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� INTRODUCTION

Previous chapters discuss the opportunities and bene�ts of SRE throughout the entire life cycle� from require�
ments determination through design� implementation� testing� delivery� and operations� Properly applied�
SRE is an important positive in�uence on the ultimate quality of all life cycle products� The set of life cycle
activities and artifacts� together with their attributes and interrelationships� that are related to reliability�

comprise what we here refer to as the reliability process� The artifacts of the software life cycle include doc�
uments� reports� manuals� plans� code� con�guration data� test data� ancillary data� and all other tangible
products�
Software reliability is dynamic and stochastic� In a new or upgraded product� it begins at a low �gure

with respect to its new intended usage and ultimately reaches a �gure near unity in maturity� The exact value
of product reliability� however� is never precisely known at any point in its lifetime�
The software reliability models described in Chapter � attempt to assess expected reliability or future

operability using observed failure data and statistical inference techniques� Most of these only treat the
exposure and handling of failures during testing or operations� They are restricted in their life cycle scope and
adaptability to general use for a number of reasons� including their foundation on oversimpli�ed assumptions
and their primary focus on testing and operations phases�
Modelers have traditionally imposed certain simplifying assumptions in order to obtain closed�form� ide�

alized approximations of software reliability� Some modelers may have relaxed an assumption here or there
in attempts to provide more generality� but as models become more and more realistic� the likelihood of
obtaining simple analytic solutions plunges to impossibility�
This situation is not a roadblock to software reliability modeling� but perhaps a boon� in that it forces

us to the apply modern technology to the problem� Computer models are not subject to the oversimpli�ca�
tions required to obtain closed�form results� Numerical methods can cope with models having very realistic
and complex representations of project processes� software artifacts� and the development and operational
environments�
Reliability models attempt to capture the structure and interrelationships among artifacts� activities�

resources� quality� and time� However� this Chapter is mainly about computational techniques for modeling
reliability behavior� It does not present a tool for operational situations that you may immediately apply�
o��the�shelf� It does present concepts for generalized tools that mirror reliability processes� We hope that the
material presented will demonstrate the power� �exibility� and potential bene�ts that simulation techniques
o�er� together with methods for representing artifacts� activities� and events of the process� and techniques
for computation�

� RELIABILITY SIMULATION

A simulation model describes a system being characterized in terms of its artifacts� events� interrelationships�
and interactions in such a way that one may perform experiments on the model� rather than on the system
itself� ideally with indistinguishable results�

�Suitable extensions of the concepts of this Chapter may also apply to simulation of other quality pro�les� such as availability�

�



Simulation presents a particularly attractive computational alternative for investigating software reliability
because it averts the need for overly restrictive assumptions and because it can model a wider range of
reliability phenomena than mathematical analyses can cope with� Simulation does not require that test
coverage be uniform� or that a particular fault�to�failure relationship exist� or that failures occur independently�
if these are not actually the case�
But power and generality are ine�ective where ignorance reigns� Scienti�c philosophy teaches us to seek

the simplest models that explain poorly understood phenomena� For example� when we do not understand
how fault attributes relate to consequent failures� we may as well simplify the model by assuming that faults
produce independent failures� at least until our experiments prove otherwise�
But objective validation of even a simple reliability model may be problematic� because controlled exper�

iments� while easy to simulate� will be impossible to conduct in practice� However� if we can build an overall
model upon simple and plausible submodels that together integrate cleanly to simulate the phenomenon under
study� then we may gain some aggregate trust from the combined levels of con�dence we may have in the
constituent submodels�

��� The Need for Dynamic Simulation

Reliability modeling ultimately requires good data� But software projects do not always collect data sets
that are comprehensive� complete� or consistent enough for e�ective modeling research or model application�
Additionally� industrial organizations are reluctant to release their reliability data for use by outside parties�
Further� data required for software reliability modeling in general� and execution time models in particular�
seem to be even more di�cult to collect than other types of software engineering data� Even when data are
available� they are rarely suitable for isolation of individual reliability drivers�
In practicality� isolating the e�ects of various driving factors in the life cycle requires exploring a variety of

scenarios 	with other factors being the same�
 But no real software project can a�ord to do the same project
several times while varying the factors of interest� Even if they could� control and repeatability of factors
would� at best� be questionable� A project may attempt� of course� to utilize data from past experiences�
	properly adjusted
 to appear as if earlier realizations of the current project were available� However� in view
of the current scarcity of good� consistent data� this may not be realistic�
Reliability modelers thus never have the real opportunity to observe several realizations of the same

software project� Nor are they provided with data that faithfully match the assumptions of their models� Nor
are they able to probe into the underlying error and failure mechanisms in a controlled way� Rather� they
are faced not only with the problem of guessing the form and particulars of the underlying random processes
from the scant� uncertain data they possess� but also with the problem of best forecasting future reliability
using that data�
Since good data sets are so scarce� one purpose of simulation is to supply carefully controlled� homogeneous

data or software artifacts having known characteristics for use in evaluating the various assumptions upon
which existing reliability models have been built� Since actual software artifacts �such as faults in computer
programs� and processes �such as failure and fault removal� often violate the assumptions of analytic software
reliability models� simulation can perhaps provide a better understanding of such assumptions and may even
lead to a better explanation of why some analytic models work well in spite of such violations�
But while simulation may be useful for creating data sets for studying other� more conventional reliability

models� it cannot provide the necessary attributes of the phenomena being modeled without real information
derived from real data collected from real projects� past and present�
A second use of simulation� then� is in forecasting the driving in�uences of a real project� Models that

can faithfully portray the relative� consequences of various proposed alternatives can potentially assess the
relative advantages of the candidates� Once a project su�ciently characterizes its processes� artifacts� and
utilization of resources� then trade�o�s can indicate the best hopes for project success�
Simulation can mimic key characteristics of the processes that create� validate� and revise documents and

code� It can mimic faulty observation of a failure when one has� in fact� occurred� and� additionally� can mimic
system outages due to failures� Furthermore� simulation can distinguish faults that have been removed from
those that have not� and thus can readily reproduce multiple failures due to the same as�yet unrepaired fault�

�Absolute accuracy is not required for many trade�o� studies� Factors which remain the same for all alternative choices do
not a�ect the relative advantage analyses�






Some reliability subprocesses may be sensitive to the passage of execution time �e�g�� operational failures��
while others may depend on wall�clock� or calendar� time �e�g�� project phases�� still others may depend on
the amount of human e�ort expended �e�g�� fault repair� or on the number of test cases applied� A simulator
can relate model�pertinent resource dependencies to a common base via resource schedules� such as workforce
loading and computer utilization pro�les�

��� Dynamic Simulation Approaches

Simulation in this Chapter refers to the technique of imitating the character of an object or process in a way
that permits one to make quanti�ed inferences about the real object or process� A dynamic simulation is one
whose inputs and observables are events and parameter values� either continuous or discreet� that vary over
time� The formal characterization of the object or process is the model under study�
When the form of the model changes over time� adapting to actual data from an evolving project� the

simulation is trace�driven� If parameters and interrelationships are static� without trace data� the simulation
is self�driven�
The observables of interest in reliability engineering are usually discrete integer�valued quantities �e�g��

counts of errors� defects� faults� failures� lines of code� that occur� or are present� as time progresses� Studies
of reliability in this context belong to the general �eld of discrete�event process simulation� Readers wishing
to learn more about discrete�event simulation methods may consult ����
One approach to simulation produces actual physical artifacts and portions of the environment according

to factors and in�uences believed to typify these entities within a given context� The artifacts and environment
are allowed to interact naturally� whereupon one observes the actual �ow of occurrences of activities and events�
We refer to this approach as artifact�based process simulation� and discuss it in detail in Section ������
The other reliability simulation approach ��� �� produces time�line imitations of reliability�related activities

and events� No artifacts are actually created� but are modeled parametrically over time� The key to this
approach is a rate�based architecture� in which phenomena occur naturally over time as controlled by their
frequencies of occurrence� which depend on driving factors such as numbers of faults so far exposed or yet
remaining� failure criticality� workforce level� test intensity� and execution time�
Rate�based event simulation is a form of modeling called system dynamics� with the distinction that the

observables are discrete events randomly occurring in time� Systems dynamics simulations are traditionally
non�stochastic and non�discrete� But as will be shown� extension to a discrete stochastic architecture is not
di�cult� For more information on the systems dynamics technique� see ����
The use of simulation in the study of software reliability is still formative� experimental� speculative�

controversial� and in the proof�of�concept stage� Although simulation models conceptually seem to hold high
promise both for creating data to validate conventional models and for generating more realistic forecasts
than analytic models do� the evidence to support these hypotheses is currently rather scant and arguable�
There are some favorable indications of potential� however� to be discussed�

� THE RELIABILITY PROCESS

Because of the lack of good data� past e�orts in modeling the reliability process have perhaps been� to some�
daunting tasks with uncertain bene�ts� However� as projects are now becoming increasingly better instru�
mented� data availability will eventually make this modeling entirely feasible and accurate� Some simulations
of portions of the reliability process where measurements are routinely taken are practical�
The reliability process� in generic terms� is a model of the reliability�oriented aspects of software devel�

opment� operations� and maintenance� Since every project is di�erent� describing an 	average
 case requires
characterizing behavior typical of a class� with variations according to product� situation� environmental� and
human factors� In this Section� we shall attempt to describe some of the more qualitative aspects of the
software reliability process� Quantitative pro�les will then follow in subsequent Sections�

��� The Nature of the Process

Quantities of interest in a project reliability pro�le include artifacts� errors� inspections� defects� corrections�
faults� tests� failures� outages� repairs� validations� retests� and expenditures of resources� such as CPU time�
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sta� e�ort� and schedule time�
A number of factors hold varying degrees of in�uence over these interrelated elements� In�uences include

relatively static entities� such as product requirements� as well as other� more dynamic factors� such as the
order and concurrency among activities in the process� One would hope to quantify trends� correlations� and
perhaps causal factors from data gathered from previous similar projects that would be of current use� Even
when formal data are not available� project personnel may often be able to apply their experiences to estimate
many of the parameters of the reliability pro�le needed for modeling�
We will aggregate activities relating to reliability into typical classes of work� such as

�� CONSTRUCTION generates new documentation and code artifacts� while humanmistakes inject defects
into them� Activities divide into separate documentation and coding subphases� and perhaps further
divide into separate work packages for constructed components�


� INTEGRATION combines reusable documentation and code components with new documentation and
code components� while human mistakes may create further defects� Integration activities divide into
separate documentation and code integration subphases� and perhaps further divide into separate work
packages according to the build architecture�

�� INSPECTION detects defects through static analyses of software artifacts� Inspections also divide into
separate document and code subphases mirroring construction� Inspections may fail to recognize defects
when encountered�

�� CORRECTION analyzes and removes defects� again in document and code correction subphases� Cor�
rections may be ine�ective� and may inject new defects�

�� PREPARATION generates test plans and test cases� and readies them for execution�

�� TESTING executes test cases� whereupon failures occur� Some failures may escape observation� while
others may initiate system outages� Failure criticality determinations are made�

�� IDENTIFICATION makes failure�to�fault correspondences and fault category assignments� Each fault
may be new or previously encountered� Identi�cation may erroneously identify the cause of a failure�

�� REPAIR removes faults �not necessarily perfectly� and possibly introduces new faults�

�� VALIDATION performs inspections and static checks to a�rm that repairs are e�ective� but may err
in doing so� it may also detect that certain repairs were ine�ective � i�e�� the corresponding faults were
not totally removed�� and may also detect other faults�

��� RETEST executes test cases to verify whether speci�ed repairs are complete� If not� the defective repair
is marked for re�repair� New test cases may be needed� Retests may err in qualifying a fault as repaired�

��� Structures and Flows

Work in a project generally �ows in the logical precedence of tasks listed above� But some activities may take
place concurrently and repeatedly� especially in rapid prototyping� concurrent engineering� and spiral models
of development� Models of behavior cannot ignore project paradigms� but must adapt to them�
Events occur and activities take place through the application of resources over intervals of time� No

progress in the life cycle results unless activities consume resources� As examples� a code component of ���
lines of code �LOC� may require an average of Wc work hours and Hc CPU hours per LOC to develop� to be
expended between the schedule times t� and t�� testing the component may require Wt work hours to generate
and apply test cases and Ht CPU hours per test case to execute� scheduled for the time interval between t�
and t�� and a repair activity may require Wr work hours and Hr CPU hours to complete� during the interval
between times t� and t��
The project resource schedule is essential for managing the reliability process� It de�nes the project

activities� products� �ow of work� and allocation of resources� It thus re�ects the planned development
methodology� management and engineering decisions� and environment constraints�
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Projects may� of course� measure failure pro�les and other reliability data without recording the schedule
and resource actual performance details� However� they will not be able to extract quantitative relationships
among reliability and management parameters without these details�
The data essential to a process schedule de�ne the resources and resource levels that are applied throughout

the project duration� Schedule items may� for example� appear as tuples� such as

�resource� event process� rate� units� tbegin� tend�

Together� the items relate the utilization of all resources at each instant of time throughout the process� The
tuple speci�es that the named event process activity uses the designated resource at the given application rate
during the designated time interval �tbegin� tend�� not to exceed the allocated units limit�
The rate de�nes the amount of resource consumed per dt of the event process� If dt is calendar time and

the resource is human e�ort� the rate is sta� level� if the resource is CPU and dt is in CPU hours� the rate is
CPU hours per calendar day� When an event process expends its allocated units� the e�ective rate becomes
zero�
Projects typically express schedule information in units of calendar time� If a project includes weekends�

holidays� and vacations� then the schedule must either exclude these as inactive periods or else provide
compensating rate factors between resource days and calendar time� For example� if a project is idle for two
weeks during the winter holiday season� the schedule should not allocate any resources during this time� If a
project works only � days a week� the resource utilization rate should allocate only ����ths of a workday per
calendar day� �However� if the project allocates time and resources in weeks� then � days is a normal work
week� and no rate adjustment is necessary in this case��

��� Interdependencies Among Elements

Causal relationships exist between a project�s input reliability drivers and its resulting reliability pro�le� in
that all development subprocesses consume resources and are driven� perhaps randomly� by other factors of
in�uence�
Quanti�cation of relationships is tantamount to modeling� and is required for simulation� As examples�

the degree to which code and documents are inspected correlates with the number and seriousness of faults
discovered in testing� the correctness of speci�cations relates to the correctness of ensuing code� and the
seriousness of failures in�uences when a project will schedule the causal faults for repair�
Some relationships may be generic� while others may be unique to a given project� Some interrelationships

may be subtle� while others may seem more axiomatic� Some of the typical axiomatic generic relationships
among reliability pro�le parameters are�

�� All activities �including outages� consume resources�


� Code written to missing� incorrect� or volatile speci�cations will be more faulty than code written to
correct� complete� and stable speci�cations�

�� Tests rely on the existence of test cases� Old test cases rarely expose new faults�

�� The number of faults removed will be less than the number attempted� The attempted removal activity
may also create new faults�

�� The number of validated fault removals will not exceed the number of attempts� Validation may erro�
neously report an fault removed�

�� Retesting usually encounters only failures due to bad �xes�

��� Software Environment Characteristics

Software in a test environment performs di�erently than it will in an operational environment� There are
many reasons� more adequately addressed in Chapter ��� why this is the case� Principal reasons among them�
however� are di�erences in con�guration� execution purpose� execution scenarios� attitudes toward failures�
and orientation of personnel� In brief� testing and operations are di�erent environmentally�
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Reliability pro�les during test and operations depend on the environments themselves� not just on the test
case execution scenarios and values of environment parameters� Although testing may attempt to emulate
real operations in certain particulars� we must recognize that the characters of testing and operations are apt
to di�er signi�cantly�
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Figure ����� Faults vs� execution time in test and operational facilities for a system of about ������� lines of
assembly�language code�

Figure �� illustrates the e�ects that environment can have on the test pro�le� It depicts best��t curves to
actual cumulative failure data taken over three portions of a test activity� The software under test was part
of the ground data system used in NASA�s deep�space missions�
The testing marked 	Preliminary
 was preparatory in nature� performed while the software was being

installed in a 	compatibility test area�
 or test facility con�gured to match identically the operational envi�
ronment to the extent economically feasible� The facility contained essentially everything electronic except
the large�aperture antennas� low�noise maser receiver ampli�ers� high�power transmitters� and spacecraft data
system� that the later operational environment would have� Interfaces with missing operational subsystems
were simulated�
Testing during the pre�transfer period proceeded until the failure rate leveled o� at about 
�� total faults

�a predicted �� faults remained�� Then� activity transferred to deep�space tracking stations using similar
scenarios� but in operational situations� Testing during this period found another �� faults �considerably
more than the �� predicted�� Despite the fact that the con�gurations and scenarios were essentially identical�
there were about ���� 
�� � �� faults that would never have been found had testing continued only in the
test facility�
Predicting failures in di�ering environments requires� at the least� adaptability of the reliability model to

�t con�guration� scenario� and previous failure data� Such adaptations must accommodate for di�erences in
hardware� test strategies� loading� database volume� and user training�

� ARTIFACT�BASED SIMULATION

Software developers have long questioned the nature of relationships between software failures and program
structure� programming error characteristics� and test strategies� Von Mayrhauser et al� ��� �� �� have
performed experiments to investigate such questions� arguing that the extent to which reliability depends
merely on these factors can be measured by generating random programs having the given characteristics�
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and then observing their failure statistics� It is not important� in this respect� that the programs actually
execute to perform useful functions� but merely that they possess the hypothesized properties that 	real

programs would have in a given environment�
If the hypothesis is true� then the e�ects of the various controlled elements under study would be readily

discovered� For example� by adjusting code structural characteristics �e�g�� size� ratio of branching decisions
to loop decisions� and fault distribution� in a controlled set of experiments� one may observe the contributory
e�ects to failure behavior� One may also learn something about the sensitivities of reliability models to their
founding assumptions� Such studies would lead practitioners to the best model�s� to use in given situations�
To explore the conjecture� they identi�ed program properties and test strategies to be investigated� Then

they performed experiments using automatically generated programs having the given properties� subjected
these to the selected test strategies� and measured the reliability results�
Their investigations proceeded using only single�module programs �i�e�� ones with no procedure calls��

assumed that faults are only of a single type and severity� distributed uniformly throughout the program� and
considered only a constant likelihood that a failure results when execution encounters a statement containing
a fault�
There is no fundamental limitation in the artifact simulation technique that excludes procedure calls�

multiple fault types� and time�dependent statistics� They were excluded in these early experiments to establish
basic relationships� Their architecture will support multiple subprograms� faults of various types� severities�
and distributions� and time�varying parameters at the later stages of experimentation�

��� Simulator Architecture

The reported simulation covers the coding� testing� and debugging portions of the software life cycle� The
simulator consists of the following components �see Figure ����
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Figure ���
� Artifact�based software process simulator program�

The Code Generator uses program design and�or code structural and error characteristics to produce
executable code with faults� Code generation is discussed more fully later �Section ������� The faults injected
into the program cause actual execution failures during testing to occur in such a manner as to be detected
by the Test Harness module� discussed below�
The Compiler is an ordinary compiler� the same as an actual project would use� The compiler generates

executable code from the generated code and from updates following each of the fault repairs�
The Test Data Generator uses the generated code� together with parameters that select testing strategy�

testing criteria� and phase �unit test� integration test� system test� etc�� to produce test input data and testing
procedure parameters�
The Test Harness module applies test data to the simulated system in accordance with the selected test

procedures� then detects each failure as it occurs� and categorizes it according to predetermined fault exposure
and severity criteria�
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The Debugger and Code Repair function of the simulation locates and repairs faults recognized by the test
harness� and then reschedules the program for compilation and retesting� The debugger may fail to locate
the fault and may either completely or incompletely remove the fault� when located� It may� at times� even
introduce new faults� The debugger parameters include inputs to control locatability� severity� completeness�
and fault detectability�
Reliability Analysis combines the failure data output by the test harness with the residual fault data from

the debugger �undetected errors and incorrect repairs� to assess the reliability of the simulated code� This
assessment compares failure results with the output of a conventional software reliability model�

����� Simulation Inputs

Artifact simulation experiments can vary many aspects of program construction and testing to investigate the
e�ect of static properties on dynamic behavior� Inputs may include those which characterize code structure�
coding errors� test input data� test conduct� failure characteristics debugging e�ectiveness� and computing
environment�
The investigated code structure parameters pertained to control �ow� data declaration� structural nesting�

and number and size of subprograms� Statement type frequencies represented the structural dependencies of
a program� The experiments assumed four types of program statements� assignments� looping statements�
if statements� and subprogram calls� Data structure declaration characteristics were not simulated because
faults in such structures tend to be caught by the compiler� and because the e�ects of faults in such statements
would be included among those of the four chosen types�
Type� distribution� density� and fault�to�failure relationship parameters in�uenced the insertion of coding

errors� The generator used type information to select the kinds of statements composing the program� Dis�
tribution information controlled where faults were located� either clustered in speci�ed functions or scattered
randomly throughout the program� Fault�to�failure relationships de�ned the frequency of failures when faults
are encountered at run time�
Test input data depend on the testing environment� operational scenario� testing strategies� test phase�

desired coverage� and resources available for testing� In the simulations reported� resource considerations were
not addressed� Provisions for test strategies included features for random� directed� functional� mutation�
sequencing� and feature testing� Test coverage selection included parameters designating node� branch� and
data �ow modes�
Projects classify failure attributes by type� severity� and detection status� Investigations so far have treated

only failures of a single type and severity�
Debugging e�ectiveness depended on parameters associated with fault detection� identi�cation� severity�

and repair� Each of these� except severity� has correctness and resource dimensions� For example� identi�cation
establishes a fault�to�failure correspondence and the time required to make that correspondence�
Computing environment parameters included all the data required to run the test harness and analyze the

failure data� The experiment environment data included machine� language� and workload parameters�

����� Simulated Code Generation

A code generator may produce simulated code using measured parameters of the actual project �trace�driven��
or from generic data taken from a wide variety of project histories �self�driven��
Figure �� illustrates a self�driven code generator architecture� The reported code simulator operates

approximately as follows� Given the number of modules and the set of module sizes� the generator creates
statements of the speci�ed types according to their given occurrence frequencies� sometimes followed by code
that represents a fault of the a speci�ed character�
The means for invoking multiple modules and for controlling the depth and length of nested structures

were not explicitly revealed in the source references� Readers wishing to duplicate the simulator for their own
experiments will have to decide upon appropriate models for these characteristics�
It is not necessarily assumed that real faults are uniformly distributed over the program� rather� the

program generator can seed faults either on a function�by�function basis or statement�by�statement� according
to a distribution by statement type and nesting level� Further� the fault exposure ratios of each fault need
not be the same�
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Figure ����� Self�driven artifact simulation of the coding phase�

The presence of a real fault in a normal program corresponds to an ersatz element within the simulated
program that can cause a failure contingent on a supposed failure characteristic� As the simulated program
executes� a statement containing a fault will� with a given probability �the fault exposure ratio�� cause a
failure�
But the ersatz failure� when it occurs� is is not meant to duplicate the appearance the real failure� only

its occurrence and location are of importance� The injected fault thus needs to raise an exception with
information that will identify where� when� and what type of failure has occurred� The reported simulator
used a divide�by�zero expression to trigger the fault� which was then trapped by the execution harness via the
signal capability of C�
An important step toward extending the utility of the simulation technique would be to make it trace�

driven� or adaptive to project measurements as they emerge dynamically� rather than using only the static
historic data of the self�driven simulation described above� Figure �� illustrates how trace data would replace
the random selection of statements during program execution�

����� The Execution Harness

The reported execution harness contains a test driver program that creates an interface between the generated
program and its test data� spawns a 	child
 process to execute the generated program� and collects execution�
time data on the child process separately from that of its ancillary functions� which may not have the same
structural characteristics� The returned value of the child process indicated whether the test resulted in
failure� or terminated naturally�
Simulated faults in the generated program could have been represented in any of a number of ways�

The reported experiments used arithmetic over�ow� Having detected the failure� the test harness enters the
returned information into the failure log for use in locating and removing the fault� The updated program
then recompiles and re�executes�

����� Reliability Assessment

The output log provides the execution time of each test run and indicates which runs experienced failures�
it also identi�es which fault caused the failure� Tools� such as those described in Appendix A� can use this
data to generate tabular and graphical analyses of the failures� Such analyses may include application of
any of a number of reliability growth models� maximum likelihood estimates and con�dence limits for model
parameters� and visual plots of important reliability attributes� such as cumulative failures or present failure
intensity versus time�
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Figure ����� Trace�driven artifact simulation of the coding phase�

The reliability assessment function also has available to it the output of the debugging function� which
tells which faults were correctly� incorrectly� or incompletely made� At any time� then� the status of remaining
faults in the generated program is visible�

��� Results

Reliability investigations using artifact simulation are currently in their formative stage� The fundamental�
�rst�order validations of the equivalence hypotheses are yet in progress� Consequently� the process of evolution
has imposed some limitations that will disappear� with time� The fundamental question has been� Do
simulated programs in simulated environments exhibit reliability pro�les representative of 	real
 programs in
	real
 environments that have the same parameters�
A software artifact simulation study� ���� compared �Figure ��� the results of testing a ���� line C program

with the predicted performance using the basic execution time model� These experiments demonstrated that
the order in which failures occurred among statements containing faults closely matched the execution counts
for those statements� and that the failure counts correlated with the types of program structures surrounding
the faults�
These and other early results tend to con�rm that static measures of program structure� error charac�

teristics� and test strategies in�uence the reliability pro�les of simulated and 	real
 programs in the same
ways�
�Mike� TBD The reviewer asked 	Can you relate this artifact�based simulation to work on FINE �at

Univ of Illinois�� or other such fault�injection methods and tools�
 Do you know of this work� and can you
supply the information asked for��
Artifact simulation studies of the future will continue to quantify the extent to which static parameters

relate to reliability dynamics� As the software simulation art evolves� the e�ects of size� multiple�procedure
program structures� multiple failure types� nonuniform fault distributions� and nonstationary parameters on
reliability will increasingly become known�
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Figure ����� Simulated code experimental cumulative failures �from �Mayr�����

� RATE�BASED SIMULATION

The fundamental basis of rate�controlled event process simulation is the representation of a stochastic phe�
nomenon of interest by a time series x�t� whose behavior depends only on a rate function� call it ��t�� where
��t� dt acts as the conditional probability that a speci�ed event occurs in the in�nitesimal interval �t� t� dt��
A number of the analytic reliability growth models discussed in Chapter � echo this assumption and further

assume that events in non�overlapping time intervals are independent� The processes modeled are thereby
Markov processes ���� or non�homogeneous Poisson processes �NHPP�� which are also Markov processes� These
include the models proposed by Jelinski and Moranda ������ Goel and Okumoto ������ Musa and Okumoto ������
Duane ������ Littlewood and Verrall ������ and Yamada ������ Rate functions for these appear in Section ������
The algorithms described here not only apply to simulatingMarkov processes� but are capable of simulating

processes having time�dependent event count dependencies and irregular rate functions� These algorithms can
simulate a much more general and realistic reliability process than has ever been hypothesized for any analytic
model�
The mathematics presented in this Section treat general statistical event processes and rate�driven event

processes� not merely those believed to describe software failures� As in the analytic models mentioned above�
it is only the form of the rate functions and interpretation of parameters that set these models apart as
pertaining to software� We begin this specialization formally in the next Section and continue it through
Section ������ First� however� we derive the forms of the simulation algorithms�

��� Event Process Statistics

If S� and S� denote the states of an event E� S� in e�ect before the event and S� after its occurrence� then
a particular member of the stochastic time series de�ned by f���t�� S�� S�g beginning at time t � � is a
sample function� or realization� of the general rate�based discrete�event stochastic process� The zero subscript
on ���t� signi�es the S�� or zero occurrences� starting state�
The statistical behavior of this process is well�known� The probability that event E will not have occurred

prior to a given time t is given by the expression

��



P��t� � e����t� �� ������

where

��t� t�� �

Z t

t�

���� � d� ����
�

The form of ���t� is unrestricted� but generally must satisfy

���t� � � and ����� �� �� ������

The �rst of these prevents the event from occurring at a negative rate� and the second stipulates that the
event must eventually occur� If the second condition is violated� there will be a �nite probability that the
event will never occur�
When the events of interest are failures� ���t� is often referred to as the process hazard function and

���t� �� is the total hazard� The probability distribution function and probability density for the time of an
occurrence are then

F��t� � �� P��t� ������

f��t� � ���t�e
����t� �� ������

The mean time of occurrence is

E�t� �

Z �

�

t ���t� e
����t� �� dt ������

If ���t� �� is known in closed form� we may sometimes be able to write down and analyze the event
probability and mean time of occurrence functions directly� In all but the simplest cases� however� we will
require the assistance of a computer� When we cannot express the integrals in closed form� we can still
evaluate them using straightforward numerical analysis�

��� Single�Event Process Simulation

It is rather easy and straightforward to simulate the rate�based single�discrete�event process� as illustrated in
the following computer algorithm �expressed in the C programming language� which returns the occurrence
time�

double single�event�double t� double dt� double ��beta��double��

�

int event � ��

while �event �� ��

� if �occurs�beta�t� � dt��

event		�

t 	� dt�




return t�




Above� the C language syntax de�nes a function named single event�� that will eventually return a
double�precision �oating�point value of the time of event occurrence� Starting at time t� and continuing as
long as the event value remains �� the function monitors the event status� at the occurrence� event increases
by �� as signi�ed by the �� operation� which stops the iteration� Time augments by dt units each iteration�
denoted by the 	��
 operation�
We have programmed the occurs�x� operation as a macro that compares a random�� value over ��� ��

with the formal parameter x� which must be less than unity� thus attaining the speci�ed conditional probability
function� �The extern double designation declares that random�� is in an external library that returns a
double precision �oating�point value�� The interested reader may wish to consult ��� for a discussion of
random number generation techniques�

�




extern double random�void��

�define occurs�x� �random�� � x�

The particular application determines the form of the user�supplied rate function beta�t�� Any required
initialization takes place in the main�� program prior to invocation of the single event�� function� Figure ��
depicts the basic data �ow of the overall program�

main��

initialize��

Simulation
Algorithm

single event��

Rate
Function
beta�t�

�
�

�
�

System
Parameters

t

�

�

�

�

�
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�

Figure ����� Simulation program structure for a single event occurrence�

We must choose the dt in simulations to satisfy the following conditions�

�� dt is smaller than the desired time�granularity of the reliability pro�le�


� variation in ��t� over the incremental time intervals �t� t� dt� is negligible�

�� the chance of multiple event occurrences within a dt interval is negligible� and

�� the magnitude of ��t� dt is less than unity at each t in the interval of interest�

The time�complexity of the algorithm is O��t�dt�� where the � component represents the maximum
complexity of computing ��t��
We may also simulate the behavior of a non�stochastic� rate�based single�event process merely by altering

the algorithm for occurs��� If ��t� represents the occurrence rate� then the event occurs when its integral
reaches unity�

double accumulated�rate�

�define occurs�x� �if ��accumulated�rate 	� x� � 
�� �

then FALSE else TRUE�

The construction above increments accumulated rate by x prior to checking its value� the expression then
switches from a false to a true state when the value reaches unity� �The 	�
 at the end of the line signi�es
continuation on the next line of the macro��

��� Recurrent Event Statistics

If we permitted the iteration in the previous algorithm to continue throughout a given time interval ��� t��
then the simulated event could occur a random number of times� which could be counted� We may compute
the probability distribution function Fn�t� that the n occurrence lies in the interval ��� t� as follows� If tn��
has just been observed as the �n � ��st event occurrence� then we may treat the interval immediately after
tn�� as a new experiment� Translating Eq� ���� to the nth occurrence interval produces the occurrence
distribution function conditioned on tn���

�This technique also approximates the calculation of the mean occurrence behavior of a stochastic process� however� the
method is exact only for the constant hazard case�

��



Pn���t j tn��� � e��n���t� tn��� ������

Fn�t j tn��� � �� Pn���t j tn��� ������

�k�t� tk� �

Z t

tk

�k�� � d� ������

The time dependency retained in Eq� ���� re�ects the possible nonstationary nature of the event process�
Each of the �k�t� functions is subject to the restrictions given in condition ����� otherwise Fn�t j tn��� above
must be divided by � � Pn���� j tn��� � � � e����� tn���� We shall assume these requirements in the
remainder of this Chapter�
The nth occurrence probability densities then follow from di�erentiation of Eq� �����

fn�t j tn��� � �n���t� e
��n���t� tn��� �������

fn�t� � �n���t�

Z t

�

e��n���t� �� fn���� � d� �������

the latter being recursively de�ned� with t� for the n � � case de�ned as �� The conditional probability
displays the same type of statistical behavior seen in Eq� ���� for the single occurrence case above� but
operates piecewise on successive intervals between occurrences�
Finally� Fn�t� follows by integration�

Fn�t� �

Z t

�

fn�� � d� �����
�

When events are modeled as Markov occurrences� the probability Pn�t� that exactly n occurrences appear
in the interval ��� t� is known ��� to be of the form

P��t� � e����t� �� �������

Pn�t� �

Z t

�

�n�� Pn�� e
��n�t� �� d� �������

Mathematically closed�form solutions for these probability functions are rarely� known� General solutions thus
require simple� but perhaps time consuming� recursive numerical methods� The time�complexity of fn�t j tn���
is of order O���t � tn����dt�� fn�t� and Pn�t� are of order O��nt�dt�� and Fn�t� is also of order O��nt�dt��
The space complexities of these measures are� respectively� O���� O�t�dt�� and O�t�dt��
The expected time of the nth occurrence follows directly from Eq� ���� as a recursive expression�

tn �

Z �

�

t�n���t�

Z t

�

e��n���t� �� fn���� � d� �������

with time�complexity O��nt��dt� and space complexity O�t��dt��

��� Recurrent Event Simulation

Simulation o�ers a relatively economical alternative in the evaluation of rate�based performance over the
more complex numeric integrations of the previous Section� The recurrent events algorithm below is a simple
extension of the single�occurrence event code that returns the number of occurrences over the time interval
�ta� t�� Its computational complexity to the nth occurrence is only O��tn�dt�� in constant space�

�Closed�form solutions for Pn�t� and fn�t� are known to exist when the process is of the non�homogeneous Poisson variety�
namely Pn�t� � �n�t� 	� exp
���t� 	���n� and fn�t� � ��t��n���t� 	� exp
���t� 	����n� 
���

��



void recurrent�event�double ta� double t� double dt�

double ��beta��int� double�� int �events�

�

while �ta � t�

� if �occurs�beta�events� ta� � dt��

		�events�

ta 	� dt�







The calling program must initialize the events parameter to the actual number of occurrences prior to time
ta� events will contain the new count after the function returns� �Note that we renamed events in the
plural to acknowledge that multiple occurrences are being counted�� Figure �� depicts the program data �ow
structure�
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Figure ����� Simulation program for recurrent events�

Mathematically� �n�t� is valid only in the interval tn � t � tn	� and signi�es that n occurrences of the
event have occurred prior to t� The use of beta�events� t� in the algorithm acknowledges that the event may
recur from time to time and that the occurrence rate function may not only change over time� but also may be
sensitive to the number of event occurrences �as well as possibly other in�uences�� The simulation algorithm
observes the event occurrence times and may change the beta�� function as required by the application�
We may also simulate non�stochastic rate�based recurrent�event processes� by making the single�occurrence

occurs�� function recognize unit crossings of the rate accumulator� as follows�

�define occurs�x� �if ��accumulated�rate 	� x� � 
�� �

then FALSE else �accumulated�rate �� 
�� TRUE��

Note that accumulated rate decrements by unity at each occurrence� signi�ed by the 	��
 operation�

��� Secondary Event Simulation

Another type of event process of interest is when a primary event triggers the occurrence of a secondary event
of a di�erent type� For example� producing a unit of code may create a fault in the code�
Notationally� if pi denotes the probability that the ith occurrence of the primary event causes the occurrence

of the secondary event� then we may express the probabilityP
���
m �t� thatm such secondary events have occurred

in the interval ��� t� as

P ���
m �t� �

�X
n
m

pmjn�t�Pn�t� �������

�This technique� as before� approximates the average occurrence behavior of stochastic recurrent�event processes�

��



with

pmjn � Probfm secondary eventsjn primary events in ��� t�g �������

�
X
i�I

pi� � � � pim��� pim��� � � � ��� pin� �������

where the index vector i � �i�� i�� � � � � in� is a permutation of ��� 
� � � � � n� such that �i�� � � � � im� extends over

all combinations of m out of n primary events� a set I of size �nm�� The computational complexity of P ���
m �t� is

thus of combinatorial order� and not practical to evaluate in general cases of practical interest� In the special
case that pi � p is constant� pmjn reduces to the binomial function�

pmjn �

�
n

m

�
pm��� p�n�m �������

The simulation algorithm for a dependent secondary event process� however� can remain quite general� one
merely adds a mapping array secondary event that relates the primary event to its secondary event and a
function p�i� events� t� that returns the probability that the primary event triggers the secondary event�

if �occurs�beta�i� events� ta� � dt��

� 		events�i��

if ��j � secondary�event�i�� �� occurs�p�j� events� t���

� 		events�j��







We may similarly treat multiple secondary events emanating from a single primary event� at only a moderate
increase in algorithm complexity�

��� Limited Growth Simulation

When the �nal number N of occurrences that an event process may reach is prespeci�ed� the normal growth
of the event count over time must stop after the N th occurrence� For example� if there are N faults to repair
and repairs proceed reasonably� then e�ort ceases after the last one is �xed�
Simulating this behavior is simple� but must include steps to prevent the event count from overshooting

N when multiple occurrences occasionally take place within a dt interval� This may be done by altering the
event counting functions not to exceed prespeci�ed maxima max events as follows�

if �events�i� � max�events�i��

		events�i��

��� The General Simulation Algorithm

You may have already guessed the form of a general rate�based discrete�event process simulator� It is merely
the recurrent�event algorithm augmented to accommodate multiple simultaneous events� multiple event cat�
egories� secondary events� and growth limits�
The general algorithm below incorporates all of these features� It simulates f event processes over a time

interval ta to t using time slices of duration dt� an initialized input array events counts the occurrences�
which may not exceed corresponding values in the max events array� an array event categories contains
the mapping of event occurrences into categories� which counts occurrences up to the maxima speci�ed in
the max categories array� and a secondary event array and p�� function control secondary occurrences� as
described in Section ������ For readability� the control function name beta�� becomes rate��� We also add
action�� and display�� functions� described below�

void simulate�int f� double ta� double t� double dt�

double ��rate��int� int �� double��

int events� �� int max�events� ��

int categories� �� int max�categories� ��

int event�category� ��

int secondary�event� �� double ��p��int� int �� double��

��



void ��action��int �� double��

void ��display��int �� double��

�

int i� j� k�

while �ta � t�

� for �i � �� i � f� i		�

� if �occurs�rate�i� events� ta� � dt��

� if �events�i� � max�events�i��

� 		events�i��

k � event�category�i��

if �categories�k� � max�categories�k��

		categories�k��




if ��j � secondary�event�i�� �� occurs�p�j� events� ta��

� if �events�j� � max�events�j��

� 		events�j��

k � event�category�j��

if �categories�k� � max�categories�k��

		categories�k��







action�events� ta��







ta 	� dt�

display�events� ta��







The action�� function speci�es what takes place when an event occurs� For example� if one category of
events represents identi�ed faults and another represents repairs� then action�� may compute an unrepaired
fault parameter for display��� or it may recompute appropriate max events or max categories bounds�
The action�� functions may well also pass additional parameters� such as i� j� k� and m� should these local
values be needed to e�ect the proper change in state�
The display�� function outputs the simulation status monitors as a pro�le in time� It may publish only

certain parameters of interest� or it may detail the entire reliability state at each dt� depending on the time�line
information desired by the user�
Figure �� shows the overall simulation program data �ow�
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Figure ����� General rate�controlled process simulator program�

We must choose the dt for the simulation experiments simultaneously to satisfy earlier�stated constraints
imposed by each of the event rates� As a consequence� execution may be very slow� Alternatively� we could
speed up the algorithm by choosing larger values of dt and computing the numbers of multiple events that
may occur during each of the larger intervals� as determined by the probability functions of primary and

��



secondary events� It is known� when event occurrences in non�overlapping intervals are independent �see� e�g��
����� that primary events are Poisson distributed and secondary events are binomially distributed� Generally�
however� the probability functions are unknown� even when the rate functions are fairly simple�
But if these probability functions were known� there would only be slight changes required in the algorithm

above� occurs�rate�� � dt� would be replaced by a primary�rate�� � dt� function that counts the ran�
dom number n of primary event occurrences in the dt interval� occurs�p��� gets replaced by secondary�n�
p���� which counts the number m of occurrences of secondary events� and events�	 augments by n and m�
rather than unity� respectivly�
If we desire� for execution�time reasons� a value of dt that is too large for use in the general algorithm

above� but is yet small enough that primary and secondary event statistics over dt intervals are approximately
Poisson and binomially distributed� respectively� then the modi�ed algorithm can be applied� We refer to this
con�guration as the 	piecewise�Poisson
 approximate simulation� Piecewise�Poisson simulations� of course�
are valid for the all the usual NHPP models� because no approximations are actually made� We have not yet
studied the validity of the approximation applied to other processes�

� RATE�BASED RELIABILITY

Rate�based reliability simulation is a natural extension of techniques for analyzing conventional models� be�
cause many of these are also are rate �or hazard� based� The underlying processes assumed by these models
are thus the same�
Because of algorithmic simplicity� simulation serves as a powerful tool not only for analyzing the behaviors

of processes assumed to have complex rate functions� but also for investigating whether the stochastic nature
of a project�s measured failure data is typical of that obtained by simulation� One may vary the modeling
assumptions until pro�les reach a satisfactory alignment�
The challenge in life cycle simulation is �nding rate functions that satisfactorily describe all of the activities�

not just testing� Such a model enables optimum planning through trade�o�s among allocated resources� test
strategies� etc�

��� Rate Functions of Conventional Models

Several published analytic models treat �or approximate� the overall growth in reliability during the test and
fault removal phases as non�homogeneous Poisson processes in execution time� while others focus on Markov
execution�time interval statistics� While these may di�er signi�cantly in their assumptions about underlying
failure mechanisms� they di�er mathematically only in the forms of their rate functions� Some examples are
the following�

�� The Jelinski�Moranda model ��� describes statistics of failure time intervals under the presumption
that �n�t� � ���� � n�n��� where n� is the estimated �unknown� number of initial software faults and
�� is initial failure rate�


� The Goel�Okumoto model ��� treats an overall reliability growth process with ��t� � n��e
��t� where

n� and � are input parameters� n�� being the initial failure rate� and � the rate decay factor� Strictly
speaking� this rate function violates the conditions on ��t� �� imposed in ����� because ����� �� � n�
and P���� � e�n� � In practicality� n� is usually fairly large� so the consequences may be negligible�

�� TheMusa�Okumotomodel ��� posits an overall reliability growth process in which ��t� � �������t��
where �� is the initial failure rate and � is a rate decay factor� Both �� and � are input parameters�

�� The Duane model ��� deals with another overall reliability growth model� with ��t� � kbtb��� where k
and b are input parameters� Condition ���� requires that � � � � ��

�� The Littlewood�Verrall inverse linear model ��� is an overall reliability growth model with ��t� �
���

p
� � �t where �� is the initial failure rate and � is a rate decay factor�

�� The Yamada delayed S�shapemodel ��� represents still another overall reliability growth model� with
��t� � �	te���t� where � �the maximum failure rate� and 	 are input parameters� This rate function�

��



too� violates condition ����� as ����� �� � e��	 and P���� � e�e��� � again� when the large number
of faults is large� the e�ect is negligible�

You may �nd discussions of these models elsewhere in Chapter ��

��� Simulator Architecture

We have already discussed the algorithm for rate�based simulation� The remaining architectural considerations
are characterized by input parameters� event rate functions� event�response actions� and output displays� The
scope of user requirements should set the level of detail being simulated�
A reliability process simulator should be able to respond to schedules and work plans and to report the

performance of subprocesses under the plan� By viewing simulated results� users may then replan as necessary�
The simulator described here therefore does not assume speci�c relationships involving sta�� resource� or
schedules� but expects these as inputs� in the form described in Section ������
Simulations should also embody interrelationships among project elements� For example� defective spec�

i�cations should lead to faults in the code unless defects are corrected before coding takes place� missing
speci�cations should introduce even more coding errors� testing should not take place without test cases to
consume� repair activity should follow fault identi�cation and isolation� and so on�
A more comprehensive simulation model ����� of the reliability process uses about �� input parameters

describing the software project and development environment� together with a project plan of arbitrary length
containing activities� resources allocated� and application schedules� This simulator displays time�line pro�les
of almost �� measures of project reliability status and the resources consumed� by activity� Its experimental
use is described later in Section ������
We shall illustrate the principles of reliability process simulation in a somewhat more simpli�ed example�

only 
� input parameters and a project resource schedule are required� You should not regard this example
necessarily as a tool ready for industrial use� but as a framework and means for experimentation� learning�
and extension�
In the example� we simulate only a single category of events for each reliability subprocess� Further�

simulations produce only two types of failure events� namely� defects in speci�cation documents and faults in
code� all considered to be in the same severity category�
We also simplify the example reliability process not to include document and code reuse and integration�

test preparations and the dependencies between testing and test�case availability� outages due to test failures�
repair validation� and retesting�
Other� more detailed� simpli�cations appear in the discussions below�

����� Environment Considerations

We know that characteristics of the programming� inspection� test� and operational environments can in�uence
the rates at which activities take place� For simplicity� however� we have eliminated as many of these from the
example simulator as seemed reasonable to our goals here� A more re�ned tool for general�purpose industrial
use would� of course� probably include more de�nitive environmental inputs�
Events� of themselves� carry no intrinsic hazard values� The rates at which events occur depend on a

number of environmental and other factors� including the nature of the events themselves� The model must
treat event hazards di�erently in di�erent situations�
Some faults may be easier to discover by inspection than by testing� while for others� the opposite may

be true� The fault discovery rate in testing normally depends on such parameters as the CPU instruction
execution rate� the language expansion factor� the failure�to�fault relationship� and the scheduled CPU hours
per calendar day that are applied� During inspections� on the other hand� fault discovery depends on the
discovery�to�fault relationship� the fault density� the inspection rate� and applied e�ort�
A fault is independent of its means of discovery� The model must therefore realize di�erent hazard�per�

fault rates in di�ering discovery environments� rather than merely assign a speci�c hazard rate to the fault
itself�

��



����� Subprocess Representation

In the example simulator� each activity produces occurrences of one or more uncategorized event types�
either primary or secondary� Table �� lists the simulated primary events� Except for test failures� all are
goal�oriented processes with limiting values� as shown� Test failures are limited by the current fault hazard
function�

Table ����� Reliability process primary events and limits�

Primary Event Rate Control Limit
doc unit created build workforce doc size
doc unit inspected document insp workforce doc insp goal
doc defect treated document corr workforce defects recognized
code unit created coding workforce code size
code unit inspected code insp workforce code insp goal
code fault treated code corr workforce faults created
test failure size� faults� cpu� exposure �
failure analyzed analysis workforce test failures
fault repair attempt repair workforce faults found

Table �� de�nes the secondary events that occur with a primary event� controlled by an occurrence
probability that may depend on a number of combined factors� For example� the number of defects or
faults recognized during inspections will not only depend on the inspection e�ciency �the fraction of defects
recognized when inspected�� but also on the density of defects in the material being inspected� All secondary
event occurrences are naturally limited in number to the occurrences of their primary events� no other limits
are imposed�

Table ���
� Reliability process secondary events� correspondences� and controls�

Secondary Event Primary Event Rate Control
defect created doc unit created defect density
defect recognized doc unit inspected latent defects� e�ciency
defect corrected defect treated correction e�ciency
fault created code unit created fault density� missing�faulty doc
fault recognized code unit inspected latent fault density� e�ciency
fault corrected fault treated fault correction e�ciency

test failure
fault identi�ed failure analyzed id e�ciency� fault density
fault repaired repair attempt repair e�ciency

����� Document Construction

Document generation occurs presumably at a constant mean number of units per workday� not to exceed the
document size goal� modeled as a Poisson random value whose mean is the given size� Defects occur at a
constantaverage rate per produced unit�
The general simulation algorithm requires that the average number of defects committed per dt interval

be made less than unity by choice of dt� For example� if one chooses the documentation unit as the page�
then there should be fewer than one defect in the number of pages produced in the time dt� on average� If one
expects a greater defect rate� then a smaller dt must be chosen� �Use of the piecewise�Poisson approximation
model would relax this restriction to the dt over which the approximation is valid��
Input parameters are


�



doc
size

doc
per
workday

defects
per
unit

����� Document Inspection

Document inspection is a goal�limited process similar to document construction� Inspections take place at
constant average rates per workday� encountering defects in proportion to the defect density and applied
inspection e�ort� but recognizing only a fraction of those defects encountered�
The number of inspected units at any time may not exceed the number of units so far created� nor the

document inspection goal� a binomially distributed value determined from the document size goal and the
input inspection fraction� The number of defects recognized cannot� of course� exceed the number created�
Because known defects may not yet have been removed at the time of an inspection discovery� we count

the event as a new defect in proportion to the fraction of as�yet undiscovered defects�
The salient input parameters are

doc
inspection
fraction

doc
inspected
per
workday

fraction
defects
recognized

����	 Document Correction

Sta� resources� correction resource requirements per defect� and defect correction e�ciency determine the
rate at which defects get treated and thereby corrected� Attempted corrections may also inject new defects�
Corrections decrease the defect count� while new defects increase it�
The number of defects treated at any time is less than the number so far recognized� plus the number of

bad corrections �i�e�� defects treated but not corrected�� The number of corrections cannot exceed either the
number of defects recognized or treated�
Generally� defect corrections could change the overall amount of required documentation� however� we

have not modeled this e�ect here�
The input values needed are

defects
treated
per
workday

fraction
defects
fixed

����� Code Construction

Code production follows the same general routine as document construction� However� the faults injected
depend not only on normal human fallibility� but also on the amount of defective and missing speci�cations�
all three of which could cause faults of di�erent classi�cations� We assign each injected fault in the example
simulator to the same category� however�
As with documentation� we must assure that the number of faults per dt interval not exceed unity over

the duration of interest� For example� if one chooses the code unit as a line of code� then there should not be
more than one fault injected into the number of lines of code produced in dt time units� on average�
The number of units created is limited by the code size goal� a Poisson�distributed value whose mean is

the input size�
External inputs required are

code
size

code
per
workday

faults
per
unit

faults
per
defect

faults
per
missing
doc
unit

Fault injection is a secondary event to code unit construction� the number of faults per code unit has
three sources� the faults per code unit produced from perfect speci�cations� faults per document defect times
the average number of defects per unit code� and the faults per missing document unit times the number of
missing documentation units per code unit�
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����
 Code Inspection

Code inspection mirrors the document inspection process� Inspections take place at constant average rates
per workday� encountering faults in proportion to fault density and applied inspection e�ort� but recognizing
only a fraction of those encountered�
The number of units inspected cannot exceed the number of code units created so far� nor the code

inspection goal� a binomially distributed value determined from the code size goal and the input inspection
fraction� The number of faults recognized� of course� cannot exceed the number injected�
External input values are

code
inspection
fraction

code
inspected
per
workday

fraction
faults
recognized

Since previously found faults may not yet have been removed at the time of an inspection discovery� we
count a fault discovery as a new fault in proportion to the fraction of as�yet undiscovered faults�

����� Code Correction

Code correction simulation follows the document correction pattern� translated to code units� Fault correction
attempts reduce the open fault count when successful and may increase it if unsuccessful�
The number of faults treated cannot exceed the number recognized� plus the number treated but not �xed�

The number of faults corrected is limited to the number found by inspection and the number treated so far�
In general� code corrections may require document changes� The simulator consumes resources for such

changes� but does not alter the documentation size and defect status�
The input parameters that apply to code correction are

faults
treated
per
workday

fraction
faults
fixed

����� Testing

In simulated test activities� failures occur in proportion to the test hazard per fault� the current fault density�
and applied CPU resources� The resource schedule speci�es the rates of CPU consumption� so the only
additional input parameters needed is

test
hazard
per
fault

The test hazard per fault parameter depends on the CPU execution rate� the compiler code expansion
factor� and the fault exposure ratio�
The number of test failures is unlimited� as long as there are faults� failures will occur at the hazard rate�

�����
 Fault Identi�cation

The simulator presumes that projects analyze failures at constant average rates per workday� not to exceed
the number of failures observed� The number of faults identi�ed must remain less than the number created�
but unrecognized by inspection� The fraction of undiscovered faults and the probability of correct isolation
regulate the fault identi�cation process�
Pertinent inputs are

failures
analyzed
per
workday

fraction
failures
isolated







������ Fault Repair

Attempts to remove faults consume constant average resources per fault� Only a fraction of attempted repairs
are actually successful� the rest will mistakenly be reported as repaired�
The number of attempted repairs cannot exceed the number of faults so�far found �in inspections� as well

as in testing�� plus the number bad repair attempts �those that did not result in fault removal�� The number
of faults removed in this process must not exceed the number found� less those that were corrected after
inspections� and also may not exceed the number of repair attempts�
Resources consumed by attempted code repairs include resources for changes in code and documents� The

amounts and makeup of code and documentation do not change� however�
Input parameters are

code
repairs
per
workday

fraction
faults
repaired

��� Display of Results

Internally� a process simulator carries very detailed� �ne�grained information on the activities and events
under study� of types that are both visible and latent in real projects� In the spirit of simulation� the pro�les
viewed by humans should appear as if taken from reality�
However� a simulation user may well desire visibility into latent values� such as the numbers of unfound

defects and faults� in order to make decisions on subsequent actions� When real project pro�les match their
corresponding simulation pro�les� then the user probably expects that the latent behaviors will also agree�
But one must not expect latent� model�internal behaviors to be accurate� because they can never be matched
with reality�
To some extent� real pro�les depend on how projects instrument and organize themselves for reliability

measurement� They may record the status of documents and development code only at certain milestones�
Other parameters� such as failures� may be logged automatically by the operating system� if detected� or by
humans on a daily or weekly basis�
Visible project parameters include ��� the input facts �or assumptions� that de�ne the environment and �
�

the measured pro�les� such as pages of documentation� lines of code� defects and faults found by inspections�
failures� test faults identi�ed� repairs� resources expended� and schedule time�

� APPLICATIONS

��� Example �	 The Galileo Project

This Section describes simulating a real�world project� based on data and parameters taken from a subsystem
of the Galileo project at the Jet Propulsion Laboratory ������
Galileo is an outer planet spacecraft project that began at the start of �scal year ����� a mission that

was originally entitled 	Jupiter Orbiter and Probe�
 or JOP� Unlike previous outer solar system missions� the
Galileo orbiter was intended to remain in Jovian orbit for an extended interval of time� This would allow
observations of variations in planetary and satellite features over time to augment the information obtained
by single�observation opportunities a�orded by previous �y�by missions� Galileo was launched in October of
����� to reach the Jovian system in �����
There are two major on�board �ight computers in the Galileo spacecraft� The Attitude and Articulation

Control Subsystem �AACS�� and the Command and Data System �CDS�� A signi�cant portion of each of
these systems is embodied in software� This case study focuses on the CDS software reliability pro�le�
The CDS performs such critical functions as command and control of the spacecraft and the acquisition

and transmission of �ight data� CDS software selects among the many available telemetry rates and modes�
and commands and controls all on�board experiments involving instruments�
The CDS �ight software is characterized as a real�time embedded subsystem having high reliability re�

quirements in a project where the mission design was redone� several times� The software consists of about
������ lines of assembly language code� with about ���� pages of documentation� produced over a period of

�Redesigns were necessitated by launch delays due to congressional actions and the Challenger disaster�


�



approximately ��� calendar weeks� The project spent �
�� days �in ��day workweeks� in pre�test activities
and �
� days �in ��day workweeks� in test preparation� tests� and rework� for a total of ��
� total days� The
actual test period lasted only 
�� of the �
� days� the project recorded the failure pro�le only during this

���day subsystem software testing period�

Legend�

DU Documentation Units
DI Document Units Inspected

Figure ����� Simulated Galileo CDS documentation status pro�le�

Some of the CDS project parameters needed for simulation were calculated from project records� other
values were estimated by project personnel� we chose the remaining values as probably typical of this project�
but for which we had no immediately available data� We assigned believed�typical values� for example� to
parameters relating to the injection and removal of defects and faults� Thus� even though only a few veri�able
parameters were available outside the software testing phase� we nevertheless formed an entire plausible
hypothetical model in order to illustrate an end�to�end reliability process�
For lack of better development life cycle information� we presumed that all CDS events occurred at uniform

rates per event� that all activities took place without resource and schedule variations� and that testing required
applied CPU resources according to the basic execution time model�
Observing experiments using the simulator described in ��� led to regressive adjustments of the estimated

project rate input parameters� Each experiment pro�led the status of documents� code� defects� and faults as
random streams� the �nal parameter values resulted in event pro�les typi�ed by those shown in the Figures
that follow� The Figures depict the results of a single experiment in simulating documentation� code� defect�
and fault pro�les of the CDS software� sampled at 
 week intervals�
Note in particular the pro�les of documentation� code� injected defects� and injected faults �precisely those

activities where no real project data was available to aid in regressive adjustments�� The smoothness that
appears in the rise of these curves is due to the regularity of the schedule� not randomness in performance�
Performance deviations seem invisible not because they are small� but because they are relatively small� as a
result of the law of large numbers��

Although we have no CDS data to refute this behavior� we doubt that the assumed constant resource levels
re�ect reality� A more realistic extension to the case study would have been to introduce irregular schedules�
since we know that people rarely dedicate their time exclusively to one single activity at a time� If actual
CDS schedule information had been available� we could have input this data into the simulation� whereupon
the process statistics would probably have appeared more irregular�

�The law of large numbers governs the rate at which the sample mean of an experiment converges to the distribution mean�
For many processes� this is of order O�
�

p
n��
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Legend�

CU Code Units
CI Code Units Inspected

Figure ������ Simulated Galileo CDS code status pro�le�

Figure �� shows that the simulated documentation units �DU� goal �dotted line� was actually a little less
������ than the ���� pages predicted �in this particular experiment�� and shows that the project did reach
this goal� We set a �� documentation inspection goal� which was reached �DI�� There was an rms deviation
of about �� pages measured across many experiments�
Figure �� shows that the experimental code units �CU� goal was actually �dotted line� slightly more �������

than the ����� LOC predicted �in this simulation�� Again� the amount of code inspected �CI� attained the
�� inspection goal we had set� Experimental rms deviation was about ��� LOC�
Figure �� displays the experimental defect behavior� injected document errors �E�� detected defects �D��

remaining defects �E�d�� and remaining detected defects D�d� These pro�les appear a little more irregular
than do those of documentation and code production� but not much� The documentation appears to contain
a sizable number of latent defects� even many of the detected defects appear to have been left uncorrected�
Experimental rms deviation in the �nal defect counts were about 
��
Figure �� shows the experimental fault activity� These pro�les exhibit visible randomness� only partially

masked by the law of large numbers� The rise in total faults �F� during the code construction activity appears
almost linear� again a consequence of a constant e�ort schedule� We chose project parameters that prevented
the creation of faults by imperfect corrections and repairs�
Correction of faults found in inspections began in week ��� and continued until week 
��� removing ��


of them� The plateau in total repaired faults �R� and in total remaining faults �F�R� between weeks 
�� and

�� occurred due to sta� preparations for testing� At week 
��� the test phase began� and failures �f� rose to
��� by week ���� Of these� 
�� were repaired �r��
By the end of the ��� week simulated project� almost �� faults per kiloline of code had been found in

inspections and corrected� and another 
� faults per kiloline of code had been uncovered by testing and
removed� The latent fault density was about 
 faults per kiloline of code�
Standard deviations computed after conducting many such experiments were about 

 in fault count �F��

�� in faults remaining �F�R�� �
 in discovered faults �f�� and 
� in remaining discovered faults �f�r��
If the simulation parameters were typical of the CDS project� and had the real CDS project been conducted

a number of times� these same ranges of variations in the �nal status of the CDS artifacts would have been
observed� The simulation did not replicate the CDS project behavior� but mirrored the behavior of a CDS�type
of project�
Although the �nal fault discovery count seems typical of a CDS�type project� the time pro�le of the

simulation results shown in Figure �� does not quite seem to match the character of the actual project data�
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Legend�

E Injected Defects
D Detected Defects
E�d Remaining Defects
D�d Remaining Detected Defects

Figure ������ Simulated Galileo CDS defects status pro�le�

The failure rate seems too high during early tests and too low during the later tests� The actual test resource
schedule was certainly not as simple as that used in the simulation�
On the basis of these experiments� it appears that realistic simulation of the general reliability process will

require that detailed resource and schedule information will have to be provided to the model� It is important
to remember that an actual project will probably not proceed as smoothly as its simulation� Consequently�
projects will have to plan and measure their achievements as carefully for simulation as they will for the actual
production�


���� Comparisons with Other Software Reliability Models

Figure �� compares the actual CDS subsystem failure data with that obtained from a constant�test�
hazard�per�fault simulation� We detailed the testing phase into �ve subactivities with constant sta�ng� but
having irregular CPU and schedule allocations� as shown in Table ��� We obtained these schedule parameters
using 	eyeball regression
 of the simulator output against the project data� The �t appears adequate to
describe the underlying nature of the failure process �we did not expect an exact �t� since the failure process
is considered random��

Table ����� Simulator schedule for CDS testing phase�

activity accumulated begin end sta�ng CPU
failures week week rate

� functional test �� � � 
�� ���

 feature test ��� � �� 
�� ���
� operation test � ��� �� 
� 
�� ��

� operation test 
 �
� 
� �� 
�� ���
� operation test � ��� �� �� 
�� 
��

A comparison of failure pro�le simulation results with predictions of three other models� Jelinski�Moranda
�JM�� Musa�Okumoto �MO�� and Littlewood�Verrall �LV�� appears in Figure ��� For better ampli�cation
of model di�erences� the Figure displays failures per week� rather than cumulatively� The JM� MO� and LV
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Legend�

F Total Faults
R Repaired Faults
f Discovered Faults
F�R Remaining Faults
f�r Known Remaining

Figure ����
� Simulated Galileo CDS fault status pro�le�

statistics are 	one�week�ahead
 predictions� in which all failure data up to a given week are used to predict
the number of failures for the next week�
The Figure shows that the CDS simulation behavior is very similar to the noisy actual pro�le in variability

and trends� the simulation could have been used for assessing the CDS reliability status and trends during the
entire testing phase� The simulated pro�le could even have been calculated well prior to the start of testing
from schedule and resource plans� The other models above could not adequately predict even one week ahead�
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Figure ������ Simulated Galileo CDS testing fault density pro�le �newly discovered faults per 
�week interval��
constant CPU resource�

Mike� TBD� You need to label the

axes on this �gure�

Figure ������ Cumulative failure data for Galileo CDS�
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Figure ������ Comparison of actual� model�predicted� and simulated �variable CPU resource� Galileo CDS
test fault densities�
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� SUMMARY

In many ways� the methods for software reliability assessment reported in this Chapter are very satisfying� and
in other ways� most frustrating� The techniques provide quantitative measures of software quality that can
be used by management to guide progress of a project� The frustration is that progress unveils the depth of
our ignorance about system reliability and the dearth of experimental reliability data� We have not addressed
the means for obtaining the best simulation structures nor the number of past examples needed to validate
them� Nor have we addressed means for forecasting parameter values for a project from historical data� But
ignorance� frustration� and the challenge they inspire are potent motivations for research�
The modeling assumptions required by the two simulation approaches addressed in this Chapter are cer�

tainly less restrictive� but perhaps more demanding than those underlying analytic models� Simulation solves
software reliability prediction problems by producing programs and data conforming precisely to reliability
process assumptions� If simulation pro�les di�er from actual performance� then the user can adjust the sim�
ulation model until an 	acceptable
 match with reality obtains� Simulation thus enables investigations of
questions too di�cult to be answered analytically�
Tools and environments supporting simulations may o�er signi�cant assistance and insight to researchers

and practitioners in understanding the e�ects of various software reliability drivers� in evaluating sensitivities
of behavior to various modeling assumptions� and in forecasting software project status pro�les� such as
time�lines of work products and the progress of testing� fault isolation� repair� validation� and retest e�orts�
Attempts to reproduce reliability signatures of real�world projects using simulation have� so far� been

encouraging� The results tend to coincide intuitively with how 	real
 programs behave� and strengthen the
hope that such methods in the future will enable fuller investigations into the relationships between static
measures and dynamic performance� Such relationships foretell reliability pro�les of programs not yet written�
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PROBLEMS

�� Sketch a C program for the self�driven simulated code generator of Section ������ What method did
you use to represent the injected faults�


� Use Eq� ���� to derive a closed�form expression for the conditional mean occurrence times !tn when the
rate function is independent of time� but depends on the number n of events �i�e�� �n�t� � �n��

�� Write a program to calculate the mean by Eq� ���� and conditional mean occurrence pro�les for the
simple� rate�driven recurrent event process in Problem ��� above�

�� Develop a formula for calculating the variance 
�n � E��tn � tn�
�� of a rate�driven process� Extend the

program in Problem �� to compute the standard deviation� 
n�

�� Use the program of Problem �� to analyze the behavior of a Jelinski�Moranda rate function �n �
� � n�
�� Run the program and compare the conditional mean pro�le with the true mean occurrence
time� Is there a signi�cant di�erence� Plot the mean pro�les and ���
n event envelopes� Is the expected
deviation from the mean signi�cant�

�� Write a program to simulate the event process in Problem ��� Plot several simulated random event
pro�les� How signi�cant are the di�erences among the pro�les�

�� Rewrite the rate function of the program in Problem �� and Problem �� to analyze the performance
the Musa�Okumoto model� How signi�cant are the di�erences between the output pro�les� How do
these results compare with those of Problem �� and Problem ���

�� Gather environmental and project data �including the resource schedule� of a simple reliability process in
your organization �such as software failures� and simulate it� Compare simulated and measured results�
Was it possible to make the two appear as sample functions of the same random process� What changes
in the simulator inputs were required�

�� Based on comparisons of simulated and actual project pro�les� what conclusions can be made on the
accuracy of simulation experiments�

��� Write the C code for the rate�process� events� t� function of the example simulator from the
descriptions given in the discussions of reliability subprocess architectures� The formal parameters are
process� the integer index of the event� events� a pointer to the integer array of event counts� and
t� the time of the simulation� Indicate how the program consumes sta� and computer resources as
activities unfold�
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Answers to Selected Problems

��� We could structure the code simulation program as

struct program

�

int number�functions�

���


�

struct function

�

char �name�

int number�parameters�

int size�

int nesting�level�

double fault�density�

double fault�exposure�

double type�assign�

double type�loop�

double type�if�

double type�call�


�

void main�argc� argv�

char ��argv�

�

int i� j�

program p�

function f�MAX�FUNCTIONS��

char statement�MAX�STATEMENT�LENGTH��

double choice�

initialize�parameters�argv�
�� �p� f��

for �i � �� i � p�number�functions� i		�

� generate�function�header�statement� �f�i���

for �j � �� j � f�i��size� �

� choice � random���

if �choice � f�i��type�assign�

generate�assignment�statement� �f�i���

else if �choice � f�i��type�loop�

generate�loop��statement� �f�i���

else if �choice � f�i��type�if�

generate�if�statement� �f�i���

else �� choice � f�i��type�call ��

generate�function�statement� �f�i���

j		�




output�statement��







Each of the generate type�� functions would contain the logic to generate the proper type of statement�
followed by code that seeds faults of the proper character� as

if �random�� � f��fault�density�

inject�fault�statement� f��fault�exposure��

output�statement��

One way of injecting the fault would be to use code such as

if �random�� � fault�exposure�ratio�

raise�SIGFPE��

with an appropriate entry in the test harness to catch the failure event�

��



main�argc� argv�

�

���

signal�SIG�FPE� handler��

���




int handler�int sig�

�

���

signal�SIG�FPE� handler��

return ��




��� The sequence of conditional mean occurrence times is

!tn �
n��X
i
�

�

�i

��� If we set Qn�t� �
R t
� fn���� �e

��n���t� �� d� � then Eq� ���� leads to the recursive form

Qn�t� � e��n���t� t��t�Qn�t�#t� �
Z t

t��t

e��n���t� ��fn���� � d�

which can be easily be integrated numerically using the trapezoidal rule� from which fn�t� and tn follow� as
illustrated in the following code�

�define MAX�CELLS ���� �� Maximum number of dt intervals ��

�define TMAX ���� �� Maximum time value ��

�define DT �TMAX � �int� MAX�CELLS�

double pn����MAX�CELLS��

void main�int argc� char ��argv�

�

double b� e� et� Qn� t� t�bar�n� t�hat�n�

int i� n� n�� this� last�

n� � initialize�argc� argv��

et � 
���

t�hat�n � ���

for �n � �� n � �int� n�� n		�

� b � beta�n��

e � exp��b � DT��

et � 
��

this � n � ��

last � �this�

t � t�bar�n � ���

for �i � �� i � MAX�CELLS� 		i� t 	� DT�

� if �n �� ��

� pn�this��i� � b � et�

et �� e�




else

� if �i �� ��

Qn � ���

else

Qn � e � Qn 	 ��� � DT �

�pn�last��i� 	 e � pn�last��i � 
���

pn�this��i� � b � Qn�




t�bar�n 	� t � pn�this��i��




t�bar�n �� DT�

��



t�hat�n 	� 
� � beta�n��

printf���d� ��
f� ��
f�n�� n 	 
� t�bar�n� t�hat�n�







��� The expression for the variance 
�n of the occurrence time is


�n �

Z �

�

t� �n���t�

Z t

�

e��n���t� ��fn���� � d� � t
�
n

Thus� one may calculate the variance by making the following alterations to the program in Problem ���

double b� e� et� Qn� q� sigma�n� t� t�bar�n� t�hat�n�

���

t � t�bar�n � sigma�n � ���

���

q � t � pn�this��i��

t�bar�n 	� q�

sigma�n 	� t � q�

���

sigma�n � sqrt�sigma�n � DT � t�bar�n � t�bar�n��

���

if ��e � t�bar�n � sigma�n� � ���

e � ���

printf���d� ��
f� ��
f� ��
f� ��
f� ��
f�n��

n 	 
� t�bar�n� t�hat�n� sigma�n� e� t�bar�n 	 sigma�n��

��� Computed values of tn and !tn are the same within computational precision� The standard deviation
of occurrence pro�les ranges from ��� of the mean value at n � �� down to 
� at n � 
�� and then up to
�
 at n � 
�� The signi�cance of this deviation is that one can never be very con�dent about the length of
time required to reach a given level of reliability� Results are shown in Figure ���

Figure ������ Comparison of mean and ���
 deviations in a Jelinski�Moranda process with ��n� � ��n�
��

��� The following program accepts command�line inputs of n� and ��� seeds the random number generator
by the system clock� and generates N � � sample processes over the ��� �
�� time interval� A change variable
indicates when an event occurs and signals printout of the status of events at that time� Figure �� plots
typical simulation results� Note the wide indigenous deviations in the occurrence times of events�

��



Figure ������ Comparison of sample functions of a Jelinski�Moranda process with ��n� � �� n�
��

�define N �

�define occurs�x� �random�� � x�

�define random�� ��double� rand�� � �double� RAND�MAX�

void main�int argc� char ��argv�

�

double dt � ��
� t � ����

int change� events�N�� i�

initialize�argc� argv��

for �i � �� i � N� i		�

events�i� � ��

while �t � 
����

� change � ��

for �i � �� i � N� i		�

if �occurs�beta�events�i�� � dt��

� 		events�i��

		change�




t 	� dt�

if �change�

� printf���g�� t��

for �i � �� i � N� i		�

printf��� �d�� events�i���

printf���n���










static double beta��� n���

void initialize�int argc� char�� argv�

�

time�t t�

if �argc � ��

� fprintf�stderr� �Usage� jm �n��� �beta����n���

exit�
��




��



n�� � atof�argv�
���

beta�� � atof�argv�����

time��t��

srand��unsigned int� t��




double beta�int n�

�

return �beta�� � �
� � �double� n � n�����




��� It is merely necessary to change initialization and �n�t� functions to the Musa�Okumoto form� Figure ��
and Figure �� below depict the mean and typical sample functions from the process with ��t� � ���������t��
Note that deviations from the mean are much wider than in the Jelinski�Moranda process above�

Figure ������ Comparison of mean and ���
 deviations in a Musa�Okumoto process with ��t� � ���������t��

��� Figure �� and Figure �� depict simulations given the Galileo CDS parameters� and Figure �� compares
the actual CDS subsystem failure data with that obtained from a constant�test�hazard�per�fault simulation�
as discussed previously� Your experiences in selecting a model and �tting parameters may be similar to ours�

��� Comparisons of actual and simulated results will probably tell you which model best �ts your data and
the accuracy of �t� Based on calculations or observances of the standard deviations of simulated results� you
will probably discover that a range of model parameters could describe the actual project� Monte Carlo runs
of the simulator using the range of parameters will reveal what con�dence you may attribute to the predictive
power of models�

��� The rate�� function governs the occurrence of primary events only� Secondary events are controlled
by a separate function� p��� In the code segment below� the workforce�� and CPU resource�� functions
return the resource rates currently scheduled for the given process�

double rate�int process� int �events� double t�

�

double d� pace� w�

if ��w � workforce�phase�process��� �� ���

return ���

��



Figure ������ Comparison of sample functions of a Musa�Okumoto process with ��n� � ���� � ����t��

switch �process�

� case DOC�UNIT�CREATED�

pace � doc�per�workday � w�

break�

case DOC�UNIT�INSPECTED�

pace � doc�inspected�per�workday � w�

break�

case DEFECT�TREATED�

pace � defects�treated�per�workday � w�

break�

case CODE�UNIT�CREATED�

pace � code�per�workday � w�

break�

case CODE�UNIT�INSPECTED�

pace � code�inspected�per�workday � w�

break�

case FAULT�TREATED�

pace � faults�treated�per�workday � w�

break�

case TEST�FAILURE�

if �d � �double� events�CODE�UNIT�CREATED��

pace � test�hazard�per�fault

� �REMAINING�FAULTS � d�

� CPU�resource�phase�process���

else

pace � ���

break�

case FAILURE�ANALYZED�

pace � failures�analyzed�per�workday � w�

break�

case FAULT�REPAIR�TRY�

pace � code�repairs�per�workday � w�

break�




return pace�




One may simulate consumption of resources by making the workforce�� and CPU resource�� functions
subtract the amount of resource �rate times dt� from the number of remaining units allocated in the schedule

��



tuple regulating the given process�
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