
DEDIX 87 - A Supervisory System for
Design Diversity Experiments at UCLA

Algirdas Avizienis, Michael R. T. Lyu, Werner Schutz,
Kam-Sing Tso, Udo Voges

Dependable Computing and Fault-Tolerant Systems Laboratory
UCLA Computer Science Department

University of California
Los Angeles, CA 90024, USA

Abstract

To establish a long-term research facility for further experimental investigations of
design diversity as a means of achieving fault-tolerant systems, the DEDIX (DEsign
DIversity eXperiment) system, a distributed supervisor and testbed for multi-version
software, was designed and implemented by researchers at the UCLA Dependable Com­
puting and Fault-Tolerant Systems Laboratory. DEDIX is available on the Olympus
local network, which utilizes the Locus distributed operating system to operate a set of
several V AX lIn 50 computers at the UCLA Center for Experimental Computer Science.
DEDIX is portable to any machine which runs a Unix operating system. The DEDIX
system is described and its applications are discussed in this paper. A review of current
research is also presented.

1. Introduction

By early 1970s significant progress had been made in the development of
systems that tolerate physical faults that are due to random failures of com­
ponents or physical interference with the hardware of a system. At that time
it became clear that design faults, especially as represented by software
"bugs", presented the next challenge to the researchers in fault tolerance. A

U. Voges (ed.), Software Diversity in Computerized Control Systems
© Springer-Verlag/Wien 1988

130 Aviiienis et al

research effort to attain tolerance of design faults by means of multi-version
software was started at UCLA in early 1975. The method was first described
as "redundant programming" at the April 1975 International Conference on
Reliable Software in Los Angeles [Avizienis 1975], and was renamed as
"N-version programming" in the course of the next two years [Avizienis
1977]. The name "Multi-Version Software" (MVS) has also been used.
The entire UCLA design diversity research effort through mid-1985 has
been summarized in [A viZienis 1985b].

The N-version programming approach to fault tolerant software systems
employs functionally equivalent, yet independently developed software com­
ponents. These components are executed concurrently under a supervisory
system that uses a decision algorithm based on consensus to determine final
output values. From its beginning in 1975, the fundamental conjecture of the
MVS approach at UCLA has been that errors due to residual software faults
are very likely to be masked by the correct results produced by the other ver­
sions in the system. This conjecture does not assume independence of errors,
but rather a low probability of their concurrence and similarity. MVS sys­
tems achieve reliability improvements through the use of redundancy and
diversity. A "dimension of diversity" is one of the independent variables in
the development process of an MVS system. Diversity may be achieved
along various dimensions, e.g., specification languages, specification writers,
programming languages, programmers, algorithms, data structures, develop­
ment environments, and testing methods.

The scarcity of previous results and an absence of formal theories on N­
version programming in 1975 led to the choice of an experimental
approach: to choose some conveniently accessible programming problems,
to assess the applicability of N-version programming, and then to proceed to
generate a set of programs. Once generated, the programs were executed as
N-version software units in a simulated multiple-hardware system, and the
resulting observations were applied to refine the methodology and to build
up the concepts on N-version programming. The first detailed assessment of
the research approach and a discussion of two sets of experimental results,
using 27 and 16 independently written programs from a software engineer­
ing class, was published in 1978 [Chen 1978].

This exploratory research demonstrated the practicality of experimental
investigation and confirmed the need for high quality software specifications.
As a consequence, the first aim of the next phase of UCLA research (1979-
82) was the investigation of the relative applicability of three distinct
software specification techniques: formal (OBJ), semiformal (PDL), and in

DEDIX87 131

English.

Other aims were to investigate the types and causes of software design
faults, to propose improvements to software specification techniques and
their use, and to propose future experiments for the investigation of design
fault tolerance in software and in hardware [Kelly 1983, Avmenis 1984].

In the course of the experiments at UCLA it became evident that the usual
general-purpose campus computing services were poorly suited to support
the systematic execution, instrumentation, and observation of N-version
fault-tolerant software. In order to provide a long-term research facility for
experimental investigations of design diversity as a means of achieving
fault-tolerant systems, researchers at the UCLA Dependable Computing and
Fault-Tolerant Systems Laboratory have designed and implemented the pro­
totype DEDIX (DEsign DIversity eXperiment) system, a distributed supervi­
sor and testbed for multiple-version software [Avizienis 1985a]. DEDIX is
supported by the Olympus Net local network at the UCLA Center for Exper­
imental Computer Science which utilizes the UNIX-based Locus distributed
operating system to operate a set of VAX 11n50 computers.

The purpose of DEDIX is to supervise and to observe the execution of N
diverse versions of an application program functioning as a fault-tolerant N­
version software unit. DEDIX also provides a transparent interface to the
users, versions, and the input/output system, so that they need not be aware
of the existence of multiple versions and recovery algorithms. The prototype
DEDIX system has been operational since early 1985. Several modifications
have been introduced since then, most of· them intended to improve the
speed of the execution of N-version software. The first major test of DEDIX
has been the experimentation with the set of five programs produced at
UCLA for the NASA-sponsored Four-University N-version software project.
A complete overview of the structure and of the applications of DEDIX at
UCLA is presented in this paper.

1.1 Functional Requirements of DEDIX

The principal functional requirements of DEDIX are as follows:

Distribution: the versions must be able to execute on separate physical sites
in order to take advantage of physical isolation between sites, to benefit from
parallel execution, and to survive a crash of a minority of sites.

Transparency: the application programmer must not be required to write
special software to take care of the multiplicity, and a version must be able

132 Avizienis et al

to run in a system with any allowed value of N without modifications.

Decision making: a reliable decision algorithm that determines a single
consensus result from the multiple version results must be provided. The
algorithm must be able to deal with specified allowable differences in
numerical values and with slightly different formats (e.g. misspellings) in
human-readable results; additionally, the user must be able to choose
between different decision algorithms and even -- with some more effort -­
be able to incorporate a special decision algorithm of his own. If a consensus
cannot be obtained, an alternate decision must be provided.

Recovery and/or reconfiguration: DEDIX must support recovery attempts
for the minority of disagreeing versions. It also must implement
reconfiguration decisions that remove failed versions or sites when recovery
is not available or does not succeed. When a consensus does not result, an
alternate outcome (safe shutdown, or invocation of a backup system) must
be implemented.

Environment: DEDIX must run on the distributed Locus environment at
UCLA [popek 1981] and must be easily portable to other UNIX systems.
DEDIX must be able to run concurrently with all other normal activities of
the local network.

1.2 Related Research

The DEDIX system can be considered as a network-based generalization of
SIFT [Wensley 1978] that is able to tolerate both physical and design faults
in software and in hardware. Both have similar partitioning, with a local exe­
cutive and a decision algorithm at each site that processes broadcast results,
and a copy of the global executive at each site that takes consistent recovery
and reconfiguration decisions by majority vote. DEDIX is extended to allow
some diversity in results and in version execution times. SIFT is a frame
synchronous system that uses periodically synchronized clocks to predict
when results should be available for a decision. This technique does not
allow the diversity in execution times and unpredictable delays in communi­
cation that can be found in a distributed N-version environment, especially
when it is shared with other jobs. Instead, a synchronization protocol is used
iIi DEDIX which does not make reference to global time within the system.

Another approach to fault-tolerant software is the Recovery Block technique,
in which alternate software versions are organized in a manner similar to the
dynamic redundancy (standby sparing) technique used in hardware [Ander­
son 1981]. The objective of the recovery block technique is to perform

DEDIX87 133

software design fault detection during runtime by an acceptance test per­
formed on the results of one version, as opposed to comparing results from
several versions. If the test fails, an alternate version is executed to imple­
ment recovery. Several major research activities related to N-version pro­
gramming and recovery block techniques have been reported [Anderson
1985, Cristian 1982, Kelly 1986, Kim 1984, Ramamoorthy 1981, Voges
1982].

2. Functional Description of the DEDIX System

2.1 Services and Structure

DEDIX together with the diverse program versions has the ability to tolerate
software design and implementation faults. DEDIX and the versions interact
with each other and with their environment, i.e., a user, so that together they
can be seen as a fault-tolerant multi-version system. DEDIX itself is a super­
visor that does not add any application relevant functions to the system.

The purpose of DEDIX is to supervise and to observe the execution of N
diverse versions of an application program functioning as a fault-tolerant N­
version software unit. DEDIX also provides a transparent interface to the
users, the versions, and the input/output system so that they need not be
aware of the existence of multiple versions and recovery algorithms. An
abstract view of DEDIX as a multiversion system with N versions is given in
Fig. 1. Generally speaking, DEDIX provides the following services:

• it handles communications from the user and distributes them to all
active versions;

• it handles requests from the versions to have their results (cc­
vectors) processed, and returns consensus results to the versions and to
the user;

• it executes decision algorithms and determines consensus results, or
invokes alternate decisions if a consensus does not exist;

• it manages the input and output operations for the versions; and

• it makes reconfiguration and recovery decisions about the handling
of faulty versions.

Partitioning of DEDIX. The DEDIX system can be located either in a sin­
gle computer that executes all versions sequentially, or in a multicomputer
system running one (or more) versions at each site. If DEDIX is supported
by a single computer, it is vulnerable to hardware and software faults that

134 Aviiienis et al

USER INTERFACE

ETHERNET

Fig. 1. DEDIX as a Multiversion System

affect the host computer, and the execution of N-version software units is
relatively slow. In a computer network environment, the system is parti­
tioned to protect against most hardware faults. This has been done by pro­
viding each site with its own local DEDIX software, while an intersite com­
munication facility is common to all computers. The DEDIX design is suit­
able for any specified number N ~ 2 of sites and versions, and currently
accommodates the range 2 ::;; N ::;; 20, with provisions to reduce the number
of sites and to adjust the decision algorithm upon the failure of a version or a
site.

The manifestation of faults. A hardware or software fault will affect a pro­
gram version and it may also affect the underlying system. DEDIX is
designed to be able to identify a malfunctioning site and to tolerate both
cases of fault effects, provided that the errors can be detected. In the first
case, when the errors and the faults can be isolated to a version only, the site
will attempt to recover the internal state of the local version with decision
results. In the second fault case, the site usually will not be able to recover
by itself and a global reconfiguration decision is necessary. All version
faults will manifest themselves as either "incorrect results", or "missing

DEDIX87 135

results".

For example, a missing result from a site can be caused by an erroneous ver­
sion, which is in an infinite loop, a deadlocked operating system, a hardware
fault causing an error in the DEDIX software, etc. A missing result at a site
might also be caused by an excessive communication delay, i.e., the result is
produced but does not reach the other sites in time. In this case, the sending
site will detect the discrepancy between what it sent and what the other sites
observed.

VERSION

! i
DEDIX

IN - -+ LOCAL DECISION GLOBAL - EXECUTIVE FUNCTION EXECUTIVE
OUT

! i
MESSAGE HANDLER

! i
LOCUS

Fig. 2. Functional Structure of DEDIX

Structure. The services of DEDIX are partitioned into three functional
modules as shown in Fig. 2 and described in more detail next. They are:

• a Local Executive (LE), which is the DEDIX interface to the local
version and provides input/output facilities. It also supervises local
recovery or reconfiguration actions for the local version.

• a Decision Function (OF), which compares a set of results from the
different versions to produce a decision result, which is either a con­
sensus result or a decision that a consensus does not exist.

• a Global Executive (GE), which monitors the execution at all sites
and versions and supervises global recovery and reconfiguration in case

136 Avifienis et al

of version failures or a lack of consensus.

2.2 The Local Executive

The Local Executive (LE) contains the DEDIX interface to the version. The
version interacts with DEDIX via calls to cross-check functions (cc­
functions) and recovery points [Tso 1987b]. The incOlporation of these calls
is the main adjustment a user has to make in comparison to running his pro­
gram in a normal (single version) environment. The exact form of these calls
is described in Section 3.2. The point of interaction is called cross-check
point (cc-point) and the transfered information accordingly cross-check vec­
tor (cc-vector).

At cc-points, the cc-functions take the results from the version in form of a
cc-vector, translate them to a standard format and pass them to the Decision
Function after adding some more identification information. The consensus
results produced by the Decision Function are passed back to the disagreeing
versions by the LE for recovery. Input and output are also handled by the
Local Executive. Furthermore, the LE has some fault tolerance features.

When the Decision Function indicates that the consensus result is not unani­
mous, or when some unrecoverable exception is signaled from the local ver­
sion or some other source, the LE will try to recover locally from the fault,
report the problem to the Global Executive and, if it is considered as fatal to
the site, shut down the site. There are three classes of exceptions that are
considered, as discussed below.

Functional exceptions are specified in the functional description of DEDIX
and are independent of the implementation. Among them are deviations
from an unanimous result, the case when a communication link is discon­
nected, and the case when a cc-vector is completely missing. For these
exceptions the Local Executive will attempt to keep the site active, possibly
terminating the local version, while keeping the input/output operating.

Implementation exceptions are dependent on the specific computer system,
language, and implementation technique chosen. All UNIX signals, such as
segmentation faults, process termination, invalid system call, etc., belong to
this class. Other examples are all the exceptions defined in DEDIX, such as
signaling when a function is called with an invalid parameter, or when an
inconsistent state exists. Most of these exceptions will force an orderly shut­
down of a site in order to be able to provide data for analysis.

Exceptions generated by the local version. The local version program is

DEDIX87 137

likely to include facilities for exception handling, and some of the exceptions
may not be recoverable within the version. These exceptions are sent to the
Local Executive which will terminate the local version, while keeping the
site alive.

2.3 The Decision Function

The Decision Function is used to determine a single consensus result from
the N version results. The Decision Function may utilize only a subset of all
N results for a decision; for example, the first result that passes an accep­
tance test may be chosen. In case a consensus result cannot be determined, a
higher level recovery procedure needs to be invoked, that is determined by
the Global Executive.

DEDIX provides a generic decision algorithm which may be replaced by the
user's custom algorithm, provided that the interfaces are preserved. This
allows application-specific decision algorithms to be incorporated in those
cases where the standard decisions are inappropriate, or insufficiently pre­
cise.

The current decision algorithm searches for a consensus by applying one of
the following comparisons to the version results:

(1) exact (bit by bit) - allowing an identical match only;

(2) numerical - integer and real number comparisons with an allowed
range of deviation for "similar" results;

(3) with "cosmetic" corrections - allowing for minor (defined) char­
acter string differences that may be caused by misspelling or character
substitution.

2.4 The Global Executive

The Global Executive (GE) is activated when a recovery point (r-point) is
executed. Each r-point has a unique r-point identifier (rp-id) [Tso 1987b].
At first, the GE performs the following actions to determine if global
recovery is necessary: 1) compares the rp-ids delivered by the versions, 2)
exchanges error reports with other Global Executives, and 3) determines
which versions have failed, i.e., disagree with the consensus.

Error reports. Every Global Executive has an error report table, with one
entry for each site. This entry is an error counter for that site. The GE incre­
ments the counter for a site, whenever that site has either a disagreeing or
missing result at a cc-point. This means that the GE does distinguish

138 Avizienis et al

between a missing result and a delayed result. Since sites might get different
numbers of results due to varying communication delays, sites may have
somewhat different error reports. The exchange and comparison of error
reports ensure a consensus among the GEs at various sites on which versions
have failed. H no failed version is detected, the GE merely resets the error
report table and the versions continue their execution. Otherwise, global
error recovery is initiated.

Two types of failed versions are distinguished: 1) those that have detected
errors at the cc-points, and 2) those with incorrect or missing rp-ids. Each
Global Executive of a good version signals the state-output exception
handler of its local version to output the internal state at that rp-id. These
states are compared by the Decision Function to obtain the Decision State.
Each failed version of the first type is recovered by invoking its state-input
exception handler to input the Decision State. Mter the exchange of internal
states, actions of the global error recovery are completed and execution of
the versions is resumed. A failed version of the second type is first aborted
by its Global Executive. The version is then restarted by its GE at the r­
point with the decision rp-id. The restarted version also inputs the Decision
State by invoking the state-input exception handler before its execution is
resumed.

The reconfiguration decision. If a versi,on has produced errors at two or
more consecutive r-points, reconfiguration (by shutdown) needs to be ini­
tiated. If the shutdown applies to a site, each Local Executive instructs its
message receivers to stop receiving from that site. If the shutdown applies to
a version, its Local Executive terminates the local version and stops sending
messages. In both cases, the new number of expected results is adjusted
accordingly by the Decision Function at all sites. After a version is shut
down, the site will still collect messages and operate input/output, but it will
not deliver them to the local version. The Decision Function and the Global
Executive at a site are not affected if only the local version is shut down.

2.5 The Message Handler

Since Locus does not supply all the message handling routines needed for
DEDIX, an interface between the described three functional modules of
DEDIX and the Locus operating system is necessary. This message handler
(MH) interface consists of two layers: the Synchronization layer and the
message Transport layer, where the Synchronization layer is the DEDIX­
dependent part of the message handler, while the message Transport layer is
DEDIX-independent and depends on the service provided by the underlying

DEDIX87 139

operating system.

2.5.1 The Synchronization Layer

For each physically distributed site, the Synchronization Layer (SL) broad­
casts results (using the Transport Layer) and collects messages with the ver­
sion results ("cc-vectors") from all other sites. The SL only accepts results
that are both broadcast within a certain time interval and that arrive within
the same time interval. The collected results are delivered to the functional
modules at the site. The SL accepts a new set of version results when every
site has confirmed that all or enough of the previous results have been
delivered.

The sites of DEDIX need to be event-synchronized in order to ensure that
results from corresponding cc-points are compared. Otherwise, if two sets of
results from two different cc-points are compared, the Decision Function
might wrongly conclude that some of the versions or sites are faulty. Tradi­
tionally, this synchronization has been obtained by referring to a common
clock or set of clocks. The SIFf system [Melliar-Smith 1982] is one exam­
ple of such a clock synchronous system. In SIFf it is predicted when the
results should be available for a comparison. To ensure that the results are
available in SIFf, several design measures are taken to eliminate all
unpredictable delays, such as using a fully connected communication struc­
ture, using strict periodic scheduling, not allowing external interrupts (only
clock interrupts are allowed for scheduling), and regularly synchronizing the
clocks.

The local network system and the diverse versions have the following
characteristics which make the clock synchronous technique impractical in
DEDIX:

• the versions can have different execution times between the cross­
check points;

• the versions will run concurrently with other network activities,
which means that sites temporarily can be heavily loaded, and hence
prolong the time to execute some versions;

• the Ethernet communication network has inherently varying message
transport delays.

A synchronization protocol is designed to provide the event-synchronization
service. It ensures that the results that are compared by the Decision Func­
tion are from the same cross-check point (cc-point) in each version. The ver­
sions are halted until all of them have reached the same cc-point, and they

140 Avifienis et al

are not started again until the results are exchanged and a decision is made.
To be able to detect versions that are in an infinite loop, or otherwise too
slow, a time-out technique is used by the protocol.

The use of this synchronization protocol is based on the assumptions that:

(a) correctly working versions produce exactly the same number of
cc-vectors in the same order;

(b) correctly working versions have compatible execution times, i.e.,
they will produce results within a specified time-out interval;

(c) "missing" or disagreeing results do not exist for a majority of ver­
sions.

The specification and verification of the protocol is described in [Gunning­
berg 1985].

Time-out function. The only way to detect that a version did not produce a
result when it was supposed to, or that the result is "stuck" somewhere in the
communication system, is to use a time-out function, i.e., to require that
every version must produce a result within a time-out interval. Two time­
out techniques have been considered. The first technique is similar to the
time-acceptance test in the recovery block technique. A time-out function is
started at the beginning of each segment of computation and all versions
must produce results within the specified time interval in order to pass the
time-acceptance test. The length of the interval can either be adjusted to
each segment of computation or to a "worst case" interval for all segments.

In the second technique, the time-out interval is started when a majority of
results have arrived at a site. For example, the time-out is started when the
third result arrives in a configuration with five active versions. This tech­
nique is based on a comparison between relative execution times instead of
using an absolute time, as in the first technique. The time-out is of course
terminated if all results arrive before the time-out interval expires. A mal­
functioning version sending results too early will not cause any problems,
since they will not start the time-out. Interestingly, the problem is similar to
"comparing results with skew": the median number (result number 3 out of
5) constitutes the closest to the "ideal value" and the skew corresponds to the
time interval. One advantage with this technique, compared to the previous,
is that there is no need to assign an individual time-out for each segment of
computation. This is an advantage, since the execution time might depend on
an a priori unpredictable input, which might put the computation into a loop
of long duration. Furthermore, since the time between different cc-points
may vary and the sequence of the cc-points is not predetermined, the

DEDIX87 141

synchronization would need complex information to adjust the individual
time-out intervals.

Both techniques can exist together in DEDIX, and the choice may depend on
the application, the input/output, the computing environment, and the real
time requirements. Both techniques require that version computations
should start almost at the same time at each site and that user input also must
arrive within the defined time interval. In the current DEDIX system, the
second technique is implemented, due to the operating environment and the
type of computations. The time interval is set by the user and can be quite
wide, since all versions are suspended until the time interval has expired or
until all results have arrived. This suspension is possible since currently
there is no real time requirement within DEDIX. The system would need
some modifications to accommodate the time-acceptance test technique.

2.5.2 The Transport Layer

The Transport Layer (TL) controls the communication of messages. It hides
the system primitives that are actually employed from its user modules. The
TL makes sure that no message is lost, duplicated, damaged, or misad­
dressed, and it preserves the ordering of sent messages.

The requirements of the Transport Layer are specified in terms of response
time, throughput, and reliability of service. In order to satisfy the reliability
requirement, in most practical situations a redundant communication struc­
ture needs to be used. Currently, a single ring structure of inter-process
UNIX pipes is employed due to the limitation on the number of pipes per
process. Since this implementation does not tolerate a site crash, a redun­
dant interconnection structure is under implementation at the present time.

2.6 Possible Configurations of DEDIX

Given the fundamental functional modules of DEDIX that were described
above (LE: Local Executive; DF: Decision Function; GE: Global Executive;
SL: Synchronization Layer; TL: message Transport Layer), several
configurations of DEDIX can be implemented.

a) For standard operation all three functions, LE, DF, and GE, reside
on the same site, and all are present in the same number as the versions.
This leads to the standard DEDIX configuration as shown in Fig. 3, with
one SL and one TL servicing all three functions.

b) It is possible to have fewer GE modules than versions, even only
one GE, that could reside on a separate site with its own

142 Avizienis et at

Synchronization and Transport modules, while the LE and DF are shar­
ing their SL and TL modules, as shown in Fig. 4.

c) It is possible to have DF not associated with each version, e.g., have
fewer DFs, or even only one DF. This DF can also be located on a
separate site, as shown in Fig. 5.

d) Generally, it is possible to construct specialized hardware units
which contain separately the functions LE, DF, and GE. Only the LE
module needs to have the capability of running a version.

I VERSION I

I LOCAL ~I
EXECUTIVE

I DECISION I
FUNCTION

I GLOBAL ~I
EXECUTIVE

t t ~ t ~ t

~ SYNCHRONIZATION I
t t t t ~ t

I
MESSAGE TRANSPORT

I

LOCUS

Fig. 3. The Standard DEDIX Configuration on One Site

The structure of DEDIX is adaptable for different applications. Depending
on the reliability requirements and the reliability of the versions and the
hardware, the decision algorithm and the reconfiguration possibilities, a spe­
cial arrangement and solution can be chosen. The configurations of Fig. 4
and Fig. 5 have actually been used at UCLA for specific experiments.

3. Current Implementation of DEDIX

A prototype of DEDIX began operation in early 1985 [Avizienis 1985a]. It
has been implemented using the C programming language and is running in

DEDIX 87 143

SITEl SITE 2 SITE 3 SITE 4

88 88 88 ~
0000
~~~~ 

Fig. 4. 3 Sites with 3 Versions, LE, and DF, Site 4 with single GE 

SITE 1 SITE 2 SITE 3 SITE 4 

~ ~ ~ 8EJ 
0000 
~~~~ 

Fig. 5. 3 Sites with 3 Versions, Site 4 with DF and GE

the Locus environment at UCLA. Several modifications and refinements
have been incorporated in DEDIX since 1985, mostly to improve the speed
of N-version execution. The current standard realization has one LE, DF, and
GE for each version, running on the same site as the version. It is also

144 A viiienis et al

possible to execute multiple versions (and therefore also multiple DEDIX
replicas) on one site - a single VAX Iln50 machine.

3.1 The User Interface

The user interface of DEDIX allows users to debug the system as well as the
versions, to monitor the operations of the system, to apply stimuli to the sys­
tem, and to collect data during experiments. Several commands are provided
to the user, as discussed below.

Breakpoint. The break command enables the user to set breakpoints. At a
breakpoint, DEDIX stops executing the versions and goes into the user inter­
face, where the user can enter commands to examine the current system
states, examine past execution history, or inject faults to the system. The
remove command deletes breakpoints set by the break command. The con­
tinue command resumes execution of the versions at a breakpoint. The user
may terminate execution using the quit command. The user is allowed to
inject faults to the system by changing the system states, e.g., the cc-vector,
by using the modify command.

Monitoring. The user can examine the current contents of the message
passing through the Transport layer by using the display command. Since
every message is logged, the user may also specify conditions in the display
command to examine any message logged previously. The user can also
examine the internal system states by using the show command, e.g., to
examine the breakpoints which have been set, the results of the decision
algorithm, etc.

Statistics collection. The user interface gathers data and collects statistics
of the experiments. Every message that passes the transport layer is logged
into a file with a time-stamp. This enables the user to do post-execution
analysis or even to replay the experiment. Statistics such as elapsed time,
system time, number of cc-points executed, and their decision outcomes are
also collected.

3.2 The Version Interface

Cross-check functions. The programmer of a version must incorporate
calls to the Cross-Check Functions (cc-functions) in order to make use of the
support provided by DEDIX. These calls have to be included at logically
identical cross-check points (cc-points) in the different versions which are
going to communicate via DEDIX. Therefore, the cc-points have to be
defined in the common specification of the versions. The cc-function calls

DEDIX87 145

have the following structure: ccpoint (ccid,format, arguments). The parame­
ter list is called cc-vector. The ccid is the identification of the cc-point. The
format is a string of characters identifying the types of the variables con­
tained in the arguments and the kind of decision algorithm which is to be
applied to these variables. Possible variable types are character, integer, real,
etc. The possible decision algorithms are described in Section 2.3.

The identity number of the cross-check point is passed on to the cc-function,
to make sure that only information belonging to the same cc-point is com­
pared by the Decision Function. Three different cc-function calls are possi­
ble: ccinput for input of data (instead of a standard input read statement),
ccoutput for output of data (instead of a standard output write statement),
and ccpoint for error recovery.

The ccinput call. The input to the versions is initiated via this call. The
Decision Function checks whether all versions agree on the format of the
input. In case of a single input, the input is distributed to all versions. In case
of multiple versions of input, e.g. by redundant sensors, it is possible that
either each version receives its related input, or that the Decision Function
checks the inputs and chooses a consensus value for common distribution.

The ccoutput call. All outputs of the N-version software unit must be made
via DEDIX and therefore must pass through the Decision Function. The
results or data from the versions can be a collection of integers, character
strings, and real numbers. Along with this data, a selection can be made on
which kind of consensus decision shall be used for the outputs. Different
consensus for different parts of the output may be specified.

The ccpoint call. This call is made if a cross-check between the versions is
desired, but no input or output is required. Again, a decision is made on the
version results, and the consensus result is passed back to the versions.

Recovery points. Complete error recovery of failed versions is performed
at recovery points (r-points). Associated with each r-point in each version
are: a recovery point id (rp-id), which uniquely identifies the r-point, and
two exception handlers, the state-input exception handler and the state­
output exception handler, that are required to input and to output the internal
state of the version (version state) in a specified format. The r-point call has
the following structure: rpoint (rpid), where the rpid is the identification of
the r-point.

146 Avizienis et at

4. Research Applications of DEDIX

The N-version software research at UCLA has two major long-term objec­
tives:

(1) to develop the principles of implementation and experimental
evaluation of fault-tolerant N-version software units; and

(2) to devise and evaluate supervisory systems for the execution of N­
version software in various environments.

Both objectives are strongly supported by the experimental use and the con­
tinuing evolution of the DEDIX supervisory system. Some key aspects of
the research applications of DEDIX are discussed below, and some recent
specific results - in subsequent sections.

4.1 Implementation and Evaluation of N-Version Software

The N-version implementation studies that are supported by DEDIX address
the problems of: 1) methods of specification, and the verification of
specifications; 2) the assurance of independence of versions; 3) partitioning
and matching, i.e., good choices of cc-points, r-points, and cc-vectors for a
given problem; 4) the means to recover a failed version; 5) efficient methods
of modification for N-version units; 6) evaluation of effectiveness and of
cost; 7) the design of experiments.

Initial specification and partitioning. The most critical condition for the
independence of design faults is the existence of a complete and accurate
specification of the requirements that are to be met by the diverse designs.
This is the "hard core" of this fault tolerance approach. Latent defects, such
as inconsistencies, ambiguities, and 'omissions, in the specification are likely
to bias otherwise entirely independent programming or logic design efforts
toward related design faults. The most promising approach to the production
of the initial specification is the use of formal, very-high-level specification
languages that are discussed in Section 6. When such specifications are exe­
cutable, they can be automatically tested for latent defects and serve as pro­
totypes of the programs suitable for assessing the overall design. With this
approach, perfection is required only at the highest level of specification; the
rest of the design and implementation process as well as its tools are not
required to be perfect, but only as good as possible within existing resource
constraints and time limits.

The independent writing and subsequent comparisons of two specifications,
using two formal languages, is the next step that is expected to increase the

DEDIX87 147

dependability of specifications beyond the present limits. Our current inves­
tigation of specification methods is discussed in Section 6. It is also impor­
tant to note that a fonnal specification must specify the following
application-specific features needed by N-version execution: 1) the initial
state of the program; 2) the inputs to be received; 3) the location of cross­
check and recovery points (partitioning into modules); 4) the content and
fonnat of the cross-check vector at each cc-point and r-point (outputs are
included here); 5) the algorithms for internal checking and exception han­
dling within each version; and 6) the time constraints to be observed by each
program module.

Independence of version design efforts. The approach that is employed to
attain independence of design faults in a set of N programs is maximal
independence of design and implementation efforts. It calls for the use of
diverse algorithms, programming languages, compilers, design tools, imple­
mentation techniques, test methods, etc. The second condition for indepen­
dence is the employment of independent (noninteracting) programmers or
designers, with diversity in their training and experience. Wide geographical
dispersion and diverse ethnic backgrounds may also be desirable. DEDIX
provides a suitable environment to study the effectiveness of efforts to attain
diversity and independence of versions. Recent experimental results and
plans for future experiments are reviewed in Section 5.

Recovery of failed versions. A problem area that has been addressed
recently [Tso 1987a] is the recovery of a failed version in order to allow its
continued participation in N-version execution. Since all versions are likely
to contain design faults, it is critically important to recover versions as they
fail rather than merely degrade to N-l versions, then N-2 versions, and so on
to shutdown. Recovery of a given version is difficult because the other
(good) versions are not likely to have identical internal states; they may
differ drastically in internal structure while satisfying the specification. The
Community Error Recovery (CER) approach offers a systematic two-level
method of forward recovery for failed versions [Tso 1987b]. Recent results
of an experimental evaluation of CER using DEDIX are presented in Section
5.

Modification of N-version software. It is evident that the modification of
software that exists in multiple versions is more difficult. The specification is
expected to be sufficiently modular so that a given modification will affect
only a few modules. The extent to which each module is affected can then be
used to detennine whether the existing versions should be modified accord­
ing to a specification of change, or the existing versions should be discarded

148 Aviiienis et al

and new versions generated from the appropriately modified specification.
DEDIX-based experiments are currently being planned to gain insights into
the criteria to be used for a choiCe.

Assessment of effectiveness. The usefulness of the N-version approach
depends on the validity of the conjecture that residual software faults in
separate versions will cause very few, if any, similar errors at the same cc­
points. Large-scale experiments need to be carried out in order to gain evi­
dence on the nature of faults encountered in independently developed pro­
gram versions. The "mail order software" approach offers significant prom­
ise to provide versions to be evaluated using DEDIX. An "international mail
order" experiment is being planned, in which the members of research
groups from several countries will use a formal specification to write
software versions. It is expected that the software versions produced at
widely separated locations, by programmers with different training and
experience who use different programming languages, will contain substan­
tial design diversity. In further experiments, it may be possible to utilize the
rapidly growing population of free-lance programmers on a contractual basis
to provide module versions at their own locations. This approach would
avoid the need to concentrate programming specialists, have a low overhead
cost, and readily allow for the withdrawal of individual programmers.

Cost investigations. The generation of N versions of a given program
instead of a single one shows an immediate increase in the cost of software
prior to the verification and validation phase. The question is whether the
subsequent cost will be reduced because of the ability to employ two (or
more) versions to attain mutual validation under operational conditions. Cost
advantages may accrue because of 1) the faster operational deployment of
new software; and 2) replacement of costly verification and validation tools
and operations by a generic N-version environment (such as DEDIX) in
which the versions validate each other while executing useful work. The loss
of performance due to the presence of fault tolerance mechanisms, such as
decision algorithms and recovery points also needs to be assessed.

Design of experiments. Several design issues of design diversity experi­
ments need to be carefully resolved. They include: exploring different
dimensions of diversity, incorporating efficient error detection and recovery
algorithms, and avoiding commonalities in the design effort. The software
versions produced in these experiments need to be subject to controlled con­
ditions that approximate the development methodologies and environments
used by advanced industrial facilities. There should be extensive logging of
work periods and events such as error detection, specification questions and

DEDIX87 149

answers, and test suite execution. The experiment leaders need to provide a
complete high-level, high-quality specification. At all stages, questions
about the specifications are submitted by electronic mail, reviewed by the
experiment leaders, and answered by electronic mail. The rule of "written
communication only" makes it possible to control and analyze the informa­
tion flow. The determination that a question revealed a flaw in the
specifications causes changes to be broadcast to all programmers at all sites.
The deliverable items include a design document, a series of compiled pro­
grams representing the results of the top down development at each abstrac­
tion layer, a test plan and test log, and the final program. The delivered
software is then subjected to an adequate acceptance test to ensure its qual­
ity.

To measure the extent of design diversity and to assess potential reliability
increases under large-scale, controlled experimental conditions, two major
projects are underway: The NASA/Four-University experiment (initiated in
the summer of 1985) and the UCLA/Honeywell Experiment (to be con­
ducted during the second half of 1987). Descriptions of these two experi­
ments are presented in the following Section 5.

4.2 Investigations of Supervisory Systems

The research concerned with N-version supervisory systems, as exemplified
by DEDIX, deals with: 1) the functional structure of supervisors; 2) fault­
tolerant supervisor implementation, including tolerance of design faults; 3)
instrumentation to support N-version software experiments; 4) efficient
implementation, including custom hardware architectures to support real­
time execution; and 5) methods of supervisor evaluation.

N-version execution supervision and support. Implementation of N­
version fault-tolerant software requires special support mechanisms that
need to be specified, implemented, and protected against failures due to phy­
sical or design faults. These mechanisms fall into two categories: those
specific for the application program being implemented, and those that are
generic for the N-version approach. The specific support is part of the ver­
sion specification. The g~neric class of support mechanisms forms the N­
version execution supervision environment that includes: 1) the decision
algorithm; 2) assurance of input consistency; 3) interversion communication;
4) version synchronization and enforcement of timing constraints; 5) local
supervision for each version; 6) the global executive and decision function
for the recovery or shutdown of faulty versions; and 7) the user interface for
observation, debugging, injection of stimuli, and data collection during N-

150 Avitienis et at

version execution of application programs. The nature of the generic sup­
port mechanisms has been illustrated in the discussions of the DEDIX N­
version supervisor system that was described in preceding Sections 2 and 3.
The continuing use of DEDIX leads to further insights that result in
refinements and enhancements of DEDIX functional structure and its
efficiency.

Protection of the supervisory environment. The success of design fault
tolerance by means of N-version software depends on uninterrupted and
fault-free service by the N-version supervision and support environment.
Protection against physical faults is provided by the physical distribution of
N versions on separate machines and by the implementation of fault-tolerant
communication linkages. The SIFf system [Wensley 1978] and DEDIX are
suitable examples in which the global executive is also protected by N-fold
replication. The remaining problem is the protection against design faults
that may exist in the support environment itself. This may be accomplished
by N-fold diverse implementation of the supervisor. To explore the feasibil­
ity of this approach, the prototype DEDIX is currently undergoing formal
specification. Subsequently, this specification will be used to generate
diverse multiple versions of the DEDIX software to reside on separate physi­
cal nodes of the system. The practicality and efficiency of the approach
remain to be determined. Some results are discussed in Section 6 of this
paper.

Architectural support. Current system architectures were not conceived
with the goal of N-version execution; therefore, they lack supporting instruc­
tions and other features that would make N-version software execution
efficient. For example, the special instructions "take majority vote" and
"check input consistency" would be very useful. The practical applicability
on N-version software in safety-critical real-time applications hinges on the
evolution of custom-tailored instruction sets and supporting architectures.
The current DEDIX implementation supported by Locus is likely to be too
slow for this purpose. Despite this limitation, the functional architecture of
DEDIX can be used with faster transport service and faster scheduling poli­
cies in a real-time system, while Locus can be used to simulate real-time
execution.

DEDIX87 151

5. Testing Tools, Experience, and Results

5.1 Programs for Demonstration and Testing

This section describes the existing multiversion programs for DEDIX which
were developed to test DEDIX and to demonstrate its capabilities. The most
important characteristics of these application programs are also given. Most
of the programs were written in the C programming language.

The Airport Scheduler simulates an airport database and is based on the
specification used in [Kelly 1983]. Typical operations include: scheduling or
canceling a flight, changing certain flight data (e.g. departure time), reserv­
ing a seat, and looking up information in the database. There exist three ver­
sions: one version implements the database using arrays, the second one uses
linked lists. Both versions are written in C, and the third version is identical
to the first, except that it is written in Pascal. These three programs demon­
strate the concept of design diversity and are suitable to test DEDIX after
modifications.

The programs arcade and arc _io can be used to test the implementation of
the cross-check functions. A number of borderline cases are explored. Furth­
ermore, calls which violate the specification of these functions are made in
order to test the robustness of DEDIX. Examples are: calls without cross­
check vectors, with inconsistent cc-point identifier, wrong format string, or
inconsistencies between format string and cc-vector.

The program cv tests the implementation of the Decision Function. It reads
test cases from a file, applies them to the decision algorithm, and stores the
decision result in an output file. A file with some 100 standard test cases is
available, as are the expected results from these test cases. Three versions
exist which differ in that they read different files.

Name is a sample demonstration program that reads an integer, performs
some "complicated" computations involving arrays of integer and real
numbers, and that finally selects a string (name) from a table for display.
Four versions exist: three mutated ones with different built-in data tables,
and one that simulates an infinite loop.

The program power computes a to the power of b for two built-in numbers a
and b. It is designed to exercise the number-handling features of DEDIX.
Twenty different bugs (e.g. different numerical constants, typing errors,
wrong use of cc-functions) have been injected into the program and can be
invoked. Thus 220 different versions can be generated. These versions serve

152 Avifienis et at

as mutants for the validation of DEDIX by mutation testing.

Test is a test program to test the basic functions of DEDIX. It is similar to
arcade and arc_io, but is better documented and tests more thoroughly.
Standard test cases and their expected results are available. In addition, there
exists a shell script that repeatedly executes these test cases in different
configurations (single machine, distributed) or with different run time
options of DEDIX.

Time is a demonstration program that reads the clock of the machine it is
running on, converts it into a string and displays it. It also asks interactively
whether that process should be repeated. Time demonstrates that diverse
versions can have synchronized clocks. Naturally, this program is only use­
ful when DEDIX is distributed, i.e. each version runs on a different machine.

Table 1 summarizes the characteristics of the above mentioned testing pro­
grams.

Table 1. Multiversion Programs for Demonstration and Testing Purposes

Name Number of Lines of Code Language Main Purpose
Versions (approx.)

airport 3 470 C, Pascal demonstration
arcade, arc_io 6 350 C test - cc-functions

cv 3 100 C test - voter
name 4 60 C demonstration
power 20+ 515 C test - number handling,

mutation testing

test 4 300 C test - all basic
functions

time 7 20 C demonstration

5.2 Proper Specification and Testing of Fault Tolerance Mechanisms

It was noted earlier that the N-version error detection and recovery mechan­
isms for each version, including cross-check points and recovery points,
need to be defined in the software requirement specification. To avoid res­
tricting design diversity, the programmers may be given a choice where to
place the cc-points in their programs. The sequence in which the cc-points
occur and the variables involved should be specified, and it should be
required that the variables of each cc-point be computed but not used before
the cc-point is reached. The programmers are also required to use the (possi­
bly modified) values returned by the DEDIX supervisor in all subsequent

DEDIX87 153

computations.

The acceptance test should adequately test the recovery capability. It should
ensure that the cc-points are placed in the right sequence, and output values
are checked in right places during the execution of each version. Possible
design faults that are related to cc-points fall into two categories:

1. Incorrectly located cc-points. Some programmers might place cc-points
before the final values are calculated. These cc-points are placed too
early. Also, some versions might use computed values before passing
them to the decision function. These cc-points will occur too late.

2. Unused returned values. This fault could occur when a version uses an
internal variable in place of a state variable. The value of the internal
variable is assigned to the state variable of the cc-vector before the cc­
point is called, but subsequent computations are still based on the value
of that internal variable.

These faults can be detected by specially designed tests. The output values
should be checked at the cc-points. This will detect the incorrect placement
of cc-points. Also, specific tests should be included that deliberately return
new values to some cc-points. The results of the next cc-point should then be
checked to verify that the returned values are actually used. These prepara­
tions are necessary for the proper execution of multi-version software in the
DEDIX environment.

5.3 DEDIX in the NASAlFour-University Multiversion Software Experi­
ment

The NASA Langley Research Center is sponsoring the NASA/Four­
University experiment in fault-tolerant software which has been underway
since 1984. During the summer of 1985, the NASA experiment employed 40
graduate students at four universities to design, code and document 20
diverse software versions of a program to manage redundancy and to com­
pute accelerations for a redundant strapped down inertial measurement unit
(RSDlMU). The analysis of this software currently engages researchers at
six sites: UCLA, the University of Illinois at Urbana-Champaign, North
Carolina State University, and the University of Virginia, as well as the
Research Triangle Institute (RTI) , and Charles River Analytics (CRA).
Empirical results from this experiment will be jointly published by the
cooperating institutions after the verification, certification, and final analysis
phases are complete. While the joint results still await publication, some
independent results from the UCLA effort have been reported in [Kelly

154 Avizienis et al

1986].

During the summer of 1985, each of the four universities employed ten gra­
duate students to design, code and document five software versions in ten
weeks. At the end of this effort, each of these 20 software versions was
required to pass a preliminary acceptance test that used 75 test cases. At
UCLA, a long and careful validation phase including extensive testing of the
versions followed the lO-week software generation phase. During validation,
many errors and ambiguities in the specifications and the software versions
were revealed. The specifications were subsequently refined. The five
UCLA versions have since been further debugged by the original program­
mers and have passed a final (UCLA) certification test that consisted of 200
random test cases, 55 hand-made test cases of special value test data and
extremal value test data, and special test cases for verifying the recovery
mechanism. The size of the five resulting software versions ranged from
1677 to 2794 lines of Pascal statements. The scope of this discussion is lim­
ited to the specific testing done at UCLA that employed DEDIX. The pur­
pose of the tests was to evaluate the new CER forward recovery method
[Tso 1987b]. Only the five certified versions from UCLA were used in these
tests.

A Test Case Generator (TCG) was used throughout the evaluation of
recovery to generate random test cases. After the TCG had generated the
data for a test case, all five individual versions were executed consecutively,
using the same input data. If a majority of similar results exists, they are
used to decide the reference output which is further checked by the known
TCG output values to ensure its consistency. At the same time, individual
version failures are identified. This failure information is used to generate
"interesting" 3-version combinations (triplets) using the assumption that all
majority versions behave identically for that test case. This means that tri­
plets with two good versions, such as (Gl, G2, B), (Gl, G3, B), and etc., are
treated as one, i.e., (G, G, B), and many triplets can be eliminated from
further testing. The interesting triplets are then executed in a three-version
configuration under DEDIX supervision. The decision results are passed
back to the failed versions for partial recovery at the cc-point level. Decision
results of the triplets without recovery are obtained simply by comparing
individual version outputs of the combinations. The decision results, both a)
without recovery and b) with recovery, are then used to determine the effec­
tiveness of the recovery. The process then is repeated for further test cases.
A total of 200,000 test cases were employed in recovery evaluation.

DEDIX87 155

5.3.1 Faults Discovered and Errors Observed During Testing

During the recovery evaluation process, several faults were found in the five
UCLA certified versions. Table 2 lists these faults and their effects on the
outputs, i.e., the errors seen at cc-points.

The fault uclal-l manifested itself during the testing because of the use of a
Pascal compiler in the testing harness, while a Pascal interpreter was used in
the program development and certification processes. Obviously, the inter­
preter initializes variables in a Pascal procedure, while the compiler does
not. Since this fault failed the version more than half of the time, it was
taken out in our evaluation. One of the display functions is to display the
five most significant digits and the decimal point of a floating point number.
Two versions failed to round the numbers correctly, although not in the same
way. Both versions ucla3 and ucla4 made wrong system failure decisions,
but for two different reasons. Thus the faults are different, but both versions
produced coincident and identical errors at the cc-point for 96 out of the
200,000 test cases.

Failures of the individual versions. The result of a version running a test
case is defined as erroneous if one or more of its output values (out of a total
of 64 element values) differs from the reference values defined previously.
We also say that the version fails on that test case. Table 3 shows the
observed failures for the individual program versions for the 200,000 test
cases, and their sizes in number of Pascal statements.

It must be noted that the failure probability depended very much on the test
case generator, and on the range of variation ("skew") that is allowed when
results are compared. We consider that the versions tested in this evaluation
were under stress because the test cases were sampled randomly from the
largest possible input space. In actual flight, extremal input data are much
less likely to happen than routine data.

Coincident failures of the versions. Two versions are said to fail coin­
cidently if they both fail (produce erroneous values of the same element) for
the same test case. These coincident errors may be similar or distinct. It
was observed that more than two versions did not fail for the same test case
during the 200,000 test runs. There was one coincident error between uclal
and ucla3, and there were 110 coincident errors between ucla3 and ucla4.

Similar errors of the versions. It should be noted that the results of the
versions which fail coincidently may not be similar. Similar results are
defined to be two or more results (good or erroneous) that are within the

156 Avizienis et al

Table 2. Characteristics of Discovered Faults

Label Class Fault Error at cc-point

uclal-l incorrect uninitialized incorrect
algorithm variable sensor status

uclal-2 incorrect bad display incorrect
algorithm rounding display

uclal-3 incorrect overflow handled incorrect
algorithm incorrectly display

ucla2 no fault discovered

ucla3-l spec mis- individual instead of incorrect
interpretation average slopes used sensor status

ucla3-2 spec mis- wrong frame incorrect
interpretation of reference used sensor status

ucla3-3 spec wrong system incorrect
ambiguity failure decision system status

ucla3-4 incorrect bad display incorrect
algorithm rounding display

ucla3-5 incorrect overflow incorrect
algorithm not handled display

ucla4-l spec wrong system incorrect
ambiguity failure decision system status

ucla5 no fault discovered

range of variation that is allowed by the decision algorithm. When two or
more similar results are erroneous, they are called similar errors [Avizienis
1985b]. It was found that only ucla3 and ucla4 had similar errors which
occurred for 96 test cases.

5.3.2 Results of CC-Point and R-Point Recovery

The effectiveness of partial recovery at cc-points was evaluated by

DEDIX87 157

Table 3. Failures of Individual Versions

Number of Failure
Version Size Failures Probability

ucla1 2016 1 0.000005
ucla2 1685 0 0.000000
ucla3 1962 702 0.003510
ucla4 2794 283 0.001415
ucla5 1677 0 0.000000

comparing the final decision results of a 3-version RSDIMU software
module (triplet) executed without the cc-point recovery provision and the
one executed with the cc-point recovery provision. This was the first oppor­
tunity to perform cc-point recovery as an experiment.

The final decision of a triplet falls into five categories as shown in Table 4.

Table 4. Classification of Triplet Decisions

Final Individual
Decision Version Results Explanation

GOOD3 G G G All three results are good (G).

GOOD2 G G B Only two results are good. The error
(B) of the failed version is masked.

NOMAJ B1 B2 G All three results are different from each
B1 B2 B3 other. This decision is a fail-safe stop.

BAD2 B B G A similar error (B) occurs in two
B B B1 versions.

BAD3 B B B A similar error in all three versions.

Table 5 summarizes the consequences of including the cc-point recovery
over the 200,000 test cases. Almost 90% of the changed decisions of the 3-
version RSDIMU module are from GOOD2 to GOOD3, meaning that errors
which occurred in a single version of the triplets had been recovered suc­
cessfully by cc-point recovery. The improvement of a decision from
GOOD2 to GOOD3 should not be diminished by the fact that the decision
results of the two decisions are the same, and the change is only on the

158 Avifienis et at

confidence level. This improvement makes the 3-version MVS system fully
recovered and ready to tolerate another fault that may happen in the subse­
quent computations. There are 64 decisions in the GOOD3 ~ GOOD3
category although the triplets include one or two failed versions. This occurs
because our analysis considers the System Status and Estimated Accelera­
tion results only, and these failed versions were able to compute them
correctly, but failed in the Display Driver.

Table 5. Consequences of CC-Point Recovery

Without I With Triplets of 2 G Triplets of 1 G
recovery recovery and 1 B versions and 2 B versions Total Percent

GOOD3 ~ GOOD3 63 I 64 -

GOOD2 ~ GOOD3 923 3 926 89.6

NOMAJ ~ GOOD3 0 9 9 0.9

NOMAJ ~ BAD3 0 2 2 0.2

BAD2 ~ BAD3 0 96 96 9.3

Total number of changed 3-version RSDIMU module results 1033 100

There are nine triplets which had their decisions improved from NOMAJ to
GOOD3. This improvement happens when two different versions fail at dif­
ferent cc-points. Without recovery, the triplet produced a NOMAJ decision;
with recovery, it first recovered a failed version at an earlier cc-point, then
the fully recovered triplet recovered another failure later. Since the
RSDIMU module has only five computations, and most of the obselVed
errors occurred after the second one, the case in which a fully recovered tri­
plet recovered from a second fault happened rather rarely.

In the 96 triplets that had their decisions changed from BAD2 to BAD3 the
good version was forced to fail in the same way by an attempted recovery.
However, similar errors already existed in a majority of versions, and the
MVS system is assumed to fail, in either case. The two triplets that have
their decisions changed from NOMAJ to BAD3 are dangerous because the
3-version MVS system has been changed from a fail-safe state to an unsafe
state.

The most frequent similar errors obselVed during the testing are due to the
case in which both versions ucla3 and ucla4 declare that the RSDIMU sys­
tem failed. This decision sets all sensor status to non-operative and the
estimated accelerations to zero. The program faults (ucla3-3 and ucla4-1 in

DEDJX87 159

Table 2) are due to extra checks on conditions that should not happen
according to the original RSDIMU specification. This specification was
changed during the course of program development and certification. How­
ever, it should be noted that such outputs lead to a fail-safe response of shut­
ting down the system in the RSDIMU application. Detailed discussion of the
results appears in [Tso 1987b].

Recovery points were not specified in the RSDIMU specification. However,
a new program can be easily composed in which the RSDIMU module is the
first module, with an auxiliary (AUX) module added. Then a recovery point
is inserted between them. The AUX module contains nothing but a new cc­
point used to check if the AUX module is indeed reached and started with a
correct version state. The version state at the beginning of the AUX module
was defined to be the collection of all the eleven output variables and of two
other variables in the RSDIMU module found to be common to all the ver­
sions. One of them is the id number of the failed face, and the other is the
threshold that determines a sensor failure. With the version state defined,
state input and output exception handlers were implemented and used by all
five versions.

DEDIX was used for testing because recovery at the recovery point level
requires a sophisticated N-version supervisor to keep track of errors detected
at the cc-points, to invoke the exception handlers, and to restart an aborted
version. All the test cases that caused some versions to fail during previous
cc-point recovery testing were used to test triplets of the instrumented pro­
grams for r-point recovery. The evaluation is similar to the previous one that
considered RSDIMU system improvement with cc-point recovery. The pre­
vious evaluation examined the final results (System Status and Estimated
Acceleration) of a 3-version RSDIMU module. In this evaluation we exam­
ined the version state after the recovery point.

The results of all possible consequences of a DEDIX test run executing a tri­
plet of instrumented versions (containing either one, or two bad versions) are
shown in Table 6. Each version consists of the RSDIMU module, an r­
point, and the AUX module. Table 6 shows that for triplets with only one
bad version, 983 of the 986 version states of the bad versions were recovered
correctly at the recovery point, and there were 3 cases in which DEDIX gave
the "No Majority" decision because of disagreement in comparing version
states. The good versions used to form the triplet were the first two good
versions chosen in the order of their version identifiers, therefore they
always were different versions. It was found in those 3 test runs that
although uclal had produced good outputs at the cc-points in the RSDIMU

160 Avifienis et at

module, in fact it had an erroneous internal state that was revealed by the
two additional variables included in the version state specification.

All 98 triplets of one good and two bad versions that had produced BAD3
decisions with cc-point recovery (see Table 5) had the "No Majority" deci­
sion while comparing the version states. This happened because the two ver­
sions both had incorrectly concluded for different reasons that the RSDIMU
module failed, and thus had produced similar errors at the cc-point that
were due to different faults. However, the two common non-output vari­
ables differed and therefore a BAD3 majority decision was avoided. This
occurrence shows that r-point checking is more effective than only cc-point
checking since the BAD3 cc-point decisions were properly detected at the r­
point.

Table 6: Consequences of R-Point Recovery

Possible Triplets with Triplets with
Consequence IB Version 2B Versions Total

No majority at the cc-points 0 0 0
in the RSDIMU module

No majority in comparing 0 0 0
the r-point ids

No majority in comparing 3 108 111
the version states at r-point

GOOD3 decision at the 983 3 986

cc-point in the AUX module

GOOD2 decision at the 0 0 0
cc-point in the AUX module

NOMAJ decision at the 0 0 0
cc-point in the AUX module

BAD2 decision at the 0 0 0
cc-point in the AUX module

BAD3 decision at 0 0 0
cc-point in the AUX module

There are also three test runs of triplets with 2 bad versions that produced the
GOOD3 decision at the last cc-point. This happened because the errors of

DEDIX87 161

the two bad versions had occurred at different cc-points and were success­
fully recovered by cc-point recovery (Table 5).

Since control flow errors were not observed in the 200,000 test runs, more
testing was conducted through error seeding. The goal was to verify the
effectiveness of the restart mechanism of the r-point. Faults of the following
two categories were seeded: 1) Program exceptions, such as "division by
zero" and "index out of range," and 2) control flow faults, such as "infinite
loop" and "incorrect branching" that lead to some cc-point being incorrectly
called or skipped.

Most of the faults that were seeded into the versions were chosen from faults
that were eliminated during the certification process. Testing was conducted
with triplets consisting of two good versions combined with a version with a
seeded fault. It was found that in all the hundred different test runs that were
perfonned, the failed versions were restarted with a correct version state
after the recovery point.

5.4 The UCLAlHoneywell Fault-Tolerant Software Experiment

To gain further insights into the effectiveness and methodology of applying
multi-version software systems, UCLA and the Honeywell - Sperry Com­
mercial Flight Systems Division have agreed to conduct a joint study of
multi-version software design during the second half of 1987. The applica­
tion is the digital flight control system for future commercial airliners, as
exemplified by the system being developed by Honeywell for potential use
in the McDonnel-Douglas MD-ll aircraft.

The objectives of the UCLA/Honeywell project to study the N-version flight
control system design are as follows:

To conduct studies and experiments related as closely as practical to the
industrial environment in tenns of procedures and types of problems.

To develop a practical and effective set of ground rules for multi-version
software development in an industry environment. These ground rules
will be directed toward the elimination of significant similar errors in
the versions.

To estimate the effectiveness of multi-version software in an industrial
environment of a specified type.

The extent and purpose of the multiversion software is:

(a) The software provides automatic pitch control of commercial air­
craft during final approach.

162 Avifienis et at

(b) The elements of the control loop are control law, airplane, sensors
mounted on airplane, landing geometry, and wind disturbances.

(c) Independent two-programmer teams will program the control laws,
based on a software requirements document, i.e., the software
specification.

(d) The aircraft and wind turbulence are to be modeled on VAX
machines. The operation of flight simulation will be monitored by
DEDIX to observe the execution of a multi-version software system.

For the software development phase, six teams of two graduate student pro­
grammers each will work in the software development phase for 12 weeks
during the summer of 1987. Software engineering techniques to build high
quality software will be strictly followed. The six teams will be coordinated
by the UCLA research team, using an electronic mail communication facil­
ity. A standard industrial design review, code review, and a test review will
be conducted. The expected length of code produced in this software
development phase should exceed 2000 lines.

Several dimensions of design diversity have been considered for achieving
diversity among these programs. The attention will be focused on the use of
different programming languages and their effects on the diversity in multi­
version software. The languages are C, Pascal, Modula-2, Ada, Lisp, and
Prolog.

In the evaluation of resulting multi-version software systems, closed loop
testing of multiple executions with random inputs will be conducted. Mil­
lions of test runs will be executed in the DEDIX environment for suitable
aircraft control and flight simulation. Statistical data related to execution of
multi-version software systems will be gathered for the evaluation of the
effectiveness of DEDIX.

6. Specification Issues

Significant progress has occurred in the development of formal specification
languages, methods, and tools since our previous experiments [Kelly 1983,
AviZienis 1984]. Our current goal is to compare and assess the applicability
to practical use by application programmers of several formal program
specification methods. The leading candidates are:

(1) The Larch family of specification languages developed at MIT and
the DEC Western Research Center [Guttag 1985];

DEDIX87 163

(2) The OBI specification language developed at UCLA and SRI
International [Goguen 1979];

(3) The Ina 10 specification language developed at SDC [Locasso
1980];

(4) The executable specification language "PAISLey" developed at
AT&T Bell Laboratories [Zave 1986].

The study focuses on the assessment of the following aspects of the
specification languages: (1) The purpose and scope, i.e., the problem
domain; (2) completeness of development; (3) quality and extent of docu­
mentation; (4) existence of support tools and environments; (5) executability
and suitability for rapid prototyping; (6) provisions of notation to express
timing constraints and concurrency; (7) methods of specification for excep­
tion handling; and (8) extensibility to specify the special attributes of fault­
tolerant multi-version software.

The goal of the study is the selection of two or more specification languages
for the subsequent experimental assessment of their applicability in the
design of fault-tolerant multi-version software. Two major elements of the
experiment will be:

(1) the concurrent mutual verification of two specifications by sym­
bolic execution and mutual interplay;

(2) an assessment of the practical applicability of the specifications, as
they are used by application programmers in an N-version software
experiment.

The next step in DEDIX development will be a formal specification of parts
of the current DEDIX prototype (implemented in C): the Synchronization
Layer, the Decision Function, and the Local and Global Executives. Among
them, the Larch specifications of the Decision Function [Tai 1986] and of
the Synchronization Layer have been constructed. The specification will
provide an executable prototype of the DEDIX supervisory system. This
functional specification should allow not only the migration to real-time sys­
tems, but also the use of multi-version software techniques for the fault­
tolerance mechanisms of DEDIX themselves. The goal is a DEDIX system
that supports design diversity in application programs and which is itself
diverse in design at each site.

Independent specifications of some DEDIX system modules in two or more
formal languages will serve to compare the merits of the methods. Further
research is planned in the application of dual diverse formal specifications to

164 Avizienis et aL

eliminate similar errors that are traceable to specification faults and to
increase the dependability of the specifications.

7. Other Current Research Activities

7.1 Improvement of DEDIX

This section discusses some observed deficiencies of DEDIX and offers
some thoughts about improving them. Current activities are also mentioned,
where appropriate.

The most visible shortcoming of DEDIX is the execution overhead which
results in rather long waiting times for the user. There are two possible ways
to improve the situation: one is to create a "custom DEDIX" which is
tailored to a specific application. Functions that are not needed can be
removed, and the versions can be compiled into DEDIX instead of creating
another process for each version to be executed. That reduces greatly the
amount of time spent with interprocess communication. The second
approach is to look for more efficient implementations of these parts of
DEDIX that are used most. Due to the layered design it should be relatively
easy to replace a layer with a more efficient one, without affecting the others.
Since most time is spent on message passing, an investigation of a more
efficient implementation of the transport layer is under way.

Another observation is that DEDIX supports only standard input and output.
Thus the ability to manipulate files is limited to redirecting the input and the
output. Of course, it is possible for a version to use all the file manipulating
operations that are provided by the operating system. However, the check­
ing and correcting facilities of DEDIX would be essentially bypassed in this
case. Furthermore, different versions may not read and/or write the same
file(s) because that would result in an almost certainly unpredictable interac­
tion between the versions. A solution would be to provide cross-check func­
tions for file I/O, similar to those now provided for standard I/O. However,
the following considerations lead to the conclusion that this is not too
urgent: diverse software is likely only to be required and applied in systems
with ultra-high reliability requirements, e.g. autopilots, flight control sys­
tems, air traffic control systems, or nuclear power plant control systems. Sys­
tems of these kinds are usually computation intensive, rather than data and
I/O intensive. Thus it can be expected that it will be sufficient to support
standard I/O for most of these systems.

Furthermore, the versions are limited to sequential programs all of which

DEDIX87 165

must execute all the specified cross-check points in the same order. In many
cases the sequence of cc-points is given by the data flow of the computation
to be performed. However, in case there are several independent submodules
which could be executed in any order, a specific sequence of these indepen­
dent computations has to be specified and all versions have to adhere to it.
This, to a certain extent, limits the degree of diversity that could be achieved.
Presently, neither a study examining whether this restriction is a severe one
or not, nor a method to overcome it, exist. Of course, it is easy if DEDIX
only observes the computed results, without trying to correct them - we just
postpone the analysis until all versions have terminated.

7.2 Extension ofDEDIX Capabilities

Byzantine faults [Lamport 1982] are defined as faulty behavior that may
prevent agreement about the current (global) system state among the sites of
a distributed system. Examples of such behavior include:

• sending more or fewer messages than required to by the protocol,

• sending messages too late or too early,

• sending different (inconsistent) information to different sites, or

• maliciously cooperating with another malicious site.

The Synchronization Layer of DEDIX provides considerable protection
against the first two examples of faulty behavior. Since the topology of the
current implementation is a ring structure, a site cannot send different infor­
mation to different sites, but it can alter the information that it is supposed to
forward. At the present time, DEDIX does not deal with other types of
Byzantine (malicious) faults. Methods to tolerate them are known [Lamport
1982] and could be included in the Transport layer. A study is currently in
progress that will provide some experimental data on the time and complex­
ity overhead of these methods.

ill order to build an elegant, highly reliable system which is tolerant to both
hardware and software design faults, a study is in progress how to build a
DEDIX system on top of a XEROX Worm environment [Shoch 1982]. The
key idea is that the Worms bring a special philosophy to building distributed,
fault-tolerant systems. This philosophy gives each individual unit a high
degree of autonomy and a desire to complete its task and to take an active
part in the activity of the whole system; and further, takes a network service
approach to the resources available in the system.

166 Avizienis et al

8. Conclusion

This paper has presented an overview of a major effort to develop a research
environment for software design diversity research at the UCLA Dependable
Computing and Fault-Tolerant Systems Laboratory. The complete DEDIX
prototype has been implemented, and it is being used to execute, test, and
evaluate multiversion software. Some new research efforts also have been
initiated.

Acknowledgment

The research described in this paper has been supported by a grant from the
Advanced Computer Science program of the U.S. Federal Aviation
Administration, by NASA contract NAGI-512, and by NSF grant MCS 81-
21696. Professor Algirdas Avizienis, Director of the UCLA Dependable
Computing and Fault-Tolerant Systems Laboratory, has served as Principal
Investigator since the inception of the DEDIX project.

The original concept and implementation of DEDIX, as described in
[Avizienis 1985a], has benefited from major contributions of several indivi­
duals who were visiting researchers at UCLA in the 1983-85 period. A large
part of the DEDIX implementation is due to Lorenzo Strigini, who is
currently at the IEI-CNR, Pisa, Italy. The communication and synchroniza­
tion protocols are the contribution of Per Gunningberg, presently at the
Swedish Institute of Computer Science, Stockholm, Sweden. The original
decision function was designed and implemented by Pascal Traverse, now at
Aerospatiale, Toulouse, France. John P. J. Kelly, now at the University of
California, Santa Barbara, contributed extensive consultation on issues of
experimentation and software engineering.

All authors of this paper are presently engaged in DEDIX-related research
activities at UCLA, except as noted next. Udo Voges edited the first draft of
this paper prior to returning to his permanent position at the Kern­
forschungszentrum Karlsruhe, Federal Republic of Germany. Kam Sing Tso
has recently assumed a position at the Jet Propulsion Laboratory, Pasadena,
California, U.S.A. We also wish to acknowledge the idea of fusing the
XEROX Worm and DEDIX concepts, which is due to Nick Lai, a staff
member at the UCLA Center for Experimental Computer Science.

References

[Anderson 1981] T. Anderson and P. A. Lee, "Fault Tolerance: Principles and Prac­
tice," Prentice Hall International, London, England, 1981.

DEDIX87 167

[Anderson 1985] T. Anderson, P. A. Barrett, D. N. Halliwell, D. N. and M. R. Mould­
ing, "An Evaluation of Software Fault Tolerance in a Practical System." Digest of
FTCS-15, the 15th International Symposium on Fault-Tolerant Computing, Ann Arbor,
Michigan, June 1985, pp. 140-145.

[AviZienis 1975] A. AviZienis, "Fault-Tolerant and Fault-Intolerance: Complementary
Approaches to Reliable Computing," Proceedings of the 1975 International Coriference
on Reliable Software, Los Angeles, April 1975, pp. 458-464.

[AviZienis 1977] A. AviZienis and L. Chen, "On the Implementation of N-version Pro­
gramming for Software Fault Tolerance During Execution," Proceedings of the 1st
IEEE-CS International Computer Software and Applications Coriference (COMPSAC
77), Chicago, November 1977, pp. 149-155.

[AviZienis 1984] A. Avizienis andJ. P. J. Kelly, "Fault-Tolerance by Design Diversity:
Concepts and Experiments," Computer, Vol. 17, No.8, August 1984, pp. 67-80.

[AviZienis 1985a] A. AviZienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J.
Traverse, K. S. Tso, and U. Voges, "The UCLA DEDIX System: A Distributed Testbed
for Multiple-Version Software," Digest of FTCS-15, the 15th International Symposium
on Fault-Tolerant Computing, Ann Arbor, Michigan, June 1985, pp. 126-134.

[AviZienis 1985b] A. Avizienis, "The N-Version Approach to Fault-Tolerant
Software," IEEE Transactions on Software Engineering, Vol. SE-ll, No. 12, December
1985, pp. 1491-1501.

[Chen 1978] L. Chen and A. AviZienis, "N-version Programming: A Fault Tolerance
Approach to Reliability of Software Operation," Digest of FTCS-8, the 8th International
Symposium on Fault-Tolerant Computing, Toulouse, France, June 1978, pp. 3-9.

[Cristian 1982] F. Cristian, "Exception Handling and Software Fault Tolerance," IEEE
Transactions on Computers, Vol. C-31, No.6, June 1982, pp. 531-540.

[Goguen 1979] J. A. Goguen and J. J. Tardo, "An Introduction to OBJ: A Language
for Writing and Testing Fonnal Algebraic Program Specifications," Proceedings of the
Conference on the Specification of Reliable Software, Cambridge, MA, April 1979, pp.
170-189.

[Gunningberg 1985] P. Gunningberg and B. Pehrson, "Specification and Verification
of a Synchronization Protocol for Comparison of Results," Digest of FTCS-15, the 15th
International Symposium on Fault-Tolerant Computing, Ann Arbor, Michigan, June
1985, pp. 172-177.

[Guttag 1985] J. V. Guttag, J. J. Horning and J. M. Wing, "Larch in Five Easy Pieces,"
Digital Equipment Corporation Systems Research Center, Report No.5, Palo Alto, Cali­
fornia, July 24, 1985.

[Kelly 1983] J. P. J. Kelly and A. Avizienis, "A Specification-Oriented Multi-Version
Software Experiment," Digest of FTCS-13 , the 13th International Symposium on Fault­
Tolerant Computing, Milano, Italy, June 1983, pp. 120-126.

[Kelly 1986] J. P. J. Kelly, A. Avizienis, B. T. Ulery, B. J. Swain, R. T. Lyu, A. Tai and
K. S. Tso, "Multi-Version Software Development," Proceedings of the IFAC Workshop
SAFECOMP 86, Sarlat, France, October 1986, pp. 43-49.

168 Aviiienis et al

[Kim 1984] K. H. Kim, "Distributed Execution of Recovery Blocks: An Approach to
Uniform Treatment of Hardware and Software Faults," Proceedings of the 4th IEEE
International Conference on Distributed Computing
Systems, San Francisco, California, May 1984, pp. 526-532.

[Lamport 1982] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals Prob­
lem," ACM Transactions on Programming Languages and Systems, Vol. 4, No.3, July
1982, pp. 382-401.

[Locasso 1980] R. Locasso, J. Scheid, V. Schorre and P. Eggert, "The Ina Jo
Specification Language Reference Manual," System Development Corp., Tech. Rep.
TM-6889100010I, Santa Monica, California, November 1980.

[Melliar-Smith 1982] P. M. Melliar-Smith and R. L. Schwartz, "Formal Specification
and Mechanical Verification of SIFf: A Fault-Tolerant Flight Control System," IEEE
Transactions on Computers, Vol. C-31, No.7, July 1982, pp. 616-630.

[Popek 1981] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin and G.
Thiel, "LOCUS: A Network Transparent, High Reliability Distributed System,"
Proceedings of the 8th Symposium on Operating Systems Principles, Pacific Grove, Cali­
fornia, December 1981, pp. 169-177.

[Ramamoorthy 1981] C. V. Ramamoorthy, Y. Mok, F. Bastani, G. Chin and K. Suzuki,
, 'Application of a Methodology for the Development and Validation of Reliable Process
Control Software," IEEE Transactions on Software Engineering, Vol. SE-7, No.6,
November 1981, pp. 537-555.

[Shoch 1982] J. F. Shoch and J. A. Jupp, "The 'Worm' Programs - Early Experience
with a Distributed Computation," Communications of the ACM, Vol. 25, No.3, March
1982, pp. 172-180.

[Tai 1986] A. T. Tai, "A Study of the Application of Formal Specification for Fault­
Tolerant Software," M.S. thesis, UCLA Computer Science Department, Los Angeles,
California, June 1986.

[Tso 1987a] K. S. Tso, "Recovery and Reconfiguration in Multi-Version Software,"
PhD. dissertation, UCLA Computer Science Department, University of California, Los
Angeles, March 1987; also Technical Report No. CSD-870013, March 1987.

[Tso 1987b] K. S. Tso and A. Avizienis, "Community Error Recovery in N-Version
Software: A Design Study with Experimentation," Digest of FTCS-17, the 17th Inter­
national Symposium on Fault-Tolerant Computing, Pittsburgh, Pennsylvania, July 1987.

[Voges 1982] U. Voges, F. Fetsch and L. Gmeiner, "Use of Microprocessors in a
Safety-Oriented Reactor Shut-Down System," Proceedings EUROCON, Lyngby, Den­
mark, June 1982, pp. 493-497.

[Wensley 1978] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P.
M. Melliar-Smith, R. E. Shostak and C. B. Weinstock, "SIFT: Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control," Proceedings of the IEEE, Vol. 66, No.
10, October 1978, pp. 1240-1255.

[Zave 1986] P. Zave and W. Schell, "Salient Features of an Executable Specification
Language and Its Environment," IEEE Transaction on Software Engineering, Vol. SE-
12, No.2, February 1986, pp. 312-325.

