]);

4 }� �
However, block without parameter could not handle program logic which include detail

of position within the view, which would need to be scaled during synchronization.

Therefore, another set of perform:onTag:withPoint: is implemented, by send-

ing block with scaled point as parameter.� �
1 - (void) perform:(void (ˆ) (UIView *, CGPoint)) action

onTag:(NSInteger) tag withPoint:(CGPoint) point {

2 action([self.deviceView viewWithTag: tag], point);

3 action([self.externalView viewWithTag: tag],

CGPointMakeScale(point, 1, self.

61

5. Implementation Detail

externalViewZoomRatio));

4 }� �
Handling Changes - Delegate Response

We use delegate for synchronization of third party framework, i.e. the PSPDFKit.

Delegate is a key concept in iOS and Objective-C programming for communicating

between objects, which idea is similar to listener in Java or a callback function in other

language. With delegate, an object could ask another object, namely delegate object, to

perform some action. Syntactically, the delegate object have to compromise a protocol,

while the delegator has a reference pointing to the delegate object. Delegator do not

concern about the actual class of the delegate object, as long as it compromise the

protocol of delegate.

Another Controller

SlidesController

Device View
Controller

External View
Controller

M
essage to perform

Original Message

Delegate Scaled Message

Original Message

Figure 5.4.: Message duplicating with delegate

As the PSPDFKit’s PSPDFViewController has abstracted and handled most

actions including go to another page, or editing annotation for us. In simple word, the

62

5.3. External Display

view controller has catch the message and handle it for us, and we could not intercept

the message. Therefore, we could not use the method of duplicating message at this

case. Fortunately, PSPDFViewController has a property of delegate, with the

protocol PSPDFViewControllerDelegate , and we can do synchronization with

aid of delegate object.

The protocol includes method such as pdfViewController:didLoadPageView:

, pdfViewController:didShowPageView: . Once we implement those methods

with the slide controller, we could get notify when the PDF view controller in the device

display changes its displaying page, and we could then send message to view controller

in the external display to perform similar action.

In the implementation, instead of implementing a separated class for delegate, we use

the SlidesViewController to implement the PSPDFViewControllerDelegate

protocol and handle the delegate method. The SlidesViewController duplicate

the message to external display’s view controller, with proper resizing and mapping.

SlidesController

Device View
Controller

External View
Controller

M
essage to perform

Original Message

Delegate

Scaled Message

Original Message

Figure 5.5.: Message duplicating with delegate of same object

63

5. Implementation Detail

Adjustment for External Display

Despite we need to synchronize device view and external display, some of those do not

need, or should not need to be synchronized. For example, the PSPDFController

should shows UI elements in the device view, allowing user to jump to a page or start

editing an annotation. Those UI elements are not necessary for external display.

5.4. Network Connection

As Objective-C is superset of C, and iOS has implemented interface on Berkeley sockets,

as known as BSD sockets, we can use the recompile codes written in C and developed

based on Linux. However, we tried to avoid some low level referencing and try using

Core Framework calls and NSFileHandle .

Core Framework of iOS provides family of CFSocket* methods for some socket oper-

ations. We have used including CFSocketCreate() , CFSocketSetAddress()

, CFSocketInvalidate() and CFRelease() for replacing system calls such as

socket() , connect() , listen() etc. In addition, we have wrap the socket file

descriptor to NSFileHandle , providing more utilities for operations. Therefore we

could avoid storing variables in low level, making use of object oriented paradigm and

API provided in Cocoa foundation. Wrapping the file descriptor to NSFileHandle

, we can use more API of Coca foundation and avoid complicated codes. For instance,

Linux system call read() is a blocking call and require thread programming and

inter-thread communication for preventing race condition. With NSFileHandle , we

could make use of NSNotificationCenter with broadcasting for notifying data

availability without blocking or implementing threads, and handling received data eas-

ily.

64

5.5. File System

We have write a class of TCPServer and TCPConnection . Both class only making

method such as connectTo: , listenTo: public to call. Classes use TCPServer

or TCPConnection do not need to consider the internal implementation and simply

register callback when receiving data.

5.5. File System

Comparing to other mobile device OS, iOS adopts the “Sandbox” file storage ap-

proaches for each application, which is more secure because the file imported for one

application will not affect other application installed on the same iOS machine. In

contrast, this file storage approaches limits the flexibility of file handling.

Figure 5.6.: An illustration of the iOS Sandbox storage approaches

After some modification of the applications, it allows users to add files into the docu-

ment folder through iTunes. But neither the users nor the developers can add, create

or access any sub-folders in this file sharing folder; neither through iTunes, nor through

program coding.

65

5. Implementation Detail

But iOS file system provide a workaround for developers to store the data related to

their applications. This special folder is named Library in iOS 5.1.1, which is not visible

to the users, since they will not be able to see the contents of these folders through

iTunes. But it can be fully controlled by the application developers through program

codes. This folder comes into handy when handling the incoming PDF files and video

files of the moderator side applications, since there is a cache folder inside this Library

folder and developers have full access to this folder.

We make use of the file sharing ability provided by iOS and iTunes, to allow the

presenters to import their PDF files and video files. At the moment of transferring files

from the presenters to the moderator, incoming files can be stored into the cache folder

of the moderator.

5.6. User Interface

5.6.1. Split View

Figure 5.7.: Split View Representation display in Xcode interface builder

66

5.6. User Interface

Split view controller is one of the famous user interface design framework, widely us-

ing by the application on iPad. This framework itself have already support and pre-

implemented lots of animations and segue actions concerning the two main subviews

of it, namely Master View and Detail View, from left to right respectively.

Similarly, subviews will also holds a property to the reference of the nearest split view

controller ancestor in the view hierarchy. That means the subview controllers can

easily access the property of the split view controller. This is essential for different

view controllers to communicate and passing values and variable as we often use the

controlling items in the master view to control the interface items possessed by another

view controller.

5.6.2. Tab Bar

Figure 5.8.: Tab Bar View display in Xcode interface builder

Tab bar is used to divide the same view space into different pages. It can be achieved

by linking the respective tab bar items with respective view controllers. Similar to the

split view controllers, the tab bar controller can contains its subviews in an NSArray

, with object index from 0 to (n− 1) when there is n tabs defined.

Again, the subview controllers will also hold a property of object reference of their

nearest tab bar controller ancestor. This useful is to change the title view of the

top navigation bar when switching between tabs. Also, it is common that there are

67

5. Implementation Detail

different layouts of navigation bar view, and it can be changed easily by directly change

the navigation bar behaviors.

5.6.3. Table View and Cells

Figure 5.9.: Table View and Prototype Cells display in Xcode interface builder

In our implementation, the table view controllers under each tab bar item are stored

in the tab bar controller as mentioned above. The table needed to be configured into

dynamic type table view, which that all the contents, number of rows and sections

are defined by program code. Although the program code can define all the cell layout

properties such as fonts and colors, the interface builder also support to build prototype

68

5.6. User Interface

cells to configure the cell layout.

Every prototype cell have to assign a unique “reuse identifier” for the table view con-

troller to maintain a “pool” of reusable cells. Cells that use the same identifier will be

generated based on the same prototype cells.

Figure 5.10.: A controlling item added as a subview of a grouped cell.

Also, controlling items can be separately created and added into table cells .This kind

of cell is common on the set up screens and scenarios. This modification is not possible

to be defined on the interface builder. So the control items have to be defined and

added to the cell by program code.

69

Chapter 6
Progress and Evaluation

6.1. Source Control

Source and revision control is an important concern for any project, especially for

project composed of more than one people. In last semester, we have been using

Dropbox as source control. Dropbox provides features such as synchronization of files,

and stored old revision of files. However, the synchronization of Dropbox is not fast

enough when both of us are developing in the same time. In addition, Dropbox do not

resolve any conflict but only creating a backup file. Dropbox is not suitable for source

control for an active project. Therefore, we explore for another source control solution.

We decided to use git as source control. Git is a popular and common source control

software, supporting multiple branch and non-linear development, as well as version

control. Moreover, Xcode, the integrated development environment for iOS application,

also support git.

The next issue is to find a host for repository of our project. There are free web

service available for hosting a repository of git, such as github and bitbucket. However,

we found some network problem when connecting those web services with department

70

6.2. Schedule

machines. Therefore, we built our own server to host the repository. The server is a

ubuntu linux while the package is called gitolite. gitolite is using SSH key for managing

access control to repository, and distinguish user.

Once the server is stable, we move all existing source code into the server and create

repository for our project. Afterward, we stick closely to the git server by creating

branches for new features and testing. The git server allow us develop simultaneously

without disturbing progress of each other. Branches created could be merge with git,

and only need few manual operation during merging.

6.2. Schedule

Jan 2013 Code clean up and refinement

Set up of git server

Late Jan - Mid Feb 2013 Research of Third Party Library

Mid Feb - Early Mar 2013 Investigate iOS video plackback

Testing on PSPDFKit with external display

Mar 2013 Testing of remote video playback

Testing of PSPDFKit with remote moderator

Late Mar - Early Apr 2013 Integration of libraries towards main application

Apr 2013 Testing and Debugging

Documentation

Table 6.1.: Progress Report of Spring 2013

71

Chapter 7
Contribution and Reflection

7.1. Contributaion

7.1.1. Summer 2012

The project kickoff in Summer 2012, and I have been working on some preliminary

preparation of project. I first work on marketing research and testing on existing

presentation softwares, including Opencast Matterhorn, TechSmith Camtasia Relay.

This give me an whole picture of functionalities that user may want. With these

experiences, I start drafting a specification of our project.

Meanwhile, I am also a newbie of iOS programming. Therefore, I started studying iOS

programming based on a course of Standford University, which videos and notes are

available in iTunes U, together with Apple’s developer site and manual. Writing some

simple applications, I start get the feeling of iOS programming.

72

7.1. Contributaion

7.1.2. Fall 2012

Starting of regular semester, I have been continuing the draft of specification together

with Jack. We have been thinking for a new direction of presentation together, and

finalized the idea of collaborative presentation until October.

On the other hand, I have written some simple applications on testing some functionali-

ties of iPad and APIs. Aspects including external display and synchronization, network

connection as server-client model on iOS, as well as a drawing pad on top of images.

During developing those testing applications, I write with core classes which could be

reused later, and a simple UI on top of the core classes. With core classes, I could

combine those apps and with Jack’s work in short time.

In short, I focus on the model part of Model-View-Controller, as well as the core of

synchronization with external display.

7.1.3. Spring 2013

At the beginning of Spring 2013, we have evaluated the work done in Fall 2012, and con-

sider refinement of collaborative presentation concept. Meanwhile, I start discovering

OpenCV on iOS, as well as setup the git server for hosting the repository of vPresent.

Despite OpenCV could not contribute in this project, it is still a good experience on

iOS programming.

After the git server settle down, I focus on PDF parsing and viewing. I have tried

to parse a PDF with iOS official APIs, as well as exploring some third party APIs.

Comparing iOS APIs with few third part framework and considering integration with

collaborative presentation, I chose the PSPDFKit as the third party framework for

73

7. Contribution and Reflection

parsing PDF, and start working on integration with existing applications. Integration

consist of two main parts, handling synchronization with external display and network

communication for data transfer and control signal.

7.2. Reflection

From this project, I have learned a lot of iOS programming. I started us a newbie, and

now could finish a prototype of an iOS apps with my partner. Despite I have not work

on the user interface, I have get used to the core of iOS programming, including MVC

model, delegate and protocol, as well as block as encapsulation of programming logic.

Besides the technical knowledge, I have also learnt how to come up with an idea, and

tried to make the idea becomes real product by implementing a prototype. This is very

common in the early stage of developing a product. This project would be a precious

and valuable experience for my future.

74

Chapter 8
Conclusion

In the last semester, we have defined collaborative presentation, a new concept of pre-

sentation style. We have implemented two prototypes for demonstrating collaborative

presentation, for moderator and presenter respectively. The prototype can demon-

strated a subset of functions stated in our design, we are able to demonstrate the idea

of collaborative presentation, as well as proof the feasibility of implementing collabo-

rative presentation application on iOS.

In this semester, we have done further researches and studies on some third party library

for supporting at one type of common presentation content files and trying to expend

collaborative presentation to support rich media elements. And we finally integrated

the PSPDFKit Library into our application to support PDF files, and using native

Apple Development Library to support the playback of videos.

We continued to sharpen our skills of developing iOS application and the development

environment. And we are now able to integrate 3rd party library into our application

and continue to expend our network application protocols. We are also able to use

NSThread APIs to create multithreading application on iOS to improve the perfor-

mance and. Our learning ability has been improved, as well as the problem-solving

75

8. Conclusion

skills.

Finally, we tried to extend our applications from the progress of last semester. As

application development involve many aspect including software design, user interface

and experience designing, implementation of application, testing, debugging and also

profiling of application, aiming at optimization, we have once again experience of whole

software engineering cycle. This is a valuable experience for us.

76

Chapter 9
Acknowledgement

Firstly, we would like to thank our supervisor Prof. Michael R. Lyu. He provided us

valuable comments and guidelines throughout the whole project.

Secondly, we would like to thank the researchers from VIEWLab, Mr. Edward Yau Hon

Hei and Mr. Un Tze Lung provided great amount of hardware supports and remarkably

ideas to make our project become more fruitful and interesting.

Last but not least, we would like to thank our lab technicians to provide the accessi-

bility of using the developing tools of Mac OS machines in our department computer

laboratory, as well as providing disk quota and virtual machines for server hosting.

77

Chapter 10
Reference

[1] Apple Inc. iOS Developer Library [Online]. Available:

https://developer.apple.com/library/ios/navigation/index.html

[2] Object Management Group. UML Specification [Online]. Available:

http://www.omg.org/spec/UML/

[3] Stack Overflow [Online]. Available: http://stackoverflow.com/

[4] Wikipedia [Online]. Available: http://www.wikipedia.org/

[5] PSPDFKit Reference [Online]. Available:

http://pspdfkit.com/documentation/

78

https://developer.apple.com/library/ios/navigation/index.html
http://www.omg.org/spec/UML/
http://stackoverflow.com/
http://www.wikipedia.org/
http://pspdfkit.com/documentation/

Appendix A
Network Message Specification

A.1. Register

0 7 8 15 16 23 24 31

0x01
Command

0xFF
Presenter ID

Checksum
Reserved

Message Size

Length of Name

Name of Presenter
hhh

hhh

Figure A.1.: Register Request

79

A. Network Message Specification

0 7 8 15 16 23 24 31

0x02
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.2.: Register Success Response

0 7 8 15 16 23 24 31

0x03
Command

0xFF
Presenter ID

Checksum
Reserved

Message Size

Figure A.3.: Register Failure Response

A.2. Unregister

0 7 8 15 16 23 24 31

0x04
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.4.: Unregister Request

0 7 8 15 16 23 24 31

0x05
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.5.: Unregister Response

A.3. Control Permission

0 7 8 15 16 23 24 31

0x06
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.6.: Control Request

80

A.4. Control Signal

0 7 8 15 16 23 24 31

0x07
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.7.: Control Response

0 7 8 15 16 23 24 31

0x08
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.8.: Grant Control

0 7 8 15 16 23 24 31

0x09
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.9.: Withdraw Control

A.4. Control Signal

0 7 8 15 16 23 24 31

0x0C
Command

Presenter ID
Checksum

Reserved

Message Size

Signal Type Parameter

Figure A.10.: Control Signal Request

0 7 8 15 16 23 24 31

0x0D
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.11.: Control Signal Success Response

81

A. Network Message Specification

0 7 8 15 16 23 24 31

0x0C
Command

Presenter ID
Checksum

Reserved

Message Size

Error Code Error Detail

Figure A.12.: Control Signal Request

A.5. Video Playback

0 7 8 15 16 23 24 31

0x20
Command

Presenter ID
Checksum

Reserved

Message Size

Length of Filename

Filename
hhh

hhh

Figure A.13.: Video Play Request

0 7 8 15 16 23 24 31

0x21
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.14.: Video Play Success Response

82

A.5. Video Playback

0 7 8 15 16 23 24 31

0x22
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.15.: Video Pause Request

0 7 8 15 16 23 24 31

0x23
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.16.: Video Pause Success Response

0 7 8 15 16 23 24 31

0x24
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.17.: Video Stop Request

0 7 8 15 16 23 24 31

0x25
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.18.: Video Stop Success Response

83

A. Network Message Specification

0 7 8 15 16 23 24 31

0x26
Command

Presenter ID
Checksum

Reserved

Message Size

Second

Figure A.19.: Video Goto Request

0 7 8 15 16 23 24 31

0x27
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.20.: Video Goto Success Response

0 7 8 15 16 23 24 31

0x28
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.21.: Video Prepare Send Request

0 7 8 15 16 23 24 31

0x29
Command

Presenter ID
Checksum

Reserved

Message Size

Listening Port Not used

Figure A.22.: Video Prepare Send Response

84

A.5. Video Playback

0 7 8 15 16 23 24 31

0x2A
Command

Presenter ID
Checksum

Reserved

Message Size

Length of Video Filename

Video Filename

Length of Video

Video File
hhh

hhh

Figure A.23.: Video Send

0 7 8 15 16 23 24 31

0x2B
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.24.: Video Send Complete Respond

85

A. Network Message Specification

A.6. PDF Data

0 7 8 15 16 23 24 31

0x30
Command

0xFF
Presenter ID

Checksum
Reserved

Message Size

Data Length

PDF Data
hhh

hhh

Figure A.25.: PDF Data

0 7 8 15 16 23 24 31

0x31
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.26.: PDF Data Acknowledge

86

A.7. Annotation

A.7. Annotation

0 7 8 15 16 23 24 31

0x34
Command

0xFF
Presenter ID

Checksum
Reserved

Message Size

Annotation Type Data Length

Annotation Data
hhh

hhh

Figure A.27.: Register Request

0 7 8 15 16 23 24 31

0x35
Command

Presenter ID
Checksum

Reserved

Message Size

Figure A.28.: PDF Data Acknowledge

87

	Introduction
	Collaborative Presentation
	System Design
	User Interface and Experience
	Implementation Detail
	Progress and Evaluation
	Contribution and Reflection
	Conclusion
	Acknowledgement
	Reference
	Appendix Network Message Specification

