
Chapter 22
QoS-Aware Web Service Recommendation
via Collaborative Filtering

Xi Chen, Zibin Zheng and Michael R. Lyu

Abstract With the increasing number of Web services on the Internet, selecting
appropriate services to build one’s application becomes a nontrivial issue. When
searching Web services, users are often overwhelmed by a bunch of candidates with
similar functionalities. Quality-of-Service (QoS), the non-functional characteristics
of Web services, has become an important factor to distinguish the functionally
equivalent ones. In this paper, we introduce two collaborative filtering based Web
service recommendation approaches to help users select Web service with optimal
QoS performance. The basic idea is to leverage user experience provided by similar
users and generate recommendation for the target user. Experiments with large scale
real world Web services show the effectiveness and efficiency of the two approaches.

22.1 Introduction

Web service, a method of communication between two machines over a network, has
been widely adopted as a delivery mode in both industry and academia. This adoption
has fostered a new paradigm shift from development of monolithic application to
the dynamic set-up of business process. The increasing usage of Web services on
the World Wide Web calls for effective recommendation techniques, which help end

X. Chen
Schlumberger Technologies (Beijing) Ltd., Beijing, China
e-mail: bargittachen@gmail.com

Z. Zheng (B) ·M. R. Lyu
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, Hong Kong, China
e-mail: zbzheng@cse.cuhk.edu.hk

M. R. Lyu
e-mail: lyu@cse.cuhk.edu.hk

A. Bouguettaya et al. (eds.), Web Services Foundations, 563
DOI: 10.1007/978-1-4614-7518-7_22,
© Springer Science+Business Media New York 2014

564 X. Chen et al.

users choose the optimal Web service from a large number of functionally equivalent
candidates.

In services computing, QoS is a set of properties describing the non-functional
characteristics of Web services, such as price, response time, reliability, etc. Some
QoS properties have relatively constant value, e.g., the published pricing model
of Amazon Web Service (AWS), while other properties like response time vary
seriously from user to user, influenced by the unpredictable Internet connections and
heterogeneous environments. In this chapter, we focus on the QoS properties that are
prone to change and can be easily obtained and objectively measured by individual
users, such as response time and availability.

QoS plays an important role in service selection and recommendation [37, 36].
However, it is impractical for users to acquire QoS information by evaluating all the
service candidates by themselves. Conducting real world Web service invocation is
time-consuming and resource-consuming. Moreover, measuring some QoS proper-
ties (e.g., reliability) requires long time observation and large number of invocations.
Besides client-side evaluation, acquiring QoS information from service providers
may not be applicable, because QoS performance is susceptible to the uncertain
Internet environment and user context (e.g., user location, user network condition,
etc.). Therefore, QoS values evaluated by one user cannot be used directly by another
in service selection and recommendation.

To make personalized QoS-aware service recommendation to different users, we
introduce two collaborative filtering (CF) based Web service recommendation algo-
rithms in this chapter. Our Web service recommender system collects user observed
QoS records and matches together users who share the same information needs
or same tastes [10]. Users of our recommender system share their observed QoS
performance of Web services, and in return, the system provides accurate person-
alized service recommendations for them. Section 22.2 and Sect. 22.3 present our
proposed recommendation approaches; Sect. 22.4 shows our large scale real world
experiments; Sect. 22.5 discusses related work, and Sect. 22.6 concludes our work.

22.2 WSRec: A Neighborhood-Based Web Service
Recommendation Algorithm

WSRec employs the concept of user-collaboration for Web service QoS information
sharing between service users. Similar to sharing videos on YouTube or knowledge
on Wikipedia, service users are encouraged to contribute their past Web service user
experience to the system. We assume that users are trustworthy, and all submitted
records are correct. The more QoS records users contribute, the more accurate the
recommendation will be. Figure 22.1 shows the architecture of WSRec system, which
includes the following procedures:

• A service user submits Web service QoS data to the centralized server of WSRec.
Users who submit QoS records to WSRec are called training users. Users who

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 565

Fig. 22.1 Procedures of QoS value prediction

Table 22.1 An illustration of response time dataset

User Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 Service 7

Amy 5000 ms ? 2000 ms ? ? ? 2800 ms
Bob 600 ms 3300 ms ? 3300 ms 2000 ms ? ?

Carol 650 ms 2600 ms 200 ms ? ? ? ?
David 600 ms 2500 ms 2000 ms 5000 ms ? 2000 ms ?

require Web service recommendation are called active users. Table 22.1 shows an
example of the recommendation system data set. There are four users and seven
services in the data set. Each user provides some QoS values (response time) they
observed, and ? indicates that the user does not use the service.
• WSRec matches the active user with existing training users to find similar users

and Web services with similar QoS (details will be introduced in Sect. 22.2.1).
• WSRec predicts QoS values of candidate Web services for the active user (details

will be introduced in Sect. 22.2.2).
• WSRec makes Web service recommendation based on the predicted QoS values

of Web services (details will be discussed in Sect. 22.2.3).
• The active user receives the predicted QoS values as well as the recommendation

results, which can be employed to assist decision making (e.g., service selection,
service composition, service ranking, etc.).

22.2.1 Similarity Computation

Similarity computation is used to find users with similar experience as well as Web
services with similar QoS in the WSRec system.

566 X. Chen et al.

22.2.1.1 Pearson Correlation Coefficient

Given a recommender system consisting of m training users and n Web services, the
relationship between users and Web services can be denoted by an m × n user-item
matrix. An entry in this matrix ru,i represents a vector of QoS values (e.g., response
time, failure rate, etc.) observed by user u of Web service i . If user u has never used
Web service i before, ru,i = null.

Pearson Correlation Coefficient (PCC) is widely used to measure user similarity
in recommender systems [21]. PCC measures the similarity between two service
users a and u based on the Web services they both invoked:

Sim(a, u) =

∑

i∈I

(ra,i − ra)(ru,i − ru)

√∑

i∈I

(ra,i − ra)2

√∑

i∈I

(ru,i − ru)2

, (22.1)

where I = Ia ∩ Iu is the set of Web services invoked by both user a and user
u, ra,i is the QoS values of Web service i observed by service user a, ra and ru

represent the average QoS values observed by service user a and u respectively. The
PCC similarity of two service users, Sim(a, u) ranges from −1 to 1. Positive PCC
value indicates that the two users have similar preferences, while negative PCC value
means that the two user preferences are opposite. Sim(a, u) = null when two users
have no Web service intersection.

PCC is used to measure the similarity between Web services in WSRec as well.
The similarity computation of two Web services i and j can be calculated by:

Sim(i, j) =

∑

u∈U

(ru,i − r i)(ru, j − r j)

√∑

u∈U

(ru,i − r i)2

√∑

u∈U

(ru, j − r j)2

, (22.2)

where Sim(i, j) is the similarity between Web services i and j , U = Ui ∩U j is the
set of users who have invoked both Web services i and j , r i represents the average
QoS values of Web service i submitted by all users. The range of Sim(i, j) is [−1,1].
Sim(i, j) = null when there is no user who have used both services.

22.2.1.2 Significance Weight

PCC only considers the QoS difference between services invoked by both users. It
can overestimate the similarity of two users that are not similar, but happen to have
a few services with very similar QoS records [21]. To devalue the overestimated
similarity, we add a correlation significance weight to PCC. An adjusted PCC for

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 567

user similarity is defined as:

Sim′(a, u) = 2× |Ia ∩ Iu |
|Ia | + |Iu | Sim(a, u), (22.3)

where Sim′(a, u) is the adjusted similarity value, |Ia ∩ Iu | is the number of services
invoked by both users (co-invoked services), |Ia | and |Iu | are the number of Web
services invoked by user a and user u, respectively. When the number of co-invoked
Web service |Ia ∩ Iu | is small, the significance weight 2×|Ia∩Iu ||Ia |+|Iu | will decrease the

similarity estimation between users a and u. Since the value of 2×|Ia∩Iu |
|Ia |+|Iu | is in the

interval of [0, 1], Sim(a, u) is in the interval of [−1, 1], the value of Sim′(a, u) is
in the interval of [−1, 1].

Similar to Eq. (22.3), an adjusted PCC for the Web service similarity is defined
as:

Sim′(i, j) = 2× |Ui ∩U j |
|Ui | + |U j | Sim(i, j), (22.4)

where |Ui ∩U j | is the number of service users who invoked both Web services i and
j . The range of Sim′(i, j) is [−1, 1].

22.2.2 QoS Value Prediction

In reality, the user-item matrix is usually very sparse, since service users usually
have QoS values on a small number of services. Predicting missing values for the
user-item matrix can improve the prediction accuracy of active users. In this section,
we present a missing value prediction approach to tackle this problem by making the
matrix denser.

22.2.2.1 Neighbor Selection

To predict missing values, we first need to find the underlying relationship between
the missing values and the existing ones, and then use this information to predict the
missing ones. In the user-item matrix of WSRec system, each missing entry ru,i is
associated with two sets of neighbors: a set of similar users S(u) and a set of similar
items (services) S(i), which can be found by the following equations:

S(u) = {ua |ua ∈ T (u), Sim′(ua, u) > 0, ua �= u}, (22.5)

S(i) = {ik |ik ∈ T (i), Sim′(ik, i) > 0, ik �= i}, (22.6)

where T (u) is a set of similar users to the user u, and T (i) is a set of similar items
to the item i . Both T (u) and T (i) are selected using enhanced PCC (Eq. (22.3) and

568 X. Chen et al.

Eq. (22.4)). Neighbors without correlations or with negative ones are discarded from
the neighbor sets.

22.2.2.2 Missing Value Prediction

For each missing entry, we use both its user neighbors and item neighbors to predict
the missing value. User-based CF methods (UPCC) employ similar users to predict
the missing QoS values:

r̂u,i = u +

∑

ua∈S(u)

Sim′(ua, u)(rua ,i − ua)

∑

ua∈S(u)

Sim′(ua, u)
, (22.7)

where r̂u,i is the predicted QoS vector of service i for user u, u and ua are vectors
of average QoS values of all Web services observed by active user u and neighbor
user ua respectively.

Item-based CF methods (IPCC) [8, 17, 27] apply similar Web services to predict
the missing value:

r̂u,i = i +

∑

ik∈S(i)

Sim′(ik, i)(ru,ik − i k)

∑

ik∈S(i)

Sim′(ik, i)
, (22.8)

where i is a vector of average QoS values of Web service i observed by all service
users.

When a missing entry only has user neighbors or item neighbors, we will employ
either Eqs. (22.7) or (22.8) to predict the value. When it has both type of neighbors,
we combine the two methods to make prediction. We will not predict the value if it
has no neighbors.

User-based method and item-based method may have different prediction accu-
racy, we use confidence weights, conu and coni , to reflect our confidence in the
two prediction methods. For example, assuming a missing entry has three similar
users with PCC similarities {1,1,1} and three similar items with {0.1, 0.1, 0.1}. Intu-
itively, we have more confidence in the prediction by user-based method rather than
item-based one. We define conu as:

conu =
∑

ua∈S(u)

Sim′(ua, u)∑
ua∈S(u) Sim′(ua, u)

× Sim′(ua, u), (22.9)

and coni as:

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 569

coni =
∑

ik∈S(i)

Sim′(ik, i)∑
ik∈S(i) Sim′(ik, i)

× Sim′(ik, i), (22.10)

where conu and coni are the prediction confidences of the user-based method and
item-based method respectively. The higher the value, the more confidence we have
in the predicted value r̂u,i .

Since different datasets may inherit their own data distribution and correlation
natures, a parameter λ (0 ≤ λ ≤ 1) is employed to tune the the final result combining
both user-based method and item-based method. When S(u) �= ∅ ∧ S(i) �= ∅, our
method predicts the missing QoS value ru,i by employing the following equation:

r̂u,i = wu ×

⎛

⎜⎜⎜⎝u +

∑

ua∈S(u)

Sim′(ua, u)(rua ,i − ua)

∑

ua∈S(u)

Sim′(ua, u)

⎞

⎟⎟⎟⎠

+ wi ×

⎛

⎜⎜⎜⎝i +

∑

ik∈S(i)

Sim′(ik, i)(ru,ik − i k)

∑

ik∈S(i)

Sim′(ik, i)

⎞

⎟⎟⎟⎠ , (22.11)

where wu and wi are the weights of the user-based method and the item-based method
respectively (wu + wi = 1). wu is defined as:

wu = conu × λ

conu × λ+ coni × (1− λ)
, (22.12)

and wi is defined as:

wi = coni × (1− λ)

conu × λ+ coni × (1− λ)
. (22.13)

The prediction confidence of the missing value r̂u,i by our approach using
Eq. (22.11) can be calculated by equation:

con = wu × conu + wi × coni . (22.14)

22.2.3 Recommendation for Active Users

We use the matrix with predicted missing values to generate recommendations for
active users. We first predict Web service QoS values for the active user, which is
similar to the missing value prediction in Sect. 22.2.2.2. The only difference is that
when S(u) = ∅ ∧ S(i) = ∅, we predict the QoS values with user-mean (UMEAN)

570 X. Chen et al.

and item-mean (IMEAN). UMEAN is a vector of average QoS values of all the Web
services observed by the active user a and IMEAN is a vector of average QoS values
of Web service i observed by all service users. The prediction formula is defined as:

r̂a,i = wu × ra + wi × r i , (22.15)

where ra is the average QoS submitted by user a, and r i is the average QoS of
service i . In this case, the confidence of the predicted value is con = 0.

The predicted QoS values can be used in the following ways: (1) For a set of
functionally equivalent Web services, the one with optimal predicted QoS values is
recommended to the active user. (2) For Web services with different functionalities,
the top k best performing ones will be recommended to service users to help them
discover potential Web services.

22.2.4 Time Complexity Analysis

Worst-case analysis of the QoS value prediction algorithm is presented in this section.
The input is a full user-item matrix with m users and n Web services.

22.2.4.1 Time Complexity of Similarity Computation

In Sect. 22.2.1, the time complexity of user similarity Sim(a, u) is O(n), since there
are at most n intersected services between user a and u. The time complexity of
service similarity Sim(i, j) is O(m) with at most m users who used both Web
service i and j .

22.2.4.2 Time Complexity of UPCC

To predict missing values with UPCC (Eq. 22.7), we need to first compute similarities
of the active user with all users in the matrix (totally m similarity computations). As
discussed in Sect. 22.2.4.1, the time complexity of each similarity computation is
O(n). Therefore, the complexity of similarity computation is O(mn).

The time complexity of each missing value prediction is O(m), since at most m
similar users are employed in the prediction. The complexity of the value prediction
for an active user is O(mn) with at most n missing values. Thus the time complexity
of UPCC (including similarity computation and value prediction) is O(mn).

22.2.4.3 Time Complexity of IPCC

To predict missing values with IPCC (Eq. (22.8)), we need to compute similarities
of the current Web service with all Web services in the matrix (totally n similarity
computations). As discussed in Sect. 22.2.4.1, the time complexity of each similarity
computation is O(m). Therefore, the complexity of similarity computation is O(mn).

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 571

The missing value prediction computational complexity is O(n), since at most
n similar Web services are employed for prediction. The complexity of the value
prediction for a Web service is O(mn) with at most m users. Therefore, the time
complexity of IPCC is O(mn).

22.2.4.4 Time Complexity of Training Matrix Prediction

Training matrix prediction is an offline process, which helps reduce the sparseness of
the training matrix and improve the prediction accuracy (Sect. 22.2.2.2). This process
is a linear combination of UPCC and IPCC. For UPCC approach, the computational
complexity is O(m2n), since there are at most m rows (users) need prediction. For
IPCC approach, the complexity is O(mn2), because there are at most n columns
(Web services) to be predicted. Therefore, the time complexity of matrix prediction
is O(m2n + mn2).

22.2.4.5 Time Complexity of Active User Prediction

As discussed in Sect. 22.2.4.2, the computational complexity of UPCC for predicting
values of an active user is O(mn). When employing IPCC, the similarities of different
columns (Web services) can be computed offline, and there are at most n missing
values in the active user. For the prediction of each missing value, the computational
complexity is O(n), since at most n similar Web services will be employed for the
prediction. Therefore, the computational complexity of IPCC for an active user is
O(n2). Since our online QoS value prediction approach is a linear combination of
UPCC and IPCC, the complexity of our approach for an active user is O(mn + n2).

22.3 A Region-Based Web Service Recommendation Algorithm

We present a region-based Web service recommendation algorithm in this section.
The main hypothesis is that some QoS properties vary according to users’ physical
locations. Through the analysis of a real world Web service data set (see Sect. 22.4),
which contains 1.5 millions service invocation records evaluated by users from more
than twenty countries, we discover that some QoS properties like response time
highly relate to users’ physical locations. For example, the response time of a service
observed by users who are closely located with each other usually fluctuates mildly
around a certain value, while it sometimes varies significantly between users far away
from each other.

572 X. Chen et al.

Fig. 22.2 A motivating scenario

22.3.1 A Motivating Scenario

Alice is a software engineer working in India. She needs an email validation service
to filter emails. By querying a registry in U.S, she gets a list of service candidates and
sorts the services in ascending order of the response time. Alice then tries the first
two services provided by a Canadian company. However, she finds that the response
time is much higher than her expectation. She then realizes that the response time is
based on the evaluation conducted by servers in U.S., and it can vary greatly due to
different user contexts, such as user location, user network conditions, etc. Alice then
turns to her colleagues for suggestion. They suggest a local service though ranked
lower in the previous search result. After trying it, Alice finds that that service has
good performance and meets her requirements.

Intuitively, users closely located with each other are more likely to have simi-
lar service experience than those who are far away from each other. Our recom-
mendation approach is designed as a two-phase process. In the first phase, we divide
users into different regions based on their physical locations and historical Web ser-
vice QoS experience. In the second phase, we find similar users for the active user,
make QoS predictions for the unused services, and finally recommend the one with
best predicted value to the user.

22.3.2 Phase One: Region Creation

A region is defined as a group of users who are closely located with each other and
likely to have similar QoS profiles. Each user is a member of exactly one region.
Regions need to be internally coherent, but clearly different from each other. To
create regions, we first form small regions by putting users with similar locations

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 573

together and extract region features. Then we aggregate highly correlated regions
to form a certain number of large regions. Steps to create regions are presented in
Sect. 22.3.2.1–22.3.2.2 respectively.

22.3.2.1 Region Features

Region center is used to reflect the average performance of Web services observed
by users of one region. Region center is defined as the median vector of all QoS
vectors associated with the region users. The element i of the center is the median
QoS value of service i observed by users from the region. Median is the numeric
value separating the higher half of a sample from the lower half. Besides the average
Web service QoS performance, QoS fluctuation is another feature deserves our atten-
tion. From large real data analysis, we discover that user-dependent QoS properties
(e.g., response time) usually varies from region to region. Some services have unex-
pected long response time, and some are even inaccessible to a few regions. Inspired
by the three-sigma rule which is often used to test outliers, we use similar method to
distinguish services with unstable performance and regard them as region-sensitive
services.

We pick one QoS property r (response time) to simplify the description of this
approach. The set of non-zero QoS values of service s, r.s = {r1,s, r2,s, . . . , rk,s},
1 ≤ k ≤ m, collected from users of all regions is a sample from the population of
service s QoS property R. To estimate the mean μ and the standard deviation σ of
the population, we use two robust measures: median and Median Absolute Deviation
(MAD). MAD is defined as the median of the absolute deviations from the sample’s
median.

M AD = mediani (|ri,s − median j (r j,s)|), i = 1, . . . , k, j = 1, . . . , k (22.16)

Based on median and MAD, the two estimators can be calculated by:

μ̂ = mediani (ri,s), i = 1, . . . , k (22.17)

σ̂ = M ADi (ri,s), i = 1, . . . , k (22.18)

Definition 22.1 Let r.s = {r1,s, r2,s, . . . , rk,s}, 1 ≤ k ≤ m be the set of Web service
s QoS values provided by all users. Service s is a sensitive service to region M
iff ∃r j,s ∈ r.s((r j,s > μ̂ + 3σ̂) ∧ region(j) = M), where μ̂ = median(r.s),

σ̂ = M AD(r.s) and region(u) function defines the region of user u.

Definition 22.2 The sensitivity of region rm is the fraction between the number of
sensitive services in region rm over the total number of services.

Definition 22.3 Region rm is a sensitive region iff its region sensitivity exceeds the
sensitivity threshold λ.

574 X. Chen et al.

22.3.2.2 Region Aggregation

Each region formed by users’ physical locations at the outset always has a very sparse
QoS dataset, since the amounts of users and QoS records are relatively small. In this
case, it is difficult to find similar users and predict missing QoS records. To solve this
problem, we aggregate these small regions based on the similarity of their features.
The similarity of two regions rm and rn is measured by the similarity of their region
centers crm and crn using Eq. (22.3).

We use a bottom-up hierarchical clustering algorithm to aggregate regions [20].
The input is a set of small regions r1, . . . , rl . Each region consists of users with
similar locations. The algorithm successively aggregates pairs of the most similar
non-sensitive regions until the stopping criterion is met. The result is stored as a list
of aggregates in A.

Step one: Initialization

1. Compute the similarity between each two regions with Eq. (22.3), store the sim-
ilarity and the similar region index in the similarity matrix C .

2. Calculate the sensitivity of each region and identify whether it can be aggregated.
Store the result in the indicator vector I . I [k].sensi tivi t y indicates whether
region k is sensitive, and I [k].aggregate indicates whether region k can be aggre-
gated.

3. Use a set of priority queues P to sort the rows of C in decreasing order of the
similarity. Function P[k].M AX () returns the index of the region that is most
similar to region k.

Step two: Aggregation

1. In each iteration, select the two most similar and non-sensitive regions from the
priority queues if their similarity exceeds threshold μ, otherwise return A.

2. Aggregate the selected two regions and store their region index in result list A.
Use the smaller region index of the two as the new region index and compute the
new region center. Mark the indicator vector I of the aggregated region.

3. Calculate the sensitivity of the new region and set indicator I . If it is sensitive and
cannot be aggregated, remove this region from other regions’ priority queues.
Otherwise, update the elements of both priority queues and similarity matrix
related to the aggregated two regions. Repeat the above three steps.

22.3.3 Phase Two: QoS Prediction and Recommendation

The region aggregation step clusters thousands of users into a certain number of
regions based on their physical locations and historical QoS similarities. With the
compressed QoS data, searching neighbors and making predictions for an active user
can be computed faster than the conventional methods. Instead of computing the sim-
ilarity between the active user and each existing user, we only compute the similarity

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 575

Algorithm 1: Region Aggregation Algorithm
Input: a list of regions r1, . . . rl
Output: result list A
foreach n← 1 to l − 1 do

foreach i ← n + 1 to N do
C[n][i].sim ← SI M(rn, ri);
C[n][i].index ← i ;

I [n].sensi tivi t y ← I SSE N SI T I V E(rn);
if I [n].sensi tivi t y = 0 then

I [n].aggregate← 1;
I [n].aggregate← 0;
P[n] ← priority queue for C[n] sorted on sim;

calculate the sensitivity and aggregate of I [l] ;
A← [];
while true do

k1 ← argmaxk:I [k].aggregate=1 P[k].M AX ().sim;
if k1 = null or sim < μ then

return A;
k2 ← P[k1].M AX ().index ;
A.APPEND(< k1, k2 >) and compute k1 center;
I [k2].aggregate← 0;
P[k1] ← [];
I [k1].sensi tivi t y← I SSE N SI T I V E(k1);
if I [k1].sensi tivi t y = 1 then

I [k1].aggregate← 0;
foreach i with I [i].aggregate = 1 do

P[i].DE L ET E(C[i][k1]);
P[i].DE L ET E(C[i][k2]);

else

foreach i with I [i].aggregate = 1 ∧ i �= k1 do
P[i].DE L ET E(C[i][k1]);
P[i].DE L ET E(C[i][k2]);
C[i][k1].sim ← SI M(i, k1);
P[i].I N SE RT (C[i][k1]);
C[k1][i].sim ← SI M(i, k1);
P[k1].I N SE RT (C[k1][i]);

between the active user and each region center. Moreover, it is more reasonable to
predict the QoS value based on one’s region, for users in the same region are more
likely to have similar QoS experience on the same Web service, especially on those
region-sensitive ones. To predict the unused Web service s’s QoS value for an active
user a, we take the following steps:

• Find the region of the active user a by IP address. If no appropriate region is found,
the active user will be treated as a member of a new region.
• Identify whether service s is sensitive to user a’s region. If region-sensitive, then the

prediction is generated from the region center, because QoS of service s observed
by users from this region is significantly different from others.

576 X. Chen et al.

r̂a,s = rc,s (22.19)

• Otherwise, use Eq. (22.3) to compute the similarity between the active user and
each region center that has evaluated service s, and find up to k most similar centers
c1, c2, . . . , ck . We discuss how to choose k (also called top k) in Sect. 22.4.
• If the active user’s region center has QoS value of s, the prediction is computed

using the following equation:

r̂a,s = rc,s +
∑k

j=1 Sim′(a, c j)(rc j ,s − rc j .)
∑k

j=1 Sim′(a, c j)
(22.20)

where rc j ,s is the QoS of service s provided by center c j , and rc j . is the average
QoS of center c j . The prediction is composed of two parts. One is the QoS value
of the active user’s region center rc,s ,which denotes the average QoS of service s
observed by this region users. The other part is the normalized weighted sum of
the deviations of the k most similar neighbors.
• Otherwise, we use the service QoS observed by the k neighbors to compute the

prediction. The more similar the active user a and the neighbor c j are, the more
weights the QoS of c j will carry in the prediction.

r̂a,s =

k∑

j=1

Sim′(a, c j)rc j ,s

k∑

j=1

Sim′(a, c j)

(22.21)

22.3.4 Time Complexity Analysis

We discuss the worst-case time complexity of the region-based Web service recom-
mendation algorithm. We analyze the two phases, region creation and QoS value
prediction respectively in Sect. 22.3.4.1 and 22.3.4.2. We assume the input is a full
matrix with n users and m Web services.

22.3.4.1 Time Complexity of Region Creation

Time complexity of calculating the median and MAD of each service is O(n log n).
For m services, the time complexity is O(mn log n). With MAD and median, we
identify the region-sensitive services from the service perspective. Since there are
at most n records for each service, the time complexity of each service is O(n)

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 577

using Definition 22.1. Therefore, the total time complexity of region-sensitive service
identification is O(mn log n + mn) = O(mn log n).

In terms of the region aggregation part, we assume there are l0 regions in the
beginning. Since there are at most m services used by both regions, the time com-
plexity of the region similarity is O(m) using Eq. (22.3), and the complexity for
computing similarity matrix C is O(l2

0m).
The aggregation of two regions will execute at most l0 − 1 times, in case that

all regions are non-sensitive, extremely correlate to each other and finally aggregate
into one region. In each iteration, we first compare at most l0 − 1 heads of the
priority queues to find the most similar pairs. Since the number of regions that can be
aggregated decreases with iteration, the real search time will be less than l0 − 1 the
following iterations. For the selected pair of regions, we calculate the new center and
update their similar regions. Because the number of users involved in the two regions
are uncertain, we use the number of all users as the upper bound and the complexity
is O(mn log n). The insertion and deletion of a similar region is O(log -l0), since
we employ the priority queue to sort similar regions. Thus, the time complexity is
O(l2

0(log l0 + mn log n)) = O(l2
0mn log n).

As the above steps are linearly combined, the total time complexity of the offline
part is O(l2

0mn log n).

22.3.4.2 Time Complexity of QoS Prediction

Let l1 be the number of regions after the region creation. To predict QoS value
for an active user, O(l1) similarity calculations between the active user and region
centers are needed, each of which takes O(m) time. Therefore the time complexity
of similarity computation is O(l1m).

For each service the active user has not evaluated, the QoS value prediction
complexity is O(l1), because at most l1 centers are employed in the prediction as
Eqs. (22.20) and (22.21) state. There are at most m services without QoS values, so
the time complexity of the prediction for an active user is O(l1m). Thus the time
complexity for online phase including similarity computation and missing value pre-
diction is O(l1m) ≈ O(m) (l1 is rather small compared to m or n). Compared to
the memory-based CF algorithm used in previous work with O(mn) online time-
complexity, our approach is more efficient and well suited for large dataset.

22.4 Experiments

22.4.1 Experiment Setup

In this experiment, 21,197 publicly available Web services are crawled from three
sources (1) well-known companies (e.g., Google, Amazon, etc.); (2) portals listing
publicly available Web services (e.g., xmethods.net, webservicex.net, etc.); and (3)

578 X. Chen et al.

Web service searching engines (e.g., seekda.com, esynaps.com, etc.). 18,102 Web
services stubs with 343,917 Java classes are generated using WSDL2Java tool of
Axis2 package. Failures to generate client stub are mainly caused by network con-
nection problems (e.g., connection timeout, HTTP 400, 401, 403, 500, 502 and 503),
FileNotFoundException and InvalidWSDLFiles.

To monitor Web service performance, we randomly select 100 Web services
located in 22 countries for our experiments. 150 computers in 24 countries from
Planet-Lab [7] are employed to monitor and collect QoS information of the selected
Web services. The result set contains about 1.5 millions Web service invocation
records.

By processing the experimental results, we obtain a 150× 100 user-item matrix,
where each entry in the matrix is a vector including two QoS values, i.e., response
time and failure rate. Response time represents the time duration between the client
sending a request and receiving a response, while failure rate represents the ratio
between the number of invocation failures and the total number of invocations. In our
experiments, each service user invokes each Web service for 100 times. Figure 22.3a,
b show the value distributions of response time and failure rate of the 15,000 entries
in the matrix, respectively. Figure 22.3a shows that the means of response times of
most entries are smaller than 5000 milliseconds and different Web service invoca-
tions contain large variances in real environment. Figure 22.3b shows that failure
probabilities of most entries (85.68 %) are less than 1 %, while failure probabilities
of a small part of entries (8.34 %) are larger than 16 %. We divide the 150 service
users into two parts, one part as training users and the other part as active users.
For the training matrix, we randomly remove entries to generate a series of sparse
matrices (e.g., with density 10, 20 %, ect.). For an active user, we also randomly
remove several entries and name the number of remaining entries as given number,
which denotes the number of entries (QoS values) provided by the active user. The
original values of the removed entries are used as the expected values to study the
prediction accuracy.

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2
x 10

4

Mean of Response Time

S
ta

nd
ar

d
D

ev
ia

tio
n

<0.01 0.01−0.02 0.02−0.04 0.04−0.08 0.08−0.16 >0.16
0

2000

4000

6000

8000

10000

12000

14000

Values of Failure Probabilities

N
um

be
rs

 o
f I

nv
oc

at
io

ns
 85.68% values are smaller than 0.01

8.34% values are larger than 0.16

(a) (b)

Fig. 22.3 Value distributions of the user-item matrix

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 579

We use Mean Absolute Error (MAE) to measure the prediction quality of the
recommendation algorithms. MAE is the average absolute deviation of predictions
to the ground truth data. Smaller MAE indicates better prediction accuracy.

M AE =
∑

i, j |ri, j − r̂i, j |
N

, (22.22)

where ri, j denotes the expected QoS value of Web service j observed by user i , r̂i, j is
the predicted QoS value, and N is the number of predicted values. MAE reflects how
close predictions are to the eventual outcomes on average, which gives an overview
of the prediction quality.

22.4.2 WSRec Performance Evaluation

To study the prediction performance, we compare our approach (WSRec) with user-
based prediction algorithm using PCC (UPCC) [3], and item-based algorithm using
PCC (IPCC) [27]. UPCC employs similar users for QoS performance prediction
(Eqs. (22.1) and (22.7)), while IPCC employs similar Web services for prediction
(Eqs. (22.2) and (22.8)).

Table 22.2 shows the MAE result of different prediction methods on response
time and failure rate employing matrices with 10, 20, and 30 % density. We vary the
number of QoS values (given number) provided by the active user from 10, 20 to 30
(named as G10, G20, and G30 in Table 22.2). We also vary the number of training
users as 100 and 140. We set λ = 0.1, since the item-based approach achieves
better prediction accuracy than the user-based approach in our Web service QoS
dataset. The detailed investigation of λ value setting will be shown in Sect. 22.4.2.2.

Table 22.2 MAE performance comparison (smaller MAE value means better prediction accuracy)

Training users = 100 Training users = 140

Response time Failure rate Response time Failure rate
Den % Method G10 G20 G30 G10 % G20 % G30 % G10 G20 G30 G10 % G20 % G30 %

UPCC 1148 877 810 4.85 4.20 3.86 968 782 684 4.11 3.47 3.28
IPCC 768 736 736 2.24 2.16 2.21 585 596 605 1.39 1.33 1.42

10 WSRec 758 700 672 2.21 2.08 2.08 560 533 500 1.36 1.26 1.24
UPCC 904 722 626 4.40 3.43 2.85 794 626 540 3.93 2.96 2.43
IPCC 606 610 639 2.01 1.98 1.98 479 509 538 1.17 1.22 1.28

20 WSRec 586 551 546 1.93 1.80 1.70 445 428 416 1.10 1.08 1.07
UPCC 915 671 572 4.25 3.25 2.58 803 576 491 3.76 2.86 2.06
IPCC 563 566 602 1.84 1.83 1.86 439 467 507 1.10 1.12 1.17

30 WSRec 538 504 499 1.78 1.69 1.63 405 385 378 1.05 1.00 0.98

580 X. Chen et al.

Each experiment is run for 50 times and the average MAE value is reported. The
experimental results of Table 22.2 shows that:

• WSRec method consistently outperforms other algorithms under all experimental
settings.
• The performance of all approaches enhances significantly with the increase of

matrix density, the number of training users as well as the number of QoS values
provided by active users.
• The item-based approach (IPCC) outperforms the user-based approach (UPCC).

This observation indicates that similar Web services provide more information to
the prediction than similar users do.

22.4.2.1 Impact of Missing Value Prediction

The missing value prediction in Sect. 22.2.2.2 makes use of the similar users and
similar items to predict the missing values of the training matrix to make it denser.
To study the impact of the missing value prediction, we implement two versions of
WSRec. One version employs missing value prediction (WSRec*), while the other
version does not (WSRec). We vary the given number of the active users from 5 to
50 with a step of 5 and vary the values of training users from 20 to 140 with a step
value of 20. We set densi ty = 10 % and T opK = 10, which means that the top 10
neighbors will be employed for value prediction.

Figure 22.4 shows the experimental results, where Fig. 22.4a–b show the exper-
imental results of response time and Fig. 22.4c–d show the experimental results of
failure rate. Figure 22.4 shows that predicting the missing values of the training
matrix will improve the overall prediction accuracy.

22.4.2.2 Impact of λ

Different datasets have different data characteristics. Parameter λ makes our predic-
tion method feasible and adaptable to different datasets. If λ = 1, we only extract
information from similar users, and if λ = 0, we only consider valuable information
from similar services. In other cases, we leverage both similar users and services to
predict missing values for active users.

To study the impact of λ on our collaborative filtering method, we set Top K = 10
and training users = 140. We vary the value of λ from 0 to 1 with a step of 0.1.
Figure 22.5a, c show the results of given number = 10, given number = 20 and
given number = 30 with 20 % density training matrix of response time and failure
rate, respectively. Figure 22.5b, d show the results of densi ty = 10 %, densi ty =
20 % and densi ty = 30 % with given number = 20 of response time and failure
rate, respectively.

The experiment shows that λ impacts the recommendation results significantly,
and a proper λ value will provide better prediction accuracy. For both the response

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 581

5 10 15 20 25 30 35 4045 50
600

650

700

750

800

850

900

Given Number

M
A

E
Response Time

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

20 40 60 80 100 120 140
400

600

800

1000

1200

1400

Train User Number

M
A

E

Response Time

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

5 10 15 20 25 30 35 40 45 50
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Given Number

M
A

E

Failure−rate

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

20 40 60 80 100 120 140
0.015

0.02

0.025

0.03

0.035

0.04

0.045

Train User Number

M
A

E

Failure−rate

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

(a) (b)

(d)(c)

Fig. 22.4 Impact of the training matrix prediction

time and failure rate, similar Web services are more important than similar users
in prediction QoS when limited QoS values are given by active users, while the
similar users become more important when more QoS values are available from
active users. As shown in Fig. 22.5b, d, with the given number of 20, all the three
curves (Density 10, 20, and 30 %) of response time and failure rate obtain the
best prediction performance with the same λ value (λ = 0.2 for response time and
λ = 0 for failure rate), indicating that the optimal λ value is not influenced by the
training matrix density.

22.4.3 Region-Based Recommender System Performance
Evaluation

As mentioned in Sect. 22.4.1, QoS records are collected by 150 nodes from the Planet-
Lab. For each node, there are more than 100 QoS profiles, and each profile contains

582 X. Chen et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
400

450

500

550

600

650

700

750

800
Response Time

Lambda

M
A

E

Given 10
Given 20
Given 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
350

400

450

500

550

600

650

700

750
Response Time

Lambda

M
A

E

Density 10%
Density 20%
Density 30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.016

0.018

0.02

0.022

0.024

0.026

0.028
Failure−rate

Lambda

M
A

E

Given 10%
Given 20%
Given 30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.015

0.02

0.025

0.03
Failure−rate

Lambda

M
A

E
Density 10%
Density 20%
Density 30%

(a) (b)

(d)(c)

Fig. 22.5 Impact of the lambda

the response time (also called Round Trip Time, RTT) records of 100 services. We
randomly extract 20 profiles from each node, and obtain 3000 users with RTTs
ranging from 2 to 31407 milliseconds.

We randomly remove 90 and 80 % RTTs of the initial training matrix to generate
two sparse matrices with density 10 and 20 % respectively. We vary the number of
RTT values given by active users from 10, 20 to 30. The removed records of active
users are used to study the prediction accuracy. In this experiment, we set μ = 0.3,
λ = 0.8, and top− k = 10. To get a reliable error estimate, we use 10 times 10-fold
cross-validation [32] to evaluate the prediction accuracy and report the average MAE
value.

Table 22.3 shows the prediction performance of different methods employing the
10 and 20 % density training matrix. It shows that our method (RBCF) significantly
improves the prediction accuracy, and outperforms others consistently. The perfor-
mance of UPCC, WSRec and our approach enhances significantly with the increase
of matrix density as well as the number of QoS values provided by active users (given
number).

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 583

Table 22.3 MAE comparison on response time (smaller value means better performance)

Density = 10% Density = 20%

Method G10 G20 G30 G10 G20 G30
IPCC 1179.32 1170.73 1160.45 1104.02 1094.63 1086.08
UPCC 1280.95 1145.80 1085.85 1167.84 846.54 674.32
WSRec 976.01 805.60 772.34 968.69 788.37 742.15
RBCF 638.21 624.51 623.90 573.85 560.13 556.75

0

0.5

1

00.51
0

10

20

30

40

50

60

miulambda

N
um

be
r

of
 r

eg
io

ns

10

15

20

25

30

35

40

45

50

(a)

0

0.5

1

0
0.5

1

400

500

600

700

800

900

1000

lambda
miu

M
A

E

500

550

600

650

700

750

800

850

900

(b)

Fig. 22.6 Impact of thresholds λ and μ. a Impact on the number of regions. b Impact on the
prediction performance (MAE)

22.4.3.1 Impact of λ and μ

In region creation phase, the two thresholds λ and μ play a very important role
in determining the number of regions and can impact the final performance of the
prediction. As mentioned in Sect. 22.3.2.2, only regions with similarity higher than
μ and sensitivity less than λ can be aggregated into one region. We test the impact
of λ and μ on a sparse matrix with 2700 training users and 300 active users. We
set densi ty = 0.2, given = 10 and employ all the neighbors with positive PCC
for QoS prediction. We vary the two thresholds λ and μ both from 0.1 to 0.9 with a
step of 0.1. Figure 22.6 shows how the two thresholds affect the number of regions
and the final prediction accuracy. It shows that lower μ and higher λ result in fewer
regions, but fewer regions does not necessarily mean better prediction accuracy.
For this dataset, better prediction accuracy is achieved with higher λ and μ. Note
that the optimal value of λ is related to the sensitivity of the original regions at the
outset. Figure 22.7 shows the distribution of the region sensitivity before aggregation.
It shows that the sensitivity of most regions (81.3 %) is less than 0.1, while the
sensitivity of a few regions (4.67 %) is around 0.8. Higher λ and μ allow very
similar regions with high sensitivity to be aggregated and achieve good performance
in this experiment. Figure 22.8 shows the relation between μ and prediction accuracy
with training matrix density 0.2, 0.5 and 1. We employ all the neighbors with positive
PCC values for QoS prediction and set λ = 1, so that we do not consider the factor

584 X. Chen et al.

Fig. 22.7 The distribution of
region sensitivity

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Region sensitivity

N
um

be
r

of
 r

eg
io

ns

Fig. 22.8 The distribution of
region sensitivity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
350

400

450

500

550

600

Region similarity

M
A

E

density 0.2
density 0.5
density 1.0

of sensitivity in region aggregation. Similarity becomes the single factor. Obviously,
for denser matrix, with higher μ we obtain a set of coherent regions, and better
prediction accuracy.

22.5 Related Work

22.5.1 Collaborative Filtering

Collaborative Filtering is firstly proposed by Rich [25] and widely used in commercial
recommender systems, such as Amazon.com [4, 17, 19, 24]. The basic idea of CF is to
predict and recommend the potential favorite items for a particular user by leveraging
rating data collected from similar users. Essentially, CF is based on processing the

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 585

user-item matrix. Breese et al. [3] divide the CF algorithms into two broad classes:
memory-based algorithms and model-based algorithms. The most analyzed examples
of memory-based collaborative filtering include user-based approaches [3, 10, 14],
item-based approaches [8, 17, 27], and their fusion [37, 31]. User-based approaches
predict the ratings of active users based on the ratings of their similar users, and
item-based approaches predict the ratings of active users based on the computed
information of items similar to those chosen by the active users. These algorithms
are easy to implement, require little or no training cost, and can easily take new
users’s ratings into account. However, memory-based algorithms cannot cope well
with large number of users and items, since their online performance is often slow.

Model-based CF algorithms learn the model from the dataset using statistical and
machine learning techniques. Examples include clustering model [33], latent seman-
tic models [11, 12] and latent factor model [5]. These algorithms can quickly generate
recommendations and achieve good online performance. However, the model must
be performed anew when new users or items are added to the system.

22.5.2 Web Service Selection and Recommendation

Web service selection and recommendation has been extensively studied to facilitate
Web service composition in recent years. El Hadad et al. [9] propose a selection
method considering both the transactional properties and QoS characteristics of a
Web service. Hwang et al. [13] find that both composite and individual web ser-
vices constrain the sequences of invoking operations. They use finite state machine
to model the permitted invocation sequences of Web service operations, and propose
two strategies to select Web services that are likely to successfully complete the
execution of a given sequence of operations. Kang et al. [15] propose AWSR sys-
tem to recommend services based on users’ historical functional interests and QoS
preferences. Barakat [2] models the quality dependencies among services and pro-
pose a Web service selection method for Web service composition. Alrifai and Risse
[1] propose a method to meet a user’s end-to-end QoS requirement. Their method
consists of two steps: first, they use mixed integer programming (MIP) to find the
optimal decomposition of global QoS constraints into local constraints. After that
they use distributed local selection to find the best web services that satisfy the local
constraints. This approach achieves suboptimal results, but it is more efficient than
solutions based on global optimization.

A large amount of work has been done to apply CF to Web service recommenda-
tion. Shao et al. [28] use a user-based CF algorithm to predict QoS values. Work [16,
29] apply the idea of CF in their systems, and use MovieLens data for experimental
analysis. Combination of different type of CF algorithms are also used in Web ser-
vice recommendation. Zheng et al. [40] combine the user-based and item-based CF
algorithms to recommend Web services; They also integrate Neighborhood approach
with Matrix Factorization in work [39]. Qi [23] presents a strategy that integrates
matrix factorization with decision tree learning to bootstrap service recommenda-

586 X. Chen et al.

tion systems. Meanwhile, several work employs location information to Web service
recommendation. Chen et al. [6] first use a region-based CF algorithm to make
Web service recommendations. To help users know more about Web service perfor-
mance, they also propose a visualization method showing recommendation results
on a map . Lo et al. [18] employs the user location in matrix factorization model to
predict QoS values. Tang et al. [30] consider the impact of both user location and
Web service location on QoS values and propose a CF recommendation approach
based on that.

22.6 Conclusion and Future Work

We have presented two Web service recommendation approaches in this chapter. The
basic ideas of the two are the same: to predict Web service future QoS performance
and recommend the best one for active users by using historical QoS data from similar
users. The difference is how the two approaches find similar users. Neighborhood-
based approach searches users and Web services in the entire data set to find similar
ones. It is straightforward and easy to implement. Moreover, this approach can easily
handle new data (new users, Web services and submitted QoS values) by adding new
rows or columns to the data set. On the other hand, region-based approach leverages
location information to find similar users and achieves better online performance.
The drawback of this approach is that we need to recompute the region model when a
certain amount of new data coming in. For example, when one normal region becomes
sensitive or when a lot of new users go to one region and make it not coherent, we
will regenerate all the regions.

In our future work, we will consider several aspects to further improve the pro-
posed Web service recommendation approaches. In terms of the recommendation
accuracy, we find that contextual information can greatly influence Web service
QoS performance, such as server workload, network condition and the tasks that
users carry out with Web services (e.g., computation-intensive or I/O-intensive task).
Besides physical location, we will take these factors into account and refine the
steps of similarity computation and region aggregation. In terms of the experiment,
we use MAE to measure the overall recommendation accuracy currently. Simi-
lar to web page search results, users may only consider and try the top three or
five recommended services. Thus improving the accuracy of top-k recommended
services is another task to investigate. Our future work also includes the study
of QoS characteristic. We plan to investigate the distribution of response time
and the correlation between different QoS properties such as response time and
reliability.

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 587

References

1. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient QoS-
aware service composition. In: Proceedings of the 18th International Conference on World
Wide Web (WWW’09), pp. 881–890 (2009)

2. Barakat, L.: Efficient correlation-aware service selection. In: Proceedings of the 19th Interna-
tional Conference on Web Services (ICWS’12), pp. 1–8 (2012)

3. Breese, J.S., Heckerman, D., Kadie C.: Empirical analysis of predictive algorithms for col-
laborative filtering. In: Proceedings of the 14th Annual Conference Uncertainty in Artificial
Intelligence (UAI’98), pp. 43–52 (1998)

4. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap.
Inter. 12(4), 331–370 (2002)

5. Canny J.: Collaborative filtering with privacy via factor analysis. In: Proceedings of the 25th
International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’02), pp. 238–245 (2002)

6. Chen, X., Zheng, Z., Liu, X., Huang, Z., Sun, H.: Personalized QoS-aware web service recom-
mendation and visualization. IEEE Trans. Serv Comput. 6(1), 35–47(2013)

7. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Plan-
etlab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput. Commun.
Rev. 33(3), 3–12 (2003)

8. Deshpande, M., Karypis, G.: Item-based top-n recommendation. ACM Trans. Inf. Syst. 22(1),
143–177 (2004)

9. El Hadad, J., Manouvrier, M., Rukoz, M.: TQoS: transactional and QoS-aware selection algo-
rithm for automatic Web service composition. IEEE Trans. Serv. Comput. 3(1), 73–85 (2010)

10. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing
collaborative filtering. In: Proceedings of the 22nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’99), pp. 230–237 (1999)

11. Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In:
Proceedings of the 26th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’03), pp. 259–266 (2003)

12. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1),
89–115 (2004)

13. Hwang, S., Lim, E., Lee, C., Chen, C.: Dynamic web service selection for reliable web service
composition. IEEE Trans. Serv. Comput. 1(2), 104–116 (2008)

14. Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: Pro-
ceedings of the 27th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’04), pp. 337–344 (2004)

15. Kang, G., Liu, J., Tang, M., Liu, X., Cao, B., Xu, Y.: AWSR: active web service recommendation
based on usage history. In: Proceedings of the 19th International Conference on Web Services
(ICWS’12), pp. 186–193 (2012)

16. Karta, K.: An investigation on personalized collaborative filtering for web service selection.
Honours Programme thesis, University of Western Australia, Brisbane (2005)

17. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

18. Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: Collaborative web service QoS prediction with location-
based regularization. In: Proceedings of the 19th International Conference on Web Services
(ICWS’12), pp. 464–471 (2012)

19. Ma, H., King, I., Lyu, M.R.: Effective missing data prediction for collaborative filtering. In:
Proceedings of the 30th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’07), pp. 39–46 (2007)

20. Manning, C.D., Raghavan, P., Schtze H.: An Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2009)

588 X. Chen et al.

21. McLaughlin M.R., Herlocker J. L.: A collaborative filtering algorithm and evaluation metric
that accurately model the user experience. In: Proceedings of the 27th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR’04), pp.
329–336 (2004)

22. Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Comput. 8(2),
34–44 (2004)

23. Qi, Y.: Decision tree learning from incomplete QoS to bootstrap service recommendation. In:
Proceedings of the 19th International Conference on Web Services (ICWS’12), pp. 194–201
(2012)

24. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architec-
ture for collaborative filtering of netnews. In: Proceedings of ACM Conference on Computer
Supported Cooperative, Work, pp. 175–186 (1994)

25. Rich, E.: User modeling via stereotypes. Cognitive Sci. 3(4), 329–354 (1979)
26. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic Qos and soft contracts for

transaction-based web services orchestrations. IEEE Trans. Serv. Comput. 1(4), 187–200
(2008)

27. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommen-
dation algorithms. In: Proceedings of the 10th International Conference on World Wide Web
(WWW’01), pp. 285–295 (2001)

28. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized qos prediction for web
services via collaborative filtering. In: Proceedings of the 5th International Conference on Web
Services (ICWS’07), pp. 439–446 (2007)

29. Sreenath, R.M., Singh, M.P.: Agent-based service selection. J. Web Seman 1(3), 261–279
(2003)

30. Tang, M., Jin, Y., Liu, J., Liu, X.: Location-aware collaborative filtering for QoS-based ser-
vice recommendation. In: Proceedings of the 19th International Conference on Web Services
(ICWS’12), pp. 202–209 (2012)

31. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based collaborative
filtering approaches by similarity fusion. In: Proceedings of the 29th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’06), pp. 501–508
(2006)

32. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, vol.
2. Elsevier, Amsterdam (2005)

33. Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., Chen, Z.: Scalable collaborative fil-
tering using cluster-based smoothing. In: Proceedings of the 28th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’05), pp. 114–121
(2005)

34. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with end-to-end
qos constraints. ACM Trans. Web 1(1), 1–26 (2007)

35. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware
middleware for web services composition. IEEE Trans. Softw Eng 30(5), 311–327 (2004)

36. Zhang, L.-J., Zhang, J., Cai, H.: Services Computing. Springer and Tsinghua University Press,
New York and Beijing (2007)

37. Zheng, Z., Ma, H., Lyu, M.R., King I.: Wsrec: a collaborative filtering based web service recom-
mender system. In: Proceedings of the 7th International Conference Web Services (ICWS’09),
pp. 437–444 (2009)

38. Zheng, Z., Zhang, Y., Lyu, M.: CloudRank: A QoS-Driven component ranking framework
for cloud computing. In: Proceedings of the International Symposium Reliable Distributed
Systems (SRDS’10), pp. 184–193 (2010)

39. Zheng, Z., Ma, H., Lyu, M., King, I.: Collaborative web service QoS prediction via neighbor-
hood integrated matrix factorization. IEEE Trans. Serv. Comput. (2011)

40. Zheng, Z., Ma, H., Lyu, M., King, I.: Qos-aware web service recommendation by collaborative
filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

	22 QoS-Aware Web Service Recommendation via Collaborative Filtering
	22.1 Introduction
	22.2 WSRec: A Neighborhood-Based Web Service Recommendation Algorithm
	22.2.1 Similarity Computation
	22.2.2 QoS Value Prediction
	22.2.3 Recommendation for Active Users
	22.2.4 Time Complexity Analysis

	22.3 A Region-Based Web Service Recommendation Algorithm
	22.3.1 A Motivating Scenario
	22.3.2 Phase One: Region Creation
	22.3.3 Phase Two: QoS Prediction and Recommendation
	22.3.4 Time Complexity Analysis

	22.4 Experiments
	22.4.1 Experiment Setup
	22.4.2 WSRec Performance Evaluation
	22.4.3 Region-Based Recommender System Performance Evaluation

	22.5 Related Work
	22.5.1 Collaborative Filtering
	22.5.2 Web Service Selection and Recommendation

	22.6 Conclusion and Future Work
	References

