
Pseudoinverse Learning AIgorithm for Feedforward N  eural 
Networks* 

P I N G  G U O  and M I C H A E L  R. L Y U  
Department of Computer Science a n d  Engineering, 

T h e  Chinese University of H o n g  Kong, 
Shatin, NT, H o n g  Kong. 
S A R  of P.R. C H I N A  

rvlyu 

supervised learning (Pseudoinverse Learning Algorithm, PIL) for feedforward neural 
networks is developed. The algorithm is based on generalized linear algebraic methods and it adopts matrix 
inner products and pseudoinverse operations. The algorithm eliminates learning errors by adding hidden 
layers and will give a  perfect learning. Unlike the gradient descent algorithm , the PIL is a  feedforwardｭ
only, fully automated algorithm, including no critical user-dependent parameters such as learning rate or 
momentum constant 
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1  Introd uction 
Several adaptive learning algorithms for multi-
layer feedforward neural networks have been 
posed[1][2]. Most of these algorithms are based 
on variations of the gradient descent algorithm, 
for example, Back Propagation 
They usually have a  poor convergence rate and 

into local minima[3]. Convergence 
to local minima can be caused by the insufficient 
number of hidden neurons as well as improper 
tial weight settings. However, slow convergence 
rate is a  common problem of the gradient descent 
methods, including the B P  algorithm. Various 

have been made up learning, such 
as proper of weight to avoiding local 
minima, an adaptive square algorithm using 
the second order terms of error for weight updatｭ
ing[4]. There is another drawback for most gradiｭ
ent descent algorithms, namely,“learning factors 
problem" , such as learning rate, momentum conｭ

The values parameters are 
crucial for the success of the algorithm. Most graｭ
dient descent methods depend on these parameters 
which be specified by the user, as no theｭ
oretical basis for cll Oosing them exists. Furtherｭ
more, for applications which require high precision 
output, such as the prediction of time seｭ
ries, the known algorithms are often still too slow 
and inefficient. For example, like general-
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which needs to train a  lot of networks to 
get levell training samples, it is very computationｭ
time consuming when using B P  algorithm to perｭ
form the required task. 
In order to reduce training time and investigate 
the generalization properties of learned neural netｭ
work, in this paper a  Pseudoinverse alｭ
gorithm (PIL) is proposed, a  feedforwardｭ
only algorithm. Learning errors are transferred 
forward and the network architecture established 
The trained weights previously in the network are 
not changed. Hence, the learning error is miniｭ
mized on each layer not globally 
for the network as a  whole. B y  adding layers to 
eliminate errors , all examples of a  training set can 
be perfect learned. 

2  T h e  N  etwork Structure and 
Learning Algorithm 

2.1 T h e  N e t w o r k  Structure 
Let us consider a  multilayer feedforward neuｭ
ral network. The network has one input layer, 
one output several hidden layers. While 
the number of hidden layer depend on the desired 
learning accuracy and the a  training 
set to be learned in this paper. 
The weight matrix W l  connects layer 1  and layer 
1  +  1  with elements wL. Element w!, j connects 
neurons i  of layer 1  with neurons j  of layer 1  +  1. 
Note that the W O  matrix connects the input layer 
and the first hiddenlayer, the W L  matrlx connects 

321 



322 

the hidden layer and the output layer. W e  
assume only the input layer has bias neuron, while 
hidden the output layer have no 

bias neuron. The function is 
, for example, we so called sigmoidal 

function, 
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tanh(x) (2) 

which output is in a  of (-1,1) 
function. 
Given a  training data set D  =  
(x"o') ¥>11 the i-th input-output prur, 
where x' R n  is the input 

0 '  =  is 
the correspond target output vector. For given N  
sets of input- Dutput pairs as examples to be 
learned, we can summarize all given input vectors 
into a  matrix X O  with N  rows and n  +  1  columns. 
Here the last column of X O  is a  bias neuron of 
stant value 8  Each row of X O  contains the signals 
of one input vector. X O  =  [XI8], where matrix X  
consist of all signal x' as row vectors. All desired 
target output vectors are summarized into a  maｭ
trix 0  with N  m  columns. Each row of 
the matrix 0  contains the signals of one output 
vector 0'. In the designed network structure, the 
activate function is not applied to the output layer, 
so the last layer is linear. 

task of training the network means 
trying to find the weight matrix which minimizes 
the sum-squar• error function, 

N  m  
(3) 

Where g(x, e) is a  network mapping function 
and e  is the network parameter set. In three layer 

case, 
N  n  

gj(x,e) +  8i). (4) 
i=1 1=1 

where 8i  is a  bias value for network input. 
For simplifying, we the system cost 
function in matrix form, 

-

Propagating the given examples through the netｭ
work, multiplying the output of layer 1  with the 
weights between layers 1  +  1, and applying 
the nonlinear activate function to all matrix ele-
ments, we get 

(6) 

and the network output should be 

G  = y L WL.  (7) 

where we use superscript L  to donate the last hidｭ
den layer output and the last weight 
B y  exaJ.nining the above equations, reformulatｭ
ing the of training, the problem becomes; 

minimize I l y L WL  - 011 2 • (8) 

This is a  linear least problem. If we 
find the network weight such that makes 
I l y L W L _ O W  =  0, we will havetrained theneural 
network to learn all given examples exactly, 
is, a  perfect 
Without loss generalization, in the following disｭ
cussion we drop superscript index L  in equation 
(7). 

2.2 Pesudoinverse Solution 
N o w  let us discuss the equation 

E  R N x m  

(9) 
W h e n  the system is 
tem. Notice that such a  system either has no soluｭ
tion or of solutions. 

is invertible and has been learned 
in L  - 1  layer, the system of equation (9) is, in 
principle, easy to solve. The unique solution for 
last layer weight matrix is W  =  y -10. If Y  
arbitrary matrix in RNx p, then it becomes more 
difficult to solve equation (9). There m a y  be none, 

number of solutions depending on 
where and whether N  - >0. 
One would like to be able to find a  (or 

matrices) C , such that solution of 9  are of the form 
C O .  But if 0  rt R(Y) , then equation (9) has no 
solution. 
Fro m  linear algebra theorem, it has: 
T h e o r e m  1  The system Y W  =  0  has a  soluｭ
tion only if 

rank( [Y, O]) =  (10) 

Proof: See reference [6]. 
W e  intend to usc pseudoinverse solution for findｭ
ing weight matrix, the reason is that the theorem 
from linear algebra states that pseudoinverse soluｭ
tion is the best approximation. 
T h e o r e m  2  Suppose that A  E  

The best approximate solution 
of the equation is X o  =  A + B  (The suｭ
perscript +  denotes the pseudoinverse 
Proof: Fro m  reference [6] , it is easy proved. 

the theorem 2, it has, 
Corollary 1  The best approximate solution of 
A X = I i s X = A + .  
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above analysis, we try to find the output 
layer this way: 
Let W  = 0  y+O, the learning problem becomes 

- O W  = 0  0, where y +  is the pseudoinｭ
verse of Y  .  This is equal to find the matrix Y  
so that = 0  0, where 1  is the identity maｭ
trix. So the task of training the network becomes 
that to raise the rank of matrix Y  up 
to full rank. As soon as Y  becomes a  full rank 
matrix, the y y +  will become the identity matrix 
1. Note that since we multiply Y  on the right by 

needs only requiring the right inverse of Y  
to exist, not necessarily for y +  to be a  
inverse of Y. This means that Y  needs not be a  
square matrix, but its number of column should 

less than its number of row. This condiｭ
tion requires that hidden neuron numbers should 
be greater than or equal to N .  If the condition is 
satisfied, we solution for weight 
matrix. W h e n  we chose hidden neuron number to 
be equal to N , with such a  network 
can find the weight matrix which mapｭ
ping the training set. 

2.3 Psudoinverse Learning 
r i t h m  

above we first let weight 
matrix to which x N  m aｭ
trix. Then we apply nonlinear activate function. 
that is to compute y l  then 
the (yl)+ , the pseudoinverse of yl , and so on. 
Because the algorithm is feedforward only, no erｭ
ror will propagate back to preceding layer of 
ral network. W e  cannot use error form 

whether 
the trained network has reached the desired accuｭ
racy during training procedure. Instead‘ we use 
the criterion At each layer, 
we compute lIy l yi+ - IW , If 
desired error, we set W L  = 0  ( yL)+O and stop the 
training procedure. Otherwise, let W l  = 0  (yl)+ , 
add another layer, feed forward this layer output 
to next layer again, until we reach the required 
learning accuracy. 
To use any nonlinear activate function in the hidｭ

den nodes is to utilize the nonlinearity of the funcｭ
tion and to increase the linear 
the column vectors or, equivalently, the rank of 
the matrix. It is proved that sigmoidal functions 

the dimension input space up to 
the number of the hidden neurons[7]. So through 
nORImeuactivate action, the rank of the weight 
matrix will be raised layer by layer. 
With above discussion, we propose 

a  feedforward-only algorithm which reduce learnｭ
m g  errors on every layer. First we establish a  two 
layer neural network. If the given precision 

not be reached, a  third layer is added to eliminate 
the remained error. If the third layer added still 
cannot satisfy the desired accuracy, then another 
hidden layer is added again to reduce the learnｭ
ing errors required accuracy is achieved. 
Ffo m  a  mathematical point of view, we can sumｭ
marize the algorithm into the following steps: 
S!ep 1. hidden neuron number ass N , and 

let y O  = 0  X O.  
Step 2. Compute .  
Step 3. Compute - is less 

than the given error E , go to step 6. If not, go on 
next step. 

Step 4. Let W l  _  (yl)+. Feed forward the 
to the next layer, compute yl+l = 0  cr(W I  .  

Y'). 
Step 5. Compute 

(Yl+l), l • 1 +  1, and go to step 3. 
Step 6. Let W L  = 0  
Step 7. Stop training, the network mapping 

function is g  :.u(W1  .  yO))) .  W L  

3  A d d  and Delete Sample 
The proposed algorithm is a  batch way learning 

algorithm, in which we assume that all the input 
data are available at the time of training. However, 
in real-time application, as a  new input vector is 
given to the network, the weight matrix must be 
updated. Or, we need to delete a  sample from the 
learned weight matrix. It is not efficient at all if w e  
recompute the pseudoinvese of a  new weight matrix 
with PIL algorithm. W h e n  we assign the hidden 
neuron number is equal to the number of 
ing samples, add or delete the sample is 
with add or delete hidden neuron number. Here 
we use add or delete neuron algorithm to efficiently 
compute the pseudoinverse matrix. 

Griville's theorem[8], the first k  
columns of the Y  matrix consist of a  submatrix. 
the pseudoinverse of this submatrix can be calcuｭ
lated from the previous (k - 1)-th pseudoinverse 
submatrix 

Y L  (1 :  y k  bT )  1  k  = 0  I  I  (11) 

where the vector y k  is the k-th column vector of 
the matrix y , while 

I  y t- l)Yk , if C D  0  
l  l+IIY;;_lYkI!" 

where C D  = 0  111 -
It needs at most N  times iterative cycle to obｭ

tain the pseudoinverse of a  matrix if there are N  
columns in this matrix. 
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With this theorem, we can add the hidden neuｭ
rons relative easy to calculate the pseudoinverse 
matr喆. 
When a  hidden neuron is deleted, the 
need to be update. It is at all if we 
compute the pseudoinverse matrix from beginning. 
Here we consider using bordering algorithm[9] to 
compute the inverse of the matrix. Given the inｭ
verse to a  k  x  k  matrix, the method shows how to 
find the inverse of a  (k +  1) x  (k +  1) matrix, which 
is the same old k  x  k  matrix 
row and column attached to its borders. 
If the column vector Yi in Y  is linearly ind• 
pendent each other, by definition, 

y +  =  ( yTy ) - l yT  (13) 

Let V  =  yTY,we calculate 
from the prior V ; I  without inverting a  
The algorithm is 

, 1  .._.T 1  _. ¥  l  Yk _'1.$ V  -_r) (14) 

where v  =  V ;l Yk  and 
When delete a  vector from the matrix, consider 
the original matr喆 containing k  +  1  
The is W h e n  
the (k +  1)-th pair is deleted from the matrix, we 

four partitions: 

)  (15) 

where A  is k  x  k , b  is k  x  c  is a  scalar. B y  
comparing equation 14, it is apparent that A  =  
V;I +  Fro m  thee 
expressions, we find that the desired result is 

The inverse of k  x  k  matrix now calculated 
from (k +  1) x  (k +  1) This is equivalent 
with deleting the last hidden 
the weight matrix. 
This will be very useful in the case of leave 
one out cross-validation partition training samples 
(CVPS). Because in each C V P S  data set there only 
one sample is different with total sample set. W e  

inverse of matrix which is 
learned based on total sample set, then at each 
time, move only one sample to the last column 
(row) use the above algorithm to 
delete this sample. In this way we the 
learned with C V P S  sets effiｭ
ciently 

4  N  umerical Examples 
The algorithm is tested with the following funcｭ
tion mapping examples. 
Example 1. Consider a  nonlinear mapping 
problem of Sine function by neural network. For 
the training set, 50 (Xi , Yi) 
pairs were generated with i/49, for 
i  =  ,49, and correspond Yi were 
puted using Yi =  sin(x;). The given 
is E  =  10-7.  If learning error E  <  10-7, we reｭ
gard that perfect learning has been reached. For 
this problem, input neuron number is n  +  1  =  2  
including bias one, output neuron is m  =  
hidden layer neuron number is N  =  50. After usｭ
ing the PIL algorithm proposed above, we reach 
the perfect learning when two hidden layers are 
added. The trained network altogether has 4  layｭ
ers including input and output layer. The actual 
learning error is E  =  7.533 X  10-18.  
Example 2. The nonlinear mapping of 8  inｭ
put Xi into three output quantities 
problem, defined by 
in [10]: 

Yl =  (Xl *  X2 +  X3 *  X4 +  + X 7  *x8)/4.0 
Y2 - (Xl +  X2 +  +  X6 +  X7 +  xs)/8.0 
Y3 =  (1 - yt)O.5 (17) 

All three functions are defined for values 
1  and produce values in this range. For 

the training set, 50 of input signals Xi were 
randomly generated in the of 0  to 1, the 
corresponding Yi were computed using the above 
equation. The desired learning error we give is 
E  =  1.0  X  10-7.  W h e n  training is finished, only 
one hidden layer is added, and the actuallearning 
error is E  =  3.573 X  10-25 for this problem. 
Example 3. Another functional mapping probｭ
lem is Y  =  +  x/3. Like example 1, 
we use 50 examples with Xi in the region of 0  to 

train the network. Perfect learning is reached 
after two hidden layers are added. Actuallearning 
error is E  =  4.734 X  10-17 

4.1 Generalization 
What is the generalization abilities of 
networks? W e  also ability of trained 
networks to forecast function values of examples 
not belonging to the training set. For Sine funcｭ
tional mapping, we train the network using 20 exｭ
amples with Xi =  i/19, for i  =  
and the corresponding Yi were computed using 
sin(Xi). network is trained, N 1  =  100 inｭ
put signals Xi randomly generated within the range 
of 0  to used to test the network, the correｭ
sponding Yi were computed using trained network. 
Figure lb show the results for example 1  
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ples. Fro m  this result, be known that the 
network forecast unlearned data ability is better 
for smooth when the data in the range of 
training input space. W h e n  50 with 

i/49, for i  =  ,49, and the corｭ
responding Yi were computed using corresponding 
equation are used to train the network, then 100 
randomly generated input signals in the ofO 
to used to test the trained network. In exｭ
ample 1  and 4, only W L  matrix is different. The 
other matrices are the same while 50 set examples 
are used to train the network. network's 

the same input matrix is totally differｭ
ent. 
The method of stacked generalization[5] 
vides a  way of together 
which uses partitioning of the data set to find an 
overall system with usually improved generalizaｭ
tion performance. The experiments show that with 
smoothed function or piece wise smoothed funcｭ
tion, the trained network perforｭ
mance is good with stacked generalization. Howｭ
ever, for noise data set, if the network is overｭ
trained, the generalization ability will be poor. Usｭ
ing stacked generalization can not improve the netｭ
work performance when over trained networks are 
used. W h e n  overfitting to the noise occur, stacked 
generalization not a  suitable technique for imｭ
proving network generalization performance. W e  
should seek other generalization techniques such as 
ensemble networks[1l][12] to improve the network 
performance, but this topic is beyond the scope of 
this paper. 
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Fig.l. The trained network output for (a) Y  -
sin(x) function mapping, (b) y  =  sin(x)cos(x) +  
x/3 (c) for function defined in 
equation (18) with 20 learning examples, and (d) 
for function defined in equation (18) with only 5  
learning examples. “*" is training data,“0" is test 
data. 

3. It is reasonable good. W e  have also tested 
examples 3  with 20 examples training netｭ
work and using 100 randomly generated input sigｭ
nals for testing. 
For further investigating the proposed network 
architecture and learning algorithm's response to 

let us see another example. 
Example 4. A  sin(x) like nonlinear function is 
defined by: 

O n  examining the algorithm, it seen that 
we do not need to consider the question of how 
the weight matrix should be initialized to avoid 
local minima. W e  just feedforward examples to 
get a  weight matrix and the solution will not conｭ
verge to local minima. This is different from the 
B P  algorithm. It can also be seen that training 
procedure is in fact the processing of raising the 
rank of weight matrix. W h e n  a  matrix of some 
hidden layer output becomes full rank, the right 
inverse of the can be obtained, and we end 
the training the learning proceｭ
dure, it is obvious that no differentiable activate 
function is needed. W e  only require that the actiｭ
vate function nonlinear 
raise the rank of the weight matrix. Because the 
PIL algorithm is based on the nonlinear function 
transformation to raise the matrix rank, it will fail 
if there two or. more input vectors are identity in 
the input matrix. But this case can be eliminated 
through preprocessing input patterns. 

Discussion 5  
if 

if 
M
M
 

(18) 

First, 20 examples with X i  - for 
0,1,2, .  .  .  , 19, and the corresponding Yi were comｭ
puted using above equation are used to train the 

100 random input generated 
in the range of 0  to used to test the trained 
network. The result is shown in Figure lc. 
W h e n  using 5  set examples 

-1) , (27r, O)} to train the network, we 
get a  network structure which has one hidden layer 
with 5  hidden neurons. The learning error is 
E  =  3.314 X  10-26 • Afterward, 100 sets of input 
signals X i  which were randomly generated within 
the range of 0  to used to test the network 
The result is shown in Figure ld. Fro m  the Figure 
ld, it can be seen that the network acts like a  Sine 
function. It should be reminded that the architecｭ
ture and weight matrices is the same 
1  and example 4  when using the above 5  set exam-
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The B P  as well as other gradient algorithm 
quires user selected such as step size or 
momentum constant. These parameters have 
fect on the learning speed. There is no theoretical 
basis which guides us how to select these paramｭ
eters to speed learning. In PIL, such a  problem 
does 
Another characteristics if the input maｭ
trix has N  then a  right inverse exists, and 
we a  linear network with only two layｭ
ers. For most problems, with two hidden layers, 
the network can reach the perfect learning. Fro m  
the examples, we see that network layer number is 
not only dependent on learning accuracy, but also 
on the examples to be learned. The algorithm is 
suitable for some applications which require high 
precision output, in which case the network strucｭ
ture is less important than precision output 
One of the algorithm's feature is that 
desired output matrix T  is embedded in the weight 
matrix W L  which connects last hidden layer and 
output layer. This give us a  very easy and fast 
way to get the weight matrix for different target 

as long as input matrix is the same. For exｭ
ample, after we have trained the network to learnｭ
ing Sine function mapping in the region from 0  to 
we only need recalculate the W L , in order to 

get Cosine function mapping problem in the same 
region with Sine function. For B P  algorithm, it 
is necessary to train whole network again to get 
all weight matrices for Cosine function mapping, 

input matrix is the same with Sine funcｭ
t卲n. 
W e  have not compared the overall performance 
ofthis algorithm with others. Obviously, the numｭ
ber of iterations is valid metric considering 
the fact that the calculation complexity per iterｭ
ation is not the same of the algorithms. 
However, if we consider the C P U  time cost on 
training network to reach the high learning accuｭ
racy using the same the PIL algorithm 
is obviously fast than other gradient descent 
rithms in its leaming speed. 

6  S u m m a r y  
The pseudoinverse learning algorithm was 
duced in this paper. The algorithm is more effecｭ

the standard B P  and other gradient deｭ
scent algorithm for most problems. The algorithm 
does any user-dependent parameters 
whose values are crucial for the success of the alｭ
gorithm. The mathematical operations are simple, 
it is only based on linear algebra and 
adopt pseudoinverse and matrix inner product opｭ
erations. O n  considering its learning speed and acｭ
curacy, the PIL algorithm is most competitive to 

other gradient descent algorithms in real or near 
real time practical use. the PIL algorithm, it 
allows us to investigate the 
techniques such as stacked generation more effiｭ
ciently. 
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