
Online App Review Analysis for Identifying Emerging Issues
Cuiyun Gao, Jichuan Zeng, Michael R. Lyu, and Irwin King

Shenzhen Research Institute of The Chinese University of Hong Kong, China
The Chinese University of Hong Kong, China
{cygao,jczeng,lyu,king}@cse.cuhk.edu.hk

ABSTRACT
Detecting emerging issues (e.g., new bugs) timely and precisely is
crucial for developers to update their apps. App reviews provide an
opportunity to proactively collect user complaints and promptly
improve apps’ user experience, in terms of bug fixing and feature
refinement. However, the tremendous quantities of reviews and
noise words (e.g., misspelled words) increase the difficulties in ac-
curately identifying newly-appearing app issues. In this paper, we
propose a novel and automated framework IDEA, which aims to
IDentify Emerging App issues effectively based on online review
analysis. We evaluate IDEA on six popular apps from Google Play
and Apple’s App Store, employing the official app changelogs as
our ground truth. Experiment results demonstrate the effective-
ness of IDEA in identifying emerging app issues. Feedback from
engineers and product managers shows that 88.9% of them think
that the identified issues can facilitate app development in practice.
Moreover, we have successfully applied IDEA to several products
of Tencent, which serve hundreds of millions of users.

CCS CONCEPTS
• Software and its engineering→ Dynamic analysis; • Informa-
tion systems→ Web and social media search;

KEYWORDS
App reviews, online analysis, emerging issues

ACM Reference format:
Cuiyun Gao, Jichuan Zeng, Michael R. Lyu, and Irwin King. 2018. Online
App Review Analysis for Identifying Emerging Issues. In Proceedings of
ICSE ’18: 40th International Conference on Software Engineering , Gothenburg,
Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180218

1 INTRODUCTION
App developers are eager to know what is going on with their apps
after published [38]. Timely and precisely identifying the emerging
issues of apps is of great help for app developers to update their
apps, such as fixing bugs, refining existing features, and adding
new functions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180218

User reviews are direct feedback from the users who have expe-
rienced the apps, and reflect the instant user experience [33]. The
emerging issues detected from user reviews, such as the existing
bugs (e.g., crashes) and unfavorable app features (e.g., too many
ads) [13], can provide informative evidence for app developers in
maintaining their apps and scheduling the app updates. For exam-
ple, Facebook Messenger received massive one-star ratings (the
lowest rating) in August, 2014, accounting for nearly 94% of all its
reviews on Apple’s App Store1, and suffered a large loss of users [8],
since the version contained severe privacy issues (e.g., accessing
the photos and contact numbers in users’ phones). However, such
issues had already been flushed out with complaints from over
12,600 user reviews on App Store one month ago. The situation
could be effectively alleviated if the emerging issues were timely
detected from user reviews. Therefore, user reviews provide an
effective and efficient way to identify the emerging issues of apps,
which would be a significant help to the developers.

The characteristics of user reviews make accurate issue detection
very challenging. First, app reviews are generated everyday in large
volume. Manual analysis is prohibitively time-consuming for apps
with large numbers of reviews (e.g., Facebook receives more than
10,000 reviews in Google Play every day [2]). Second, app reviews
contain numerous noise words, such as misspelled words, repetitive
words, and non-Englishwords. Also, they are often shorter in length,
since most of them are written by users via mobile terminals. Third,
only 30% of the reviews provide informative user opinions for app
updates [6]. Furthermore, detailed and newly-appearing app issues
are hard to be predefined, because they are diverse for different apps
and versions. Previous research mainly focuses on reducing the
manual power in extracting software aspects or user preferences,
such as establishing dictionaries for preprocessing reviews [42],
filtering out non-informative reviews [6], or classifying reviews
to predefined topics [40]. However, effectively detecting emerging
issues from user reviews has rarely been studied.

We propose a novel and automated framework IDEA for detecting
emerging issues/topics2 based on online review analysis. IDEA takes
reviews of different versions as input. To track the topic variations
over versions, a novel method AOLDA (Adaptively Online Latent
Dirichlet Allocation) is employed for generating version-sensitive
topic distributions. The emerging topics are then identified based on
the typical anomaly detection method. To make the topics compre-
hensible, IDEA labels each topic with the most relevant phrases and
sentences based on an effective ranking scheme considering both
semantic relevance and user sentiment. The prioritized topic labels
are the app issues identified. Finally, IDEA visualizes the variations
of app issues along with versions, and highlights the emerging ones
for better understanding.
1The App Store in this paper refers to Apple’s App Store.
2The topics and issues are semantically equal in this paper.

https://doi.org/10.1145/3180155.3180218
https://doi.org/10.1145/3180155.3180218

To verify the e�ectiveness ofIDEA, we consider the o�cial app
changelogs as ground truth, since they encompass the primary
changes of the releases and represent the issues concerned by de-
velopers. Our experiments are conducted on six popular apps, with
two of them from App Store and the others from Google Play. We
compareIDEAwith the method based on OLDA (Online Latent
Dirichlet Allocation) [1], one classical method for emerging issue
detection. Results indicate that the average precision, recall, and
F-score ofIDEAon the subject apps are 60.4%, 60.3%, and 58.5% re-
spectively, which increases the F-score of the OLDA-based method
by 72.0%. We also conduct a user survey in Tencent, indicating that
88.9% of respondents think that the identi�ed issues ofIDEAcan
facilitate app development in practice. Moreover, we applyIDEAto
four Tencent3 products which serve hundreds of millions of users
worldwide, and con�rm the e�ectiveness and e�ciency ofIDEAin
industrial practice.

The contributions of our paper are elaborated as below.
� We propose a framework calledIDEAto automatically iden-

tify emerging issues from app reviews e�ectively. Also,IDEA
is an online analysis tool and can process new app reviews
in a timely fashion.

� We propose a novel method called AOLDA for online review
analysis, which adaptively combines the topics of previous
versions to generate topic distributions of current versions.

� We visualize the variations of the captured (emerging) app
issues along with versions, with the emerging ones high-
lighted. We publish the code and review data on website4.

� We verify the e�ectiveness ofIDEAbased on the app reviews
of six popular apps which are from di�erent categories and
platforms. The survey and application in Tencent also vali-
date the performance of our framework in practice.

The remainder of the paper is organized as follows. Section 2
describes the motivation and the background of our work. Sec-
tion 3 outlines the overall picture and details each step involved in
the framework. Section 4 illustrates experiment results. Section 5
presents the practical usage of our framework. Section 6 discusses
possible limitations, with related work introduced in Section 7.
Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Emerging App Issues
For an app issue to be considered an emerging issue, it must be
(heavily) discussed in this time slice but not previously [16]. Figure 1
(a) presents the issue distributions of Facebook Messenger in three
periods (March-April, May-June, and July-August), based on the
manually labelled 100 review samples from each period. Generally,
the issue distributions are nearly consistent along with periods,e.g.,
from March-April to May-June in Figure 1 (a). However, emerging
issues can in�uence the issue distribution of one period, creating
signi�cant di�erences with those of previous periods in terms of
proportion. For example, the proportion of the crash issue presents a
huge increase during the July-August period. We further investigate
the number of reviews containing the keyword �crash� along with

3The company has many popular products, such as WeChat, QQ, and Honor of Kings,
and serves billions of users worldwide.
4https://github.com/ReMine-Lab/IDEA

their timing, and present the results in Figure 1 (b). The volume of
the crash issue shows a sudden increase around July-August, which
signi�es that the issue tends to be an emerging issue during that
period.

De�nition 2.1 (Emerging Issues in User Reviews).An issue in a
time slice is called an emerging issue if it rarely appears in previous
slice but is mentioned by a signi�cant proportion of user reviews
in current slice.

In De�nition 2.1, the �time slice�, the degree of �rarely�, and
the �signi�cant proportion� can be de�ned according to di�erent
situations. For example, the �time slice� in this paper corresponds to
the app version. Based on the detected emerging issues, developers
can locate the buggy features of their apps e�ciently, update the
apps accordingly, and ultimately improve the user experience.

(a) Issue distribution in Facebook Messenger.

(b) The number of reviews containing the keyword �crash�.

Figure 1: Illustration of emerging issues.

2.2 Online Review Analysis
Online review analysis (ORA) is an automated way to acquire and
process user reviews in real time as reviews are arrived continuously.
As shown in Figure 2, ORA takes the reviews of slicet (current review
slice) as input, and outputs analysis results, such as tracking user
preference and detecting emerging issues. In this way, the urgent
user concerns incarnated by app reviews can be captured by ORA
in a timely manner and fed back to developers for instant bug �xing
or feature improvement. Thus, ORA is a crucial component in the
closed cycle of app development.

Figure 2: Closed cycle for app development.

2

Currently, most of the app issues mined from user reviews are
manually settled or de�ned [24, 40, 42], such as privacy and GUI,
which are usually general categories. Although such de�nition
facilitates the process of task assignment to individuals, it is un-
favorable for detecting newly-presented and more detailed issues
(e.g., noti�cation center). Thus, for detecting emerging issues, ORA
is a practical way due to its timeliness and no need for prede�ned
issues, which has rarely been studied previously.

2.3 App Changelogs
App changelogs describe the noticeable modi�cations of the latest
versions for attracting users to install and experience new releases.
Similar to user reviews. changelogs also correspond to speci�c ver-
sions. Generally, developers write into the changelogs with infor-
mation related to whether the apps are adding or removing features,
and whether the apps have made improvements with certain de-
vices or to speci�c bugs. Figure 3 illustrates a sample changelog of
NOAA Radar Pro, a weather alerts & forecast app in App Store.

Figure 3: Changelog of NOAA Radar Pro. The rectangles
highlight two key terms which represent the major changes
of Version 3.16.

As Figure 3 indicates, the new version introduces new function-
ality (i.e., weather reporting) and re�nes performance issues. The
delivered changes exhibit the issues that are concerned by develop-
ers. Although the changelogs may not cover all the modi�cations
to the releases, they represent a lower bound and the prominent
part of the changes. Hence, changelog is a reasonable ground truth
for verifying whether the extracted emerging issues are helpful for
developers.

3 METHODOLOGY

Figure 4: Framework of IDEA.

In this section, we �rst outline the overall framework ofIDEA
in Figure 4 and then elaborate on the four components involved
in the framework. Each time, in the �rst stage (Part A in Figure 4),
IDEApreprocesses a version of raw reviews from the review stream
for reducing noisy words and non-informative words, and extracts
phrases for subsequent analysis (Section 3.1). In the second stage

(Part B in Figure 4), the proposed algorithm AOLDA captures the
topic distributions of each version by considering the topics in
previous versions, based on which emerging topics are identi�ed
using anomaly discovery (Section 3.2). Then, to interpret the topics
(Part C in Figure 4),IDEAemploys the meaningful phrases and sen-
tences as candidates to label each topic according to their semantic
relevance and user sentiment (Section 3.3). The topic labels are the
identi�ed app issues. Finally (Part D in Figure 4),IDEAvisualizes
the app issues along with the di�erent versions, and highlight the
emerging ones for better understanding (Section 3.4).

3.1 Preprocessing
Since app reviews are generally submitted via mobile terminals
and written using limited keyboards, they contain massive noisy
words, such as casual words, repetitive words, misspelled words,
and non-informative words (e.g., the words simply describing users'
feelings). In the following, we introduce our rule-based methods for
formatting words, the phrase extraction process, and our �ltering
method for reducing non-informative words.

3.1.1 Word Forma�ing.We �rst convert all the words in the
review collection into lowercase, and then stem each word into
its original form. We employ the preprocessing method in [26]
for lemmatization. We then replace all digits with �<digit>�. Since
new terms and casual words would continuously increase in user
reviews, we do not employ the dictionaries provided by [42] for
avoiding over correction. We adopt the rule-based methods based
on [42, 26] to rectify repetitive words, misspelled words, and non-
English words.

3.1.2 Phrase Extraction.Since phrases (mainly referring to two
consecutive words in our paper) are employed in Part C ofIDEAfor
interpreting topics, they should be extracted in the preprocessing
step and trained along with all the other words in Part B. In this
way, we can capture the semantics of each phrase, based on which
we can label the topics with the most relevant phrases. Since the
topic labels in phrases should be meaningful and comprehensible,
we use a typical phrase extraction method based on PMI (Point-
wise Mutual Information) [35], which is e�ective in identifying
meaningful phrases based on co-occurrence frequencies:

PMI(wi ;wj) = log
p(wi wj)

p(wi)p(wj)
; (1)

wherep(wi wj) indicates the co-occurrence probability of the phrase
wi wj andp(wi) (or p(wj)) represents the probability of the word
wi (or wj) in the whole review collection. Higher PMI values ex-
hibit that the combination of the two words is more likely to be a
meaningful phrase. We extract the meaningful phrases by exper-
imentally set a threshold for PMI. The phrases with PMIs larger
than the threshold are extracted.

3.1.3 Filtering.The �ltering step aims to reduce the non-informative
words, such as emotional words (e.g., �bad� and �nice�), abbrevia-
tions (e.g., �asap�), and useless words (e.g., someone). Non-informative
words are summarized by two researchers from 1,000 reviews,
which are also referred to asprede�ned stop words. The box be-
low lists 18 of the total 78 non-informative words due to space
limitations. Theprede�ned stop wordsare �ltered out together with

3

the stop words provided by NLTK [34]. We do not employ the
supervised method in [6] for �ltering, since in this work labeling
massive non-informative reviews requires a great deal of manual
e�ort. Finally, all the remaining words and extracted phrases (where
the words in each phrase are connected with �_�) are fed into the
next step for emerging topic detection.

Prede�ned Stop Words: cool, �ne, hello, alright, poor, plz, pls, thank,
old, new, asap, someone, love, like, bit, annoying, beautiful, dear.

3.2 Emerging Topic Detection
In this section, we aim to detect the emerging topics of current
versions by considering the topics in previous versions. We �rst
introduce the proposed method AOLDA for adaptively online topic
modeling, from which we capture the topic evolutions along with
versions. We then present how we discover the emerging topics
(e.g., anomaly topics).

3.2.1 AOLDA - Adaptively Online Latent Dirichlet Allocation.
Online Latent Dirichlet Allocation (OLDA) [1] is a classic method
for tracking the topic variations of text streams, which models the
topics of texts in one time slice based on the topics of the last slice.
However, app reviews are typically short and contain massive noise
words. Such review features can in�uence the topic distributions in
consecutive versions with OLDA, and thereby decrease the perfor-
mance of emerging topic detection. To reduce the in�uence of noise
words and more accurately capture the topic evolution along with
versions, we propose an adaptively online topic modeling method,
AOLDA. The proposed AOLDA improves OLDA by adaptively com-
bining the topic distributions in previous versions. The details are
described below.

The preprocessed reviews are divided by version, denoted as
R = fR1;R2; :::;Rt ; :::g (wheret indicates thet -th version), and
input into AOLDA one by one. In AOLDA, each review is treated
as one document. The prior distributions over document-topic and
topic-word distributions are de�ned initially, represented as� and
� respectively.� determines the topic distributions of the terms in
the input. The number of the topics is speci�ed asK. For thek-th
topic, � t

k is the probability distribution vector over all the input
terms. We introduce the parameter - window sizew, which de�nes
the number of previous versions to be considered for analyzing
the topic distributions of the current version. The overview of the
model AOLDA is depicted in Figure 5.

Di�erent from OLDA, as Figure 5 shown, weadaptivelyinte-
grate the topic distributions of the previousw versions, denoted
asf � t � 1; :::;� t � i ; :::;� t � w g, for generating the prior� t of thet -th
version. Theadaptiveintegration refers to summing up the topic
distributions of di�erent versions with di�erent weights
 t ; i :

� t
k =

wX

i =1

 t ; i

k � t � i
k ; (2)

wherei denotes thei -th previous version (1 � i � w). The weight

 t ; i

k is determined by the similarity of thek-th topic between the
(t � i)-th version and the(t � 1)-th version, which is calculated by
the softmax function [39]:

Figure 5: Overview of AOLDA. The red rectangle with dashed
dots highlights the adaptive integration of the topics of the
w previous versions for generating the prior � in the t -th ver-
sion. Rt is the review corpus in the t -th version. The dotted
lines indicate that we simplify the original LDA [4] steps for
clearness.

 t ; i
k =

exp(� t � i
k � � t � 1

k)
Pw

j =1exp(� t � j
k � � t � 1

k)
; (3)

where the dot product(� t � i
k � � t � 1

k) computes the similarity between
the topic distribution� t � i

k and the prior of the(t � 1)-th version� t � 1
k .

Such adaptive integration can endow the topics of the previous
versions with di�erent contributions to the topic distributions of
the current version.

3.2.2 Anomaly Discovery.Based on the captured topic evolution
by AOLDA, we identify the anomaly topics which present obvious
di�erences with those of the previous versions. The identi�ed anom-
aly topics are regarded as emerging topics. To obtain the di�erence
of thek-th topics between two consecutive versions,e.g., � t

k and
� t � 1

k , we employ the classic Jensen-Shannon (JS) divergence [19].
JS divergence measures the similarity between the two probability
distributions:

DJS(� t
k j j� t � 1

k) =
1
2

DKL(� t
k j jM) +

1
2

DKL(� t � 1
k j jM); (4)

whereM = 1
2(� t

k + � t � 1
k). The Kullback-Leibler (KL) divergence

DKL is utilized to measure the discrimination from one probability
distribution P to anotherQ, computed by:

DKL(PjjQ) =
X

i
P(i) log(P(i)=Q(i)); (5)

whereP(i) is thei -th item in P. Higher JS divergence indicates that
the two topic distributions have a larger di�erence.

Based on the computed divergencesDJS between the topics of
consecutive versions, we capture anomaly topics by leveraging a
typical outlier detection method [37]. The method assumes that
the divergences follow a Gaussian distribution with the mean and
variance at� and � 2 respectively. The anomaly topics are then
detected by setting a threshold� . For thet -th version, the threshold
� t is dynamically de�ned according to the following steps.

4

1. We computeDJS of the previousw versions for each topic,
which generates aw � K matrix (whereK is the number of
topics).

2. We compute the mean� and variance� 2 of all the values in
the computedDJS matrix.

3. We set the threshold� t as� t = � + 1:25� , where the coe�-
cient 1:255 is experimentally set for accepting 10% of topics
as anomaly topics, as shown in Figure 6.

Figure 6: Gaussian distribution for anomaly discovery. The
shaded area means the integral of the Gaussian distribution,
which equals 90%. The topics with divergence larger than � t

are considered as emerging topics.

For thet -th version, the topics with divergences higher than the
de�ned threshold� t are regarded as emerging topics.

3.3 Topic Interpretation
The topics based on AOLDA are represented as the probability dis-
tributions over all the input terms. One snapshot of the top �ve
terms to each topic is illustrated in Table 1. By only observing a
few words, it would be non-trivial for developers to capture the
meaning of the topics. In this section, we aim to interpret the topics
automatically. To interpret each topic, we can utilize words, phrases,
sentences, or entire reviews. However, single words may be am-
biguous in semantics and cannot display the complete meanings
of the topic. For example, we list the top �ve relevant words for
each of the four topics of YouTube, as shown in Table 1, although
both the words �video� and �work� are most relevant to Topics 2
and 4, these two topics may deliver di�erent meanings,e.g., Topic
2 is related to the video descriptions and Topic 4 is about loading
videos. Moreover, one review may complain about several issues.
For example, one Instagram user complains about the videos and
stories in one review:Videos don't post. Videos don't load. Stories
disappear all the time. Therefore, topic labels in words or reviews
may not be helpful in accurately capturing the semantics of the
topics. To render the topics comprehensible, we employ the most
relevant phrases and sentences to label each topic in this section.

3.3.1 Candidate Extraction.We obtain candidate phrases and
sentences for labeling topics.

Phrase Candidate: The candidates of the phrase labels are gen-
erated based on the extracted phrases in Section 3.1.Three rules
are employed to identify more meaningful phrases: 1) Length limit:
The length of each word in the phrase should be no less than three;
2) Stop word limit: The phrase should not contain words that are in
the stop word list of NLTK [34]; and 3) Part-Of-Speech limit: The
5The coe�cient can be adjusted according to the percentage of anomaly topics to be
discovered. We use1:25here for accepting 10% of the total topics as anomalies.

Table 1: Top �ve terms for each topic of YouTube.

Topic Topic 1 Topic 2 Topic 3 Topic 4

Term

comment link back load
say video also video

reply open button even
try work change work

error description go back take

phrase should include at least one noun or verb, and no adverbs
(e.g., �here�) or determiners (e.g., �the�).

Sentence Candidate:We employ the reviews before the �lter-
ing step in Section 3.1, starting by chunking them into sentences
based on NLTK's punkt tokenizer [36]. Then we retrieve sentences
with more than four words, during which the noisy sentences (such
asso far so badandgreat one) are �ltered out. The remaining sen-
tences are regarded as our sentence candidates.

3.3.2 Topic Labeling.The topic labeling method is a ranking
method, which considers two aspects: the semantic similarity be-
tween the candidates and the topics, and also the user sentiment of
the candidates.

Semantic Score:Good topic labels should cover the latent mean-
ing of the topic [30]. The semantic score measures the semantic
similarity between the candidate and the topic. Moreover, the la-
bels of di�erent topics should be discriminative and cover di�erent
aspects of input reviews, instead of delivering overlapping infor-
mation. Hence, the semantic score of one candidate involves the
semantic similarity to the target topic and also the semantic similar-
ities to all the other topics. A good topic label should be similar to
the target topic and also di�erent from the other topics in semantics.

We employ the method in [30] to measure the semantic similarity
between one phrase candidatea and the target topic� t

k , de�ned as:

sim(a; � t
k) = � DKL(ajj� t

k)

�
X

w
p(wj� t

k) log
p(a;wjC)

p(ajC)p(wjC)
;

(6)

wherep(wj� t
k) is the probability of termw in the topic distribution

� t
k .p(wjC) andp(ajC) denote the percentages of the termsw anda in

the whole review collectionC, respectively. Thep(a;wjC) indicates
the co-occurrence probability of the two termsa and w in the
collectionC. For the sentence candidatess, we utilize Equation (7)
to calculate the similarity.

sim(s; � t
k) = � DKL(sjj� t

k)

�
X

w
p(wj� t

k) log
p(wjs)=len(s)

p(wj� t
k)

;
(7)

wherep(wjs) can be calculated by the term frequency ofw in the sen-
tences. The semantic score is then de�ned by combiningsim(l ; � t

k)
with the similarity scores to other topics

P
j 6=k sim(l ; � t

j), which
means the labell should be semantic close to the topic distribution
� t

k and discriminate from other topic distributions.

Scoresem(l ; � t
k) = sim(l ; � t

k) �
�

K � 1

X

j 6=k
sim(l ; � t

j); (8)

5

wherel can be a phrase candidatea or sentence candidates, and
K is the number of topics. The parameter� is utilized to adjust
the penalty for the semantic similarities to other topics. Larger
� signi�es that the candidates that are more di�erent from other
topics.

Sentiment Score: The topic labels should re�ect users' con-
cerns. Generally, the reviews with low ratings tend to express poor
user experience and app issues [6], and the reviews with longer
lengths are more likely to provide valuable information to devel-
opers. Therefore, we compute the sentiment scoreScoresen of one
candidatel by combining the user ratings and review lengths:

Scoresen(l) = exp(�
rl

log(hl)
); (9)

wherel can be a phrase candidate or sentence candidate.r andh
denote the average user rating and the average word length of the
reviews containingl , respectively.

Overall Score: We prioritize the candidates for each topic based
on their semantic scores and sentiment scores. The overall score
Score(l ; � t

k) is de�ned as:

Score(l ; � t
k) = Scoresem(l ; � t

k) + � Scoresen(l); (10)

where the weight� is to balance the two aspects. In this manner, all
the topics including the detected emerging topics are labeled with
the prioritized candidates. The topic labels are the identi�ed app
issues. For each topic, there is a trade o� between the number of
prioritized labels and the cost of user comprehension (e.g., too many
labels usually spend users more time in understanding the meaning
of the topic). According to the survey [43], three labels are the
moderate choice for users to comprehend the topics. Therefore, for
one topic, we choose thethree most relevant phrases and sentences
respectively as labels for each topic.

3.4 Visualization
In this part, we visualize the the evolution of app issues (i.e., topic
labels) along with versions for better understanding. We employ an
issue riverto display issue variations. Figure 7 presents one example
of YouTube for iOS. All the app issues constitute one river and each
branch of the river indicates one topic. By moving the mouse over
one topic, one can track detailed issue changes along with versions,
where the emerging issues are highlighted as shown in Figure 7.
The app issues with wider branches are of greater concern to users,
where thewidth of thek-th branch in thet -th version is de�ned as:

widtht
k =

X

a
logCount(a) � Scoresen(a); (11)

whereCount(a) is the count of the phrase labela in the review
collection of thet -th version, andScoresen(a) denotes the sentiment
score of the labela.

4 EXPERIMENTATION
We evaluate the performance ofIDEAin identifying emerging app
issues based on case studies. In this section, we explain how we
select the subject apps for experiments, the performance metrics,
and �nally the comparison results of di�erent methods. We focus
on answering the following three research questions.

Figure 7: Issue River of YouTube for iOS. The number of top-
ics K is set as 10, corresponding to 10 branches of the river.
The horizontal axis represents the app versions, and the
branches with larger widths indicate that the corresponding
issues are more cared about by users at those versions.

RQ1: What is the performance ofIDEAin identifying emerging
app issues?

RQ2: CanIDEAachieve better performance compared with other
methods?

RQ3: How do di�erent parameter settings impact the performance
of IDEA?

4.1 Dataset
We select the subject apps based on the following four criteria: The
apps are i) popular apps in the app markets - indicating that the
developers would update their apps regularly and the user reviews
can be collected from several consecutive versions; ii) apps from
di�erent categories and platforms - to ensure the generalization
of the proposed framework; iii) apps with enough user reviews -
which necessitates an automated analysis; and iv) apps with detailed
changelogs for most versions - to facilitate our validation process.

To obtain apps that satisfy the �rst three criteria, we randomly
inspect the apps ranked in the top 100 on either App Store or
Google Play according to App Annie [2], an app analytics platform.
Only the apps with more than 2,000 US reviews [6] are inspected
further, since signi�cant e�ort is required for manual analysis. To
�lter out the apps that do not meet the fourth criterion, we check
the historical changelogs of these apps. We eliminate apps with
more than �ve successive sketchy changelogs,i.e., the changelogs
provide no details related to what functionality had been changed
or how the user experience was being a�ected. One example of
sketchy changelogs is �Multiple bug �xes and improvements across
the entire app�, where the bugs and improvement are not concrete
enough for verifying prioritized app issues. Finally, we select six
subject apps, with the details illustrated in Table 2.

In Table 2, we list the subject apps with the app name, category,
platform, the number of reviews crawled, and the number of ver-
sions in the review collection. Overall, we obtain 164,026 reviews
(from August 2016 to April 2017) for the six apps, from 89 versions
in total. The apps are distributed in di�erent categories, with two

6

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Emerging App Issues
	2.2 Online Review Analysis
	2.3 App Changelogs

	3 Methodology
	3.1 Preprocessing
	3.2 Emerging Topic Detection
	3.3 Topic Interpretation
	3.4 Visualization

	4 Experimentation
	4.1 Dataset
	4.2 Performance Metrics
	4.3 Result of RQ1: Case Study
	4.4 Result of RQ2: Comparison Results with Different Methods
	4.5 RQ3: Effect of Different Parameter Settings

	5 IDEA in Practice
	5.1 User Survey
	5.2 Successful Story in Industrial Practice

	6 Threats to Validity
	7 Related Work
	7.1 App Review Mining
	7.2 Emerging Topic Detection

	8 Conclusion
	Acknowledgments

