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ABSTRACT

Three major fault-tolerant software system architectures, distributed recovery blocks,N -
version programming, and N self-checking programming, are modeled by a combination
of fault tree techniques and Markov processes. In these three architectures, transient and
permanent hardware faults as well as unrelated and related software faults are modeled in
the system-level domain. The model parameter values are determined from the analysis of
data collected from a fault-tolerant avionic application. Quantitative analyses for reliability
and safety factors achieved in these three fault-tolerant system architectures are presented.

5.1 INTRODUCTION

The complexity and size of current and future software systems, usually embedded in a
sophisticated hardware architecture, are growing dramatically. As our requirements for and
dependencies on computers and their operating software increase, the crises of computer
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hardware and failure failures also increase. The impact of computer failures to human life
ranges from inconvenience (e.g., malfunctions of home appliances), economic loss (e.g.,
interceptions of banking systems) to life-threatening (e.g., failures of flight systems or nuclear
reactors). As the faults in computer systems are unavoidable as the system complexity grows,
computer systems used for critical applications are designed to tolerate both software and
hardware faults by the configuration of multiple software versions on redundant hardware
systems. Many such applications exist in the aerospace industry [Car84, You84, Hil85, Tra88],
nuclear power industry [Ram81, Bis86, Vog88], and ground transportation industry [Gun88].

The system architectures incorporating both hardware and software fault tolerance are
explored in three typical approaches. The distributed recovery blocks (DRB) scheme [Kim89]
combines both distributed processing and recovery block (RB) [Ran75] concepts to provide a
unified approach to tolerating both hardware and software faults. Architectural considerations
for the support of N -version programming (NVP) [Avi85] were addressed in [Lal88], in
which the FTP-AP system is described. The FTP-AP system achieves hardware and software
design diversity by attaching application processors (AP) to the byzantine resilient hard core
Fault Tolerant Processor (FTP). N self-checking programming (NSCP) [Lap90] uses diverse
hardware and software in self-checking groups to detect hardware and software induced errors
and forms the basis of the flight control system used on the Airbus A310 and A320 aircraft
[Bri93].

Sophisticated techniques exist for the separate analysis of fault tolerant hardware [Gei90,
Joh88] and software [Grn80, Shi84, Sco87, Cia92], but only some authors have considered
their combined analysis [Lap84, Sta87, Lap92]. This chapter uses a combination of fault tree
and Markov modeling as a framework for the analysis of hardware and software fault tolerant
systems. The overall system model is a Markov model in which the states of the Markov
chain represent the evolution of the hardware configuration as permanent faults occur and are
handled. A fault tree model captures the effects of software faults and transient hardware faults
on the computation process. This hierarchical approach simplifies the development, solution
and understanding of the modeling process. We parameterize the values of each model by
a recent fault-tolerant software project [Lyu93] to perform reliability and safety analysis of
each architecture.

The chapter is organized as follows. In Section 5.2 we give a description of the three system
architectures studied in this chapter. Section 5.3 provides the overall modeling assumptions and
parameter definitions. In Section 5.4 we present the system level models, including reliability
and safety models, of the three architectures. Experimental data analysis is presented in
Section 5.5, and a case study from a fault-tolerant software project to determine the model
parameter values is presented in Section 5.6. Section 5.7 describes a quantitative system-
level reliability and safety analysis of the three architectures. Sensitivity analysis of model
parameters is shown in Section 5.8, while the impact of decider failure probability is given in
Section 5.9. Finally Section 5.10 contains some concluding remarks.

5.2 SYSTEM DESCRIPTIONS

Figure 5.1 shows the hardware and error confinement areas [Lap90] associated with the
three architectures (DRB, NVP, and NSCP) being considered in this chapter. The systems
are defined by the number of software variants, the number of hardware replications, and the
decision algorithm. The hardware error confinement area (HECA) is the lightly shaded region,
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Figure 5.1 Structure of a) DRB, b) NVP and c)NSCP

while the software error confinement area (SECA) is the darkly shaded region. The HECA or
SECA covers the region of the system affected by faults in that component. For example, the
HECA covers the software component since the software component will fail if that hardware
experiences a fault. The SECA covers only the software, as no other components will be
affected by a software fault.

5.2.1 DRB: Distributed Recovery Block

The recovery block approach to software fault tolerance [Ran75] is the software analogy of
“standby-sparing,” and utilizes two or more alternate software modules and an acceptance test.
The acceptability of a computation performed by the primary alternate is determined by an
acceptance test. If the results are deemed unacceptable, the state of the system is rolled back
and the computation is attempted by the secondary alternate. The alternate software modules
are designed produce the same or similar results as the primary but are deliberately designed
to be as uncorrelated (orthogonal) as possible [Hec86].

There are at least two different ways to combine hardware redundancy with recovery
blocks. In [Lap90], the RB/1/1 architecture duplicates the recovery block on two hardware
components. In this architecture, both hardware components execute the same variant, and
hardware faults are detected by a comparison of the acceptance test and computation results.
The DRB (Figure 5.1a) [Kim89] executes different alternates on the different hardware
components in order to improve performance when an error is detected. In the DRB system,
one processor executes the primary alternate while the other executes the secondary. If an error
is detected in the primary results, the results from the secondary are immediately available.
The dependability analysis of both systems is identical.

5.2.2 NVP: N-Version Programming

In the NVP method [Avi85, Lyu93], N independently developed software versions are used to
perform the same tasks. They are executed concurrently using identical inputs. Their outputs
are collected and evaluated by a decider. If the outputs do not all match, the output produced
by the majority of the versions is taken to be correct. NVP/1/1 (Figure 5.1b) [Lap90] consists
of three identical hardware components, each running a distinct software version. It is a direct
mapping of the NVP method onto hardware. Throughout this chapter we consider a 3-version
implementation of an NVP system.
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5.2.3 NSCP: N Self-Checking Programming

The NSCP architecture considered in this chapter (Figure 5.1c) is comprised of four software
versions and four hardware components, each grouped in two pairs, essentially dividing the
system into two halves. The hardware pairs operate in hot standby redundancy with each
hardware component supporting one software version. The version pairs form self-checking
software components. A self-checking software component consists of either two versions
and a comparison algorithm or a version and an acceptance test. In this case, error detection
is done by comparison. The four software versions are executed and the results of V1 and V2
are compared against each other, as are the results of V3 and V4. If either pair of results do
not match, they are discarded and only the remaining two are used. If the results do match,
the results of the two pairs are then compared. A hardware fault causes the software version
running on it to produce incorrect results, as would a fault in the software version itself. This
results in a discrepancy in the output of the two versions, causing that pair to be ignored.

5.3 MODELING ASSUMPTIONS AND PARAMETER DEFINITIONS

5.3.1 Assumptions

Task computation. The computation being performed is a task (or set of tasks) which is
repeated periodically. A set of sensor inputs is gathered and analyzed and a set of actuations
are produced. Each repetition of a task is independent. The goal of the analysis is the
probabilitythat a task will succeed in producing an acceptable output, despite the possibility
of hardware or software faults. More interesting task computation processes could be
considered using techniques described in [Lap92] and [Wei91]. We do not address timing
or performance issues in this model. See [Tai93] for a performability analysis of fault
tolerant software techniques.

Software failure probability. Software faults exist in the code, despite rigorous testing. A
fault may be activated by some random input, thus producing an erroneous result. Each
instantiation of a task receives a different set of inputs which are independent. Thus, a
software task has a fixed probabilityof failure when executed, and each iteration is assumed
to be statistically independent. Since we do not assign a failure rate to the software, we do
not consider reliability-growth models.

Coincident software failures in different versions. If two different software versions fail
on the same input, they will produce either similar or different results. In this work, we use
the Arlat/Kanoun/Laprie [Arl90] model for software failures and assume that similar erro-
neous results are caused by related software faults and different erroneous results which are
simultaneously activated are caused by unrelated (called independent in their terminology)
software faults. There is one difference between our model and that of Arlat/Kanoun/Laprie
in that our model assumes that related and unrelated software faults are statistically inde-
pendent while their’s assumes that related and unrelated faults are mutually exclusive.
Further, this treatment of unrelated and related faults differs considerably from models for
correlated failures [Eck85, Lit89, Nic90], in which unrelated and related software failures
are not differentiated. Rather, software faults are considered to be statistically correlated
and models for correlation are considered and proposed. A more detailed comparison of
the two approaches is given in [Dug94].
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Permanent hardware faults. The arrival (activation) rate of permanent physical faults is
constant and will be denoted by �.

Transient hardware faults. Transient hardware faults are modeled separately from perma-
nent hardware faults. A transient hardware fault is assumed to upset the software running
on the processor and produce an erroneous result which is indistinguishable from an input-
activated software error. We assume that the lifetime of transient hardware faults is short
when compared to the length of a task computation, and thus assign a fixed probability to
the occurrence of a transient hardware fault during a single computation.

Nonmaintained systems. For the comparisons drawn from this study, we assume that the
systems are unmaintained. Repairability and maintainability could certainly be included in
the Markov model; we have chosen not to include them to make the comparisons clearer.

5.3.2 Parameter Definitions

The parameters used in the models are listed below.

�: the arrival rate for a permanent hardware fault to a single processing element.
c: the coverage factor; the probability that the system can automatically recovery from a

permanent hardware fault. The system fails if it is unable to automatically recover from a
fault.

PH: the probability that a transient hardware fault occurs during a single task computation.

PV : for each version, the probability that an unrelated software fault is activated during a task
computation.

PRV : for each pair of versions, the probability that a related fault between the two versions is
activated during a task computation.

PRALL: the probability that a related fault common to all versions is activated during a single
task computation.

PD: the probability that the decider fails, either by accepting an incorrect result or by rejecting
a correct result.

5.3.3 Terminology

Some of the terminology used in the system descriptions and comparisons is summarized
below and defined more explicitly when first used.

DRB: distributed recovery block system
NVP: N -version programming system
NSCP: N self-checking programming system
related fault: a single fault which affects two or more software versions, causing them to

produce similar incorrect results
unrelated fault: a fault which affects only a single software version, causing it to produce

an incorrect result
coincident fault: the simultaneous activation of two or more different hardware and/or soft-

ware faults.
by-case data: Software error detection is performed at the end of each test case, where a test

case consists of approximately 5280 50 ms. time frames.
by-frame data: Software error detection is performed at the end of each time frame, where

a time frame consists of approximately 50 ms. of execution.
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5.4 SYSTEM LEVEL MODELING

5.4.1 Modeling Methodology

A dependability model of an integrated fault tolerant system must include at least three different
factors: computation errors, system structure and coverage modeling. In this chapter we
concentrate on the first two, and use coverage modeling techniques that have been developed
elsewhere [Dug89].

The computation process is assumed to consist of a single software task that is executed
repeatedly, such as would be found in a process control system. The software component
performing the task is designed to be fault tolerant. A single task iteration consists of a task
execution on a particular set of input values read from sensors. The output is the desired
actuation to control the external system. During a single task iteration, several types of events
can interfere with the computation. The particular set of inputs could activate a software fault
in one or more of the software versions and/or the decider. Also, a hardware transient fault
could upset the computation but not cause permanent hardware damage. The combinations
of software faults and hardware transients that can cause an erroneous output for a single
computation is modeled with a fault tree. The solution of the fault tree yields the probability
that a single task iteration produces an erroneous output. We note that in the more general case
where more than one task is performed, the analyses of each task can be combined accordingly.

The longer-term system behavior is affected by permanent faults and component repair
which require system reconfiguration to a different mode of operation. The system structure
is modeled by a Markov chain, where the Markov states and transitions model the long term
behavior of the system as hardware and software components are reconfigured in and out of
the system. Each state in the Markov chain represents a particular configuration of hardware
and software components and thus a different level of redundancy. The fault and error recovery
process is captured in the coverage parameter used in the Markov chain [Dug89].

The short-term behavior of the computation process and the long-term behavior of the
system structure are combined as follows. For each state in the Markov chain, there is a
different combination of hardware transients and software faults that can cause a computation
error, and thus a different probability that an unacceptable result is produced.

The fault tree model solution produces, for each state i in the Markov model, the probability
qi that an output error occurs during a single task computation while the state is in state i . The
Markov model solution produces Pi �t�, the probability that the system is in state i at time
t . The overall model combines these two measures to produce Q�t�, the probability that an
unacceptable result is produced at time t .

Q�t� �
nX

i�1

qiPi�t�

We assume that the system is unable to produce an acceptable result while in the failure
state, thus qfail � 1.

The models of the three systems being analyzed (DRB, NVP and NSCP; see Figure 5.1)
consist of two fault trees and one Markov model. Since each of the systems can tolerate one
permanent hardware fault, there are two operational states in the Markov chain. The initial state
in each of the Markov chains represents the full operational structure, and an intermediate
state represents the system structure after successful automatic reconfiguration to handle a
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single permanent hardware fault. The reconfiguration state provides a degraded level of fault
tolerance, as some failed hardware component has been discarded. There is a single failure
state which is reached when the second hard physical fault is activated or when a coverage
failure occurs. The full analytical solution of the models appears in [Dug95].

5.4.2 Reliability Models

The three-part reliability model of DRB is shown in Figure 5.2. The Markov model details
the system structure. In the initial state the recovery block structure is executed on redundant
hardware. In the reconfigured state, after the the activation of a permanent hardware fault,
a single copy of the RB is executed. The first fault tree details the causes of unacceptable
results while in the initial configuration. A single task computation will produce unacceptable
results if the software module fails (both primary and secondary fail on the same input) or if
both hardware components experience transient faults, or if the decider fails. The second fault
tree details the combination of events which cause an unacceptable result in the reconfigured
state, where a single recovery block module executes on the remaining processor. The key
difference between the two fault trees is the reduction in hardware redundancy.

Figure 5.3 shows the reliability model of NVP. With three software versions running on
three separate processors, several different failure scenarios must be considered, including
coincident unrelated faults as well as related software faults, coincident hardware transients
and combinations of hardware and software faults. For the Markov model, we assume that
the system is reconfigured to simplex mode after the first permanent hardware fault. In this
reconfigured state, an unreliable result is caused by either a hardware transient or a software
fault activation, as shown in the second fault tree of Figure 5.3.

The reliability model of the NSCP system is shown in Figure 5.4. The Markov model shows
that the system discards both a failed processor and its mate after the first permanent hardware
fault occurs. When in the initial state, a two unrelated errors (one in each half of the system) are
necessary to cause a mismatch. However, a single related software fault in two versions results
in an unacceptable result. If a related error crosses the SECA boundary, then both halves will
fail the comparison test. If an unrelated error affects both versions in the same half, then each
half will pass the comparison test, but the higher level comparison (between the results from
the two halves) will cause a mismatch.

5.4.3 Safety Models

The safety models for the three systems are similar to the reliabilitymodels, in that they consist
of a Markov model and two associated fault trees. The major difference between a reliability
and safety analysis is in the definition of failure. In the reliability models, any unacceptable
result (whether or not it is detected) is considered a failure. In a safety model, a detected error
is assumed to be handled by the system in a fail-safe manner, so an unsafe result only occurs
if an unacceptable result is not detected.

In the Markov part of the safety models, two failure states are defined. The fail-safe state is
reached when the second covered permanent hardware fault is activated. The fail-unsafe state
is reached when any uncovered hardware fault occurs. The system is considered safe when
in the absorbing fail-safe state. This illustrates a key difference between a reliability analysis
and a safety analysis. A system which is shut-down safely (and thus is not operational) is
inherently safe, although it is certainly not reliable.
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The safety model of DRB, shown in Figure 5.5, shows that an acceptance test failure is
the only software cause of an unsafe result. As long as the acceptance test does not accept an
incorrect result, then a safe output is assumed to be produced. The hardware redundancy does
not increase the safety of the system, as the system is vulnerable to the acceptance test in both
states. An interesting result of a safety analysis is that the hardware redundancy can actually
decrease the safety of the system, since the system is perfectly safe when in the fail-safe state,
and the hardware redundancy delays absorption into this state [Vai93].

The NVP safety model (Figure 5.6) shows that the safety of the NVP system is vulnerable to
related faults as well as decider faults. In the Markov model, we assume that the reconfigured
state uses two versions (rather than one, as was assumed for the reliability model) so as
to increase the opportunity for comparisons between alternatives and thus increase error
detectability.

The NSCP safety model (Figure 5.7) shows the same vulnerability of the NSCP system to
related faults. When the system is fully operational, all 2-way related faults will be detected
by the self-checking arrangements, leaving the system vulnerable only to a decider faults,
and a fault affecting all versions similarly. After reconfiguration, a related fault affecting both
remaining versions could also produce an undetected error.

5.5 EXPERIMENTAL DATA ANALYSIS

A quantitative comparison of the three fault tolerant systems described in the previous section
requires an estimation of reasonable values for the model parameters. The estimation of
failure probabilities for hardware components has been considered for a number of years,
and reasonable estimates exist for generic components (such as a processor). However, the
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estimation of software version failure probability is less accessible, and the estimation of the
probabilityof related faults is more difficult still. In this section we willdescribe a methodology
for estimating model parameter values from experimental data followed by a case study using
a set of experimental data.

Several experiments in multi-version programming have been performed in the past decade.
Among other measures, most experiments provide some estimate of the number of times dif-
ferent versions fail coincidentally. For example, the NASA-LaRC study involving20 programs
from 4 universities [Eck91] provides a table listing how many instances of coincident failures
were detected. The Knight-Leveson study of 28 versions [Kni86] provides an estimated prob-
ability of coincident failures. The Lyu-He study [Lyu93] considered three and five version
configurations formed from 12 different versions. These sets of experimental data can be used
to estimated the probabilities for the basic events in a model of a fault tolerant software system.
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Coincident failures in different versions can arise from two distinct causes. First, two (or
more) versions may both experience unrelated faults that are activated by the same input.
If two programs fail independently, there is always a finite probability that they will fail
coincidentally, else the programs would not be independent. A coincident failure does not
necessarily imply that a related fault has been activated. Second, the input may activate a fault
that is related between the two versions. In order to estimate the probabilities of unrelated and
related faults, we will determine the (theoretical) probability of failure by unrelated faults. To
the extent that the observed frequency of coincident faults exceeds this value, we will attribute
the excess to related faults.

The experimental data is necessarily coarse. As it is infeasible to exhaustively test a single
version, it is more difficult to exhaustively observe every possible instance of coincident
failures in multiple versions. The experimental data provides an estimate of the probabilities of
coincident failures, rather than the exact value. Considering the coarseness of the experimental
data, we will limit ourselves to the estimation of three parameter values: PV , the probability
of an unrelated fault in a version;PRV , the probability of a related fault between two versions;
and PRALL, the probability of a related fault in all versions. To attempt to estimate more, for
example the probability of a related fault that affects exactly three versions or exactly four
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versions, seems unreasonable. Notice that we will assume that the versions are all statistically
identical, and do not try to attempt to estimate different probabilities of failure for each
individual version, or each individual case of two simultaneous versions.

The first parameter that we estimate is PV , the probability that a single version fails. The
estimate forPV comes from consideringF0 (the observed frequency of no failures) and F1 (the
observed frequency of exactly one failure). When consideringN different versions processing
the same input, the probability that there are no failures is set equal to the observed frequency
of no failures.

F0 � �1� PV �
N �1� PRV �(

N
2 )�1� PRALL� �5.1�

Then, considering the case where only a single failure occurs, we observe that a single
failure can occur in any of the N programs, and implies that a related fault does not occur (else
more than one version would be affected). This is then set equal to the observed frequency of
a single failure of the N versions.

F1 � N �1� PV �
�N�1�PV �1� PRV �(

N
2 )�1� PRALL� �5.2�

Dividing equation 5.1 by equation 5.2 yields an estimate for PV .

PV �
F1

NF0 � F1
�5.3�

Estimating the probability of a related fault between two versions, PRV , is more involved,
but follows the same basic procedure. First, consider the case where exactly two versions are
observed to fail coincidentally. This event can be caused by one of three events:

� the simultaneous activation of two unrelated faults, or
� the activation of a related fault between two versions or
� both (the activation of two unrelated and a related fault between the two versions).

The probabilities of each of these events will be determined separately. The probability
that unrelated faults are simultaneously activated in two versions (and no related faults are
activated) is �

N

2

�
P2
V �1� PV �

�N�2��1� PRV �(
N
2 )�1 � PRALL� �5.4�

The probability that a single related fault (and no unrelated fault) is activated is given by
�
N

2

�
�1� PV �

NPRV �1� PRV �
�(N2 )�1��1� PRALL� �5.5�

Finally, the probability that both an unrelated fault and two related faults are simultaneously
activated is give by

�
N

2

�
P2
VPRV �1� PV �

�N�2��1� PRV �
�(N2 )�1��1� PRALL� �5.6�

Because the three events are disjoint, we can sum their probabilities, and set the sum equal to
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Figure 5.8 Fault tree model used to estimate PRALL for a 3-version system

F2, the observed frequency of two coincident errors.

F2 �

�
N

2

�
�P2

V � PRV � P2
VPRV ��1 � PV �

�N�2��1� PRV �
�(N2 )�1��1 � PRALL� �5.7�

Dividing equation 5.7 by 5.2 and performing some algebraic manipulations yields an estimate
for PRV which depends on the experimental data and the previously derived estimate for PV .

PRV �
2F2PV �1� PV � � �N � 1�F1P

2
V

2F2PV �1� PV � � �N � 1�F1�1 � P2
V �

�5.8�

The estimate for PRALL is more involved, as there are many ways in which all versions
can fail. There may be a related fault between all versions that is activated by the input, or
all versions might simultaneously fail from a combination of unrelated and related faults.
Consider the case where there are three versions. In addition to the possibility of a single
fault affecting all three versions, all three versions could experience a simultaneous activation
of unrelated faults, or one of three combinations of an unrelated and related fault affecting
different versions may be activated. The fault tree in Figure 5.8 illustrates the combinations
of events which can cause all three versions to fail coincidentally. A simple (but inelegant)
methodology for estimating PRALL could use the previously determined estimates for PV

and PRV and repeated guessing for PRALL in the solution of the fault tree in Figure 5.8, until
the fault tree solution for the probability of simultaneous errors approximates the observed
frequency of all versions failing simultaneously.

The fault tree model for three versions can easily be generalized to the case where there
are N versions. The top event of the fault tree is an OR gate with two inputs, an AND gate
showing all versions failing, and a basic event, representing a related fault that affects all
versions simultaneously. The AND gate has N inputs, one for each version. Each of the N
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inputs to the AND gate is itself an OR gate with N inputs, all basic events. Each OR gate has
one input representing an unrelated fault in the version, and N � 1 inputs representing related
faults with each other possible version.

5.6 A CASE STUDY IN PARAMETER ESTIMATION

In this section we analyze experimental data from a recent multiversion programming exper-
iment to determine parameter values for our models of fault-tolerant software systems. The
data is derived from an experimental implementation of a real-world automatic (i.e., comput-
erized) airplane landing system, or so-called “autopilot.” The software systems of this project
were developed and programmed by 15 programming teams at the University of Iowa and the
Rockwell/Collins Avionics Division. A total of 40 students (33 from ECE and CS departments
at the University of Iowa, 7 from the Rockwell International) participated in this project to
independently design, code, and test the computerized airplane landing system, as described
in the Lyu-He study [Lyu93].

5.6.1 System Description

The software project in the Lyu-He study was scheduled and conducted in six phases: (1)
Initial design phase for four weeks; (2) Detailed design phase for two weeks; (3) Coding
phase for three weeks; (4) Unit testing phase for one week; (5) Integration testing phase
for two weeks; (6) Acceptance testing phase for two weeks. It is noted that the acceptance
testing was a two-step formal testing procedure. In the first step (AT1), each program was
run in a test harness of four nominal flight simulation profiles. For the second step (AT2),
one extra simulation profile, representing an extremely difficult flight situation, was imposed.
By the end of the acceptance testing phase, 12 of the 15 programs passed the acceptance test
successfully and were engaged in operational testing for further evaluations. The average size
of these programs were 1564 lines of uncommented code, or 2558 lines when comments were
included. The average fault density of the program versions which passed AT1 was 0.48 faults
per thousand lines of uncommented code. The fault density for the final versions was 0.05
faults per thousand lines of uncommented code.

5.6.1.1 THE NVP OPERATIONAL ENVIRONMENT

The operational environment for the application was conceived as airplane/autopilot interact-
ing in a simulated environment, as shown in Figure 5.9. Three channels of diverse software
independently computed a surface command to guide a simulated aircraft along its flight path.
To ensure that significant command errors could be detected, random wind turbulences of dif-
ferent levels were superimposed in order to represent difficult flight conditions. The individual
commands were recorded and compared for discrepancies that could indicate the presence of
faults.

This configuration of a 3-channel flight simulation system consisted of three lanes of
control law computation, three command monitors, a servo control, an Airplane model, and
a turbulence generator. The lane computations and the command monitors would be the
accepted software versions generated by the programming teams. Each lane of independent
computation monitored the other two lanes. However, no single lane could make the decision
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Figure 5.9 3-channel flight simulation configuration

as to whether another lane was faulty. A separate servo control logic function was required
to make that decision. The aircraft mathematical model provided the dynamic response of
current medium size, commercial transports in the approach/landing flight phase. The three
control signals from the autopilot computation lanes were inputs to three elevator servos. The
servos were force-summed at their outputs, so that the mid-value of the three inputs became
the final elevator command. The Landing Geometry and Turbulence Generator were models
associated with the Airplane simulator.

In summary, one run of flight simulation was characterized by the following five initial
values regarding the landing position of an airplane: (1) initial altitude (about 1500 feet); (2)
initial distance (about 52800 feet); (3) initial nose up relative to velocity (range from 0 to 10
degrees); (4) initial pitch attitude (range from -15 to 15 degrees); and (5) vertical velocity for
the wind turbulence (0 to 10 ft/sec). One simulation consisted of about 5280 iterations of lane
command computations (50 milliseconds each) for a total landing time of approximately 264
seconds.

5.6.1.2 OPERATIONAL ERROR DISTRIBUTION

During the operational phase, 1000 flight simulations, or over five million program executions,
were conducted. For a conservative estimation of software failures in the NVP system, we took
the program versions which passed the AT1 for study. The reason behind this was that had the
Acceptance Test not included an extreme situation of AT2, more faults would have remained
in the program versions. We were interested in seeing how the remaining faults would be
manifested during the operational testing, and how they would or would not be tolerated in
various NVP configurations.

Table 5.1 shows the software failures encountered in each single version. We examine two
levels of granularity in defining software execution errors and coincident errors: “by-case”
or “by-frame.” The first level was defined based on test cases (1000 in total). If a version
failed at any time in a test case, it was considered failed for the whole case. If two or more
versions failed in the same test case (no matter at the same time or not), they were said to
have coincident errors for that test case. The second level of granularity was defined based
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Table 5.1 Error characteristics for individual versions

Version Id Number of failures Prob. by-case Prob. by-frame
� 510 0.51 0.000096574
� 0 0.0 0.0
� 0 0.0 0.0
� 0 0.0 0.0
� 1 0.001 0.000000189
� 360 0.36 0.000068169
� 0 0.0 0.0
� 730 0.73 0.000138233
� 140 0.14 0.000026510
	 0 0.0 0.0

 0 0.0 0.0
o 0 0.0 0.0

Average 145.1 0.1451 0.000027472

Table 5.2 Error characteristics for two-version configurations

Category BY-CASE BY-FRAME
Number of cases Frequency Number of cases Frequency

F0 - no errors 53150 0.8053 348522546 0.99994786
F1 - single error 11160 0.1691 18128 0.00005201
F2 - two coincident 1690 0.0256 46 0.00000013
Total 66000 1.0000 348540720 1.000000

on execution time frames (5,280,920 in total). Errors were counted only at the time frame
upon which they manifested themselves, and coincident errors were defined to be the multiple
program versions failing at the same time frame in the same test case (with or without the
same variables and values).

In Table 5.1 we can see that the average failure probability for single version is 0.145
measured by-case, or 0.000027 measured by-frame.

5.6.2 Data Analysis and Parameter Estimation

The 12 programs accepted in the Lyu-He experiment were configured in pairs, whose outputs
were compared for each test case. Table 5.2 shows the number of times that 0, 1, and 2 errors
were observed in the 2-version configurations. The data from Table 5.2 yields an estimate of
PV � 0�095 for the probability of activation of an unrelated fault in a 2-version configuration,
and an estimate ofPRV � 0�0167 for the probabilityof a related fault for the by-case data. The
by-frame data in Table 5.2 produces PV � 0�000026 and PRV � 1�3� 10�7 as estimates.

Next, the 12 versions were configured in sets of three programs. Table 5.3 shows the number
of times that 0, 1, 2, and 3 errors were observed in the 3-version configurations. The data from
Table 5.3 yields an estimate ofPV � 0�0958 for the probabilityof activation of an independent
fault in a 3-version configuration. Table 5.4 compares the probability of activation of 1, 2 and
3 faults as predicted by a model assuming independence between versions, with the observed
values. The observed frequency of two simultaneous errors is lower than predicted by the
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Table 5.3 Error characteristics for three-version configurations

Category BY-CASE BY-FRAME
Number of cases Frequency Number of cases Frequency

F0 - no errors 163370 0.7426 1161707015 0.99991790
F1 - single error 51930 0.2360 94835 0.00008163
F2 - two coincident 4440 0.0202 550 0.00000047
F4 - three coincident 260 0.0012 0 0.0
Total 220000 1.0000 1161802400 1.000000

Table 5.4 Comparison of independent model with observed data for 3 versions (by-case)

No. errors activated Independent model Observed frequency
0 0.7393 0.7426
1 0.2350 0.2360
2 0.0249 0.0202
3 0.0009 0.0012

independent model, while the observed frequency of three simultaneous errors is higher than
predicted. For this set of data we will assume therefore that PRV � 0 and will instead derive
an estimate for PRALL.

Using the assumption that PRV � 0, the probability that three simultaneous errors are
activated is given by

F3 � PV
3 � PRALL � PV

3PRALL� �5.9�

yielding an estimate of PRALL � 0�0003 for the by-case data.
The by-frame data in Table 5.3 produces PV � 0�000027 as an estimate. For this by-

frame data, when the failure probabilities which are predicted by the independent model are
compared to the actual data (Table 5.5), the observed frequency of two errors is two orders
of magnitude higher than the predicted probability. There were no cases for which all three
programs produced erroneous results. Thus, we will estimate PRALL � 0 and derive an
estimate for PRV � 1�57� 10�7.

The same 12 programs which passed the acceptance testing phase of the software develop-
ment process were analyzed in combinations of four programs, the results are shown in Table
5.6. The by-case data from Table 5.6 yields an estimate of PV � 0�106 for the probability
of activation of an unrelated fault in a 4-version configuration. Table 5.7 compares the prob-
ability of activation of 1, 2, 3 and 4 faults as predicted by a model assuming independence
between versions, with the observed values. The observed frequency of two simultaneous
errors is lower than predicted by the independent model, while the observed frequency of
three simultaneous errors is higher than predicted. For this set of data we will assume that

Table 5.5 Comparison of independent model with observed data for 3 versions (by-frame)

No. errors activated Independent model Observed frequency
0 0.999919 0.999918
1 0.000081 0.0000816
2 2� 10�9 5� 10�7

3 2� 10�14 0.0
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Table 5.6 Error characteristics for four-version configurations

Category BY-CASE BY-FRAME
Number of cases Frequency Number of cases Frequency

F0 - no errors 322010 0.65052 2613781410 0.9998951
F1 - single error 152900 0.30889 2719200 0.001040
F2 - two coincident 16350 0.03303 2070 0.00000079
F3 - three coincident 3700 0.00747 0 0.0
F4 - four coincident 40 0.00008 0 0.0
Total 495000 1.0000 2614055400 1.000000

Table 5.7 Comparison of independent model with observed data for 4 versions (by-case)

No. errors activated Independent model Observed frequency
0 0.63878 0.65052
1 0.30296 0.30889
2 0.05388 0.03303
3 0.00426 0.00747
4 0.00013 0.00008

PRV � 0. The observed frequency of four simultaneous failures is also lower than predicted
by the independent model, so we will also assume that PRALL � 0. The by-frame data in
Table 5.6 produces PV � 0�000026 and PRALL � 1�3� 10�7 as estimates.

Table 5.8 summarizes the parameters estimated from the Lyu-He data. The parameter values
for the three systems were applied to the fault tree models shown in Figure 5.10, using both
the by-case and by-frame data. The predicted failure probability using the derived parameters
in the fault tree models agrees quite well with the observed data, as listed in Table 5.8. The
observed failure frequence for the 4-version configuration is difficult to estimate because of
the possibility of a 2-2 split vote. The data for the occurrences of such a split are not available.
Thus the observed failure frequency in Table 5.8 is a lower bound (it is the sum of the observed
cases of 3 or 4 coincident failures). If the data on a 2-2 split were available, then the probability
of a 2-2 split would be added to the observed frequency values listed in Table 5.8. For the
by-frame data, for example, if 5% of the 2 coincident failures produced similar wrong results,
then the model and the observed data would agree quite well.

The parameters are derived from a single experimental implementation and so may not be
generally applicable. Similar analysis of other experimental data will help to establish a set of
reasonable parameters that can be used in models that are developed during the design phase
of a fault tolerant system.

5.7 QUANTITATIVE SYSTEM-LEVEL ANALYSIS

This section contains a quantitative analysis of the system-level reliability and safety models
for the DRB, NVP and NSCP systems. The software parameter values used in this study are
those derived from the Lyu-He data, with the exception of values for decider failure. For the
DRB system models, the parameter values from the 2-version configurations are used; for the
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Figure 5.10 Fault tree models for 2, 3 and 4 version systems

Table 5.8 Summary of parameter values derived from Lyu-He data

2-version model 3-version model 4-version model
BY-CASE DATA

PV � 0�095 PV � 0�0958 PV � 0�106
PRV � 0�0167 PRV � 0 PRV � 0

PRALL � 0�0003 PRALL � 0
Predicted failure probability (from the model)

0�0265 0�0262 0�0044
Observed failure probability (from the data)

0�0256 0�0214 0�0076
BY-FRAME DATA

PV � 0�000026 PV � 0�000027 PV � 0�000026
PRV � 1�3� 10�7 PRV � 1�57� 10�7 PRV � 1�3� 10�7

PRALL � 0 PRALL � 0
Predicted failure probability (from the model)

1�31� 10�7 4�73� 10�7 7�8� 10�7

Observed failure probability (from the data)
1�32� 10�7 4�73� 10�7 0
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NVP system models, we use the parameters derived from the 3-version configurations, while
the NSCP model uses the parameters derived from the 4-version configurations.

Since no decider failures were observed during the experimental implementation, it is
difficult to estimate this probability. The decider used for the recovery block system is an
acceptance test, and for this application is likely to be significantly more complex than the
comparator used for the NVP and NSCP systems. For the sake of comparison, for the by-case
data we will assume that the comparator used in the NVP and NSCP systems has a failure
probability of only 0.0001 and that the acceptance test used for the DRB system has a failure
probability of 0.001 . For the by-frame data, the decider is considered to be extremely reliable,
with a failure probability of 10�7 for all three systems. If the decider were any less reliable,
then its failure probability would dominate the system analysis, and the results would be far
less interesting.

Typical permanent failure rates for processors range in the 10�5 per hour range, with
transients perhaps an order of magnitude larger. Thus we will use �p � 10�5 per hour for the
Markov model.

In the by-case scenario, a typical test case contained 5280 time frames, each time frame
being 50 ms., so a typical computation executed for 264 seconds. Assuming that hardware
transients occur at a rate �t � �10�4�3600� per second , we see that the probability that a
hardware transient occurs during a typical test case is

1� e��t�264 seconds � 7�333� 10�6 �5.10�

We conservatively assume that a hardware transient that occurs anywhere during the execution
of a task disrupts the entire computation running on the host.

For the by-frame data, the probability that a transient occurs during a time frame is

1� e��t�0�05 seconds � 1�4� 10�9 �5.11�

If we further assume that the lifetime of a transient fault is one second, then a transient can
affect as many as 20 time frames. We thus take the probability of a transient to be 20 times the
value calculated in equation 5.11, or 2�8� 10�8.

Finally, for both the by-case and by-frame scenarios, we assume a fairly typical value for
the coverage parameter in the Markov model, c � 0�999.

5.7.1 Analysis Results

Figure 5.11 compares the predicted reliability of the three systems. Under both the by-case
and by-frame scenarios, the recovery block system is most able to produce a correct result,
followed by NVP. NSCP is the least reliable of the three. Of course, these comparisons are
dependent on the experimental data used and assumptions made. More experimental data and
analysis are needed to enable a more conclusive comparison.

Figure 5.12 gives a closer look at the comparisons between the NVP and DRB systems
during the first 200 hours. The by-case data shows a crossover point where NVP is initially
more reliable but is later less reliable than DRB. Using the by-frame data, there is no crossover
point, but the estimates are so small that the differences may not be statistically significant.

Figure 5.13 compares the predicted safety of the three systems. Under the by-case scenario,
NSCP is the most likely to produce a safe result, and DRB is an order of magnitude less safe
than NVP or NSCP. This difference is caused by the difference in assumed failure probability
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Figure 5.11 Predicted reliability, by-case data (left) and by-frame data (right)

0.02615

0.0262

0.02625

0.0263

0.02635

0.0264

0.02645

0.0265

0.02655

0.0266

0 50 100 150 200

P
ro

ba
bi

lit
y 

of
 U

na
cc

ep
ta

bl
e 

R
es

ul
t

time (hours) 

DRB
NVP

0

2e-06

4e-06

6e-06

8e-06

1e-05

1.2e-05

1.4e-05

0 50 100 150 200

P
ro

ba
bi

lty
 o

f U
na

cc
ep

ta
bl

e 
R

es
ul

t

time (hours) 

DRB
NVP

Figure 5.12 Predicted reliability, by-case data (left) and by-frame data (right)
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Figure 5.13 Predicted safety, by-case data (left) and by-frame data (right)
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Table 5.9 Sensitivity to parameter change for DRB reliability model

BY-CASE Data BY-FRAME Data
Parameter Result Percent Change Result Percent Change
Nominal 0.0265 2�31� 10�7

PV � 10% 0.0284 7% 2�31� 10�7 no change
PRV � 10% 0.0282 6�2% 2�44� 10�7 5�6%
PD � 10% 0.0266 1�9% 2�41� 10�7 4�3%

Table 5.10 Sensitivity to parameter change for NVP reliability model

BY-CASE Data BY-FRAME Data
Parameter Result Percent Change Result Percent Change
Nominal 0.02617 5�73� 10�7

PV � 10% 0.03137 19�9% 5�74� 10�7 0�2%
PRV � 10% 6�20� 10�7 8�2%
PRALL � 10% 0�0262 0�1%
PD � 10% 0.02618 0�04% 5�83� 10�7 1�7%

associated with the decider. Interestingly, the opposite ordering results from the by-frame
data. Using the by-frame data to parameterize the models, DRB is predicted to be the safest,
while NSCP is the least safe. The reversal of ordering between the by-case and by-frame
parameterizations is caused by the relationship between the probabilities of related failure and
decider failure. The by-case data parameter values resulted in related fault probabilities that
were generally lower than the decider failure probabilities, while the by-frame data resulted
in related fault probabilities that were relatively high. In the safety models, since there were
fewer events that lead to an unsafe result, this relationship between related faults and decider
faults becomes significant.

5.8 SENSITIVITY ANALYSIS

5.8.1 Sensitivity of Reliability Model

To see which parameters are the strongest determinant of the system reliability, we increased
each of the non-zero failure probabilities in turn by 10 percent and observed the effect on
the predicted unreliability. The sensitivity of the predictions to a ten-percent change in input
parameters for the DRB model is shown in Table 5.9. It can be seen that the DRB model is
most sensitive to a change in the probability of an unrelated fault for the by-case data, and to
a change in the probability of a related fault for the by-frame data.

Table 5.10 shows, the change in the predicted unreliability (at t � 0) when each of the
non-zero NVP nominal parameters is increased. For the by-case data, a ten percent increase
in the probability of an unrelated software fault results in a twenty percent increase in the
probability of an unacceptable result. A ten-percent increase in the probability of a related or
decider fault activation has an almost negligible effect on the unreliability. For the by-frame
data, the proabilityof a related fault has the largest impact on the probabilityof an unacceptable
result. This is similar to the DRB model.

The sensitivity of the NSCP model to the nominal parameters is shown in Table 5.11. The
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Table 5.11 Sensitivity to parameter change for NSCP reliability model

BY-CASE Data BY-FRAME Data
Parameter Result Percent Change Result Percent Change
Nominal 0.04041 8�83� 10�7

PV � 10% 0.04833 19�6% 8�83� 10�7

PRV � 10% 9�61� 10�7 8�8%
PD � 10% 0.04042 0�02% 8�93� 10�7 2�1%

Table 5.12 Sensitivity to parameter change for NVP safety model

BY-CASE Data BY-FRAME Data
Parameter Result Percent Change Result Percent Change
Nominal 4� 10�4 5�71� 10�7

PRV � 10% 6�18� 10�7 8�2%
PRALL � 10% 4�3� 10�4 7�5%
PD � 10% 4�1� 10�4 2�5% 5�81� 10�7 1�7%

fault tree models and the sensitivity analysis show that NSCP is vulnerable to related faults,
whether they involve versions in the same error confinement area or not.

5.8.2 Sensitivity of Safety Model

The sensitivity analysis for the DRB safety model is simple, as the only software fault
contributing to an unsafe result is a decider failure. A ten-percent increase in the decider
failure probability leads to a ten percent increase in the probability of an unsafe result.

Table 5.12 shows the sensitivity of the safety prediction to a ten-percent change in the
non-zero parameter values. For the by-case data, the prediction is sensitive to a change in
either the decider failure probability or the probability of a related fault affecting all versions.
For the by-frame data, the prediction is much more sensitive to a change in the probability of
a two-way related fault than to a change in the decider failure probability.

Table 5.13 shows the sensitivity of the safety analysis to a change in a parameter value. A
change in the decider failure probability directly affects the system safety prediction for the
by-case parameter values.

Table 5.13 Sensitivity to parameter change for NSCP safety model

BY-CASE Data BY-FRAME Data
Parameter Result Percent Change Result Percent Change
Nominal 1� 10�4 1� 10�7

PRV � 10% 1� 10�7 no change
PD � 10% 1�1� 10�4 10% 1�1� 10�7 10%
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Figure 5.14 Effect of equal decider failure probabilities on reliability analysis, by-case data (left) and
by-frame data (right)
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Figure 5.15 Effect of equal decider failure probabilities on safety analysis, by-case data (left) and
by-frame data (right)

5.9 DECIDER FAILURE PROBABILITY

The probability of a decider failure may be an important input parameter to the comparative
analysis of software fault tolerant systems. In this section we vary the decider failure probability
to assess its importance. Figures 5.14 and 5.15 show the unreliability and unsafety of the three
systems as the probabilityof decider failure is varied. For these analyses, we set the probability
of failure for the decider to the same value for all three models, and show the probability of
an unacceptable or unsafe result at time t � 0.

For the parameters derived from the by-case experimental data, if all three systems have the
same probability of decider failure, it seems that DRB and NVP are nearly equally reliable,
and that DRB and NSCP are nearly equally safe. In fact, the safety analysis plots for DRB
and NSCP appear collinear. Under the by-frame parameterization, the probability of related
faults at first dominates the decider failure probability and provides the same relative ranking
for NSCP, NVP and DRB, from least to most reliable and safe.

It is not reasonable for this application to assume equally reliable deciders for both DRB
and NVP or NSCP. The decider for the DRB system is an acceptance test, while that for the
NVP is a simple voter and NSCP a simple comparator. For this application, it seems likely that
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Figure 5.16 Effect on reliability of varying acceptance test failure probability for DRB, (while holding
that of NVP constant), by-case data(left) and by-frame data (right)
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Figure 5.17 Effect on safety of varying acceptance test failure probability for DRB, (while holding
that of NVP constant), by-case data(left) and by-frame data (right)

an acceptance test will be more complicated than a majority voter. The increased complexity
is likely to lead to a decrease in reliability, with a corresponding impact on the reliability and
safety of the system. In fact, reliability of DRB will collapse if the acceptance test in DRB is
as complex and unreliable as its primary or secondary software versions. For example, if the
probability of failure in acceptance test (PD) is close to PV , which is 0.095 by-case or 0.0004
by-frame, then Figure 5.14 indicates that DRB will initially perform the worst comparing with
NVP and NSCP.

Figure 5.16 shows how the reliability comparison between DRB and NVP is affected by a
variation in the probability of failure for the acceptance test. Figure 5.17 shows how the safety
comparison between DRB and NSCP is affected by a variation in the probability of failure for
the acceptance test. The parameters for the NVP and NSCP analysis were held constant, and
the parameters (other than the probability of acceptance test failure) for the DRB model were
also held constant. Figures 5.16 and 5.17 show that the acceptance test for a recovery block
system must be very reliable for it to be comparable in reliability to a similar NVP system, or
comparable in safety to an NSCP system.
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5.10 CONCLUSIONS

This chapter proposed a system-level modeling approach to study the reliability and safety
behavior of three types of fault-tolerant architectures: DRB, NVP and NSCP. Using a recent
fault-tolerant software project data, we parameterized the models and displayed the probabil-
ities of unacceptable results and unsafe results from each of the three architectures.

We used two types of data to parameterize the models. The “by-case” data could detect error
only at the end of a test case, each representing a complete simulation profile of five thousand
program iterations, while the “by-frame” data performed error detection and recovery at the
end of each iteration. A drastic improvement of safety and reliability were observed in the
second situation where a finer and more frequent error detection mechanism was assumed by
the decider for each architecture.

In comparing reliability analysis of the three different architectures, DRB performed better
than NVP which in turn was better than NSCP. DRB also enjoyed the feature of relative
insensitivityto time in its reliability function. This comparison, however, had to be conditioned
by the probability of decider failures. In the safety analysis NSCP became the best in the by-
case parameters, followed by NVP and then DRB. In the by-frame data the order was reversed
again. As explained in the text, this phenomenon was due to the relative probabilities of related
faults and decider failure.

We also performed a sensitivity analysis over the three models. It was noted from the by-
case data that varying the probability of an unrelated software fault had the major impact to the
system reliability, while from the by-frame data, varying the probability of a related fault had
the largest impact. This could be due to the fact that the by-frame data compares results in a
finer granularity level, and was thus more sensitive to related faults among program versions.

In the decider failure analysis, the impact of decider was clearly seen. It was noted that
related faults were the dominant cause of failure when the decider failure probability was low,
then the decider failure probability dominated as it increased. Moreover, if the acceptance
test in DRB was as unreliable as its application versions, DRB lost its advantage to NVP and
NSCP.

Finally, we believe more data points are necessary for at least two purposes. First, the
modeling methodology must be validated by considering other experimental data and models
for related or correlated faults. Second, the current parameters were derived from a single
experimental implementation and so may not be generally applicable. Similar analysis of
other experimental data will help to establish a set of reasonable parameters that can be used
in a broader comparison of these and other fault-tolerant architectures.
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