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Abstract—Cloud computing is becoming a mainstream aspect of information technology. More and more enterprises deploy their

software systems in the cloud environment. The cloud applications are usually large scale and include a lot of distributed cloud

components. Building highly reliable cloud applications is a challenging and critical research problem. To attack this challenge, we

propose a component ranking framework, named FTCloud, for building fault-tolerant cloud applications. FTCloud includes two ranking

algorithms. The first algorithm employs component invocation structures and invocation frequencies for making significant component

ranking. The second ranking algorithm systematically fuses the system structure information as well as the application designers’

wisdom to identify the significant components in a cloud application. After the component ranking phase, an algorithm is proposed to

automatically determine an optimal fault-tolerance strategy for the significant cloud components. The experimental results show that by

tolerating faults of a small part of the most significant components, the reliability of cloud applications can be greatly improved.

Index Terms—Cloud application, component ranking, fault tolerance, software reliability

Ç

1 INTRODUCTION

CLOUD computing is a style of Internet-based computing,
whereby shared resources, software, and information

are provided to computers and other devices on demand,
like the electricity grid [4], [8]. Promoted by the leading
industrial companies (e.g., Amazon, Google, IBM, Micro-
soft, etc.), cloud computing is becoming increasingly
popular in recent years. The software systems in the cloud
(named as cloud applications) typically involve multiple
cloud components communicating with each other [1]. The
cloud applications are usually large scale and very
complex. Before enterprises transfer their critical systems
to the cloud environment, one question they ask is: Can
cloud become as reliable as the power grid achieving 99.999
percent uptime? Unfortunately, the reliability of the cloud
applications is still far from perfect in reality. Nowadays,
the demand for highly reliable cloud applications is
becoming unprecedentedly strong. Building highly reliable
clouds becomes a critical, challenging, and urgently
required research problem.

In traditional software reliability engineering, there are
four main approaches to build reliable software systems,
i.e., fault prevention, fault removal, fault tolerance, and fault

forecasting [21]. The trend toward large-scale complex cloud
applications makes developing fault-free systems by only
employing fault-prevention techniques (e.g., by rigorous
development process) and fault-removal techniques (e.g., by
testing and debugging techniques) exceedingly difficult.
Another approach for building reliable systems, software
fault tolerance [20], makes the system more robust by
masking faults instead of removing faults. One of the most
well-known software fault-tolerance techniques, also known
as design diversity, is to employ functionally equivalent yet
independently designed components to tolerate faults [5].
Due to the cost of developing and maintaining redundant
components, software fault tolerance is usually only
employed for critical systems (e.g., airplane flight control
systems, nuclear power station management systems, etc.).
Different from traditional software systems, there are a lot of
redundant resources in the cloud environment, making
software fault tolerance a possible approach for building
highly reliable cloud applications.

Since cloud applications usually involve a large number
of components, it is still too expensive to provide alternative
components for all the cloud components. Moreover, there is
probably no need to provide fault-tolerance mechanisms for
the noncritical components, whose failures have limited
impact on the systems. To reduce the cost so as to develop
highly reliable cloud applications within a limited budget, a
small set of critical components needs to be identified from
the cloud applications. Microsoft reported that by fixing the
top 20 percent of the most reported bugs of Windows and
Office, 80 percent of the failures and crashes would be
eliminated [26]. Our idea is also based on this well-known
80-20 rules, i.e., by tolerating faults of a small part of the
most important cloud components, the cloud application
reliability can be greatly improved. Based on this idea, we
propose FTCloud, which is a component ranking framework
for building fault-tolerant cloud applications. FTCloud
identifies the most significant components and suggests
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the optimal fault-tolerance strategies for these significant

components automatically. FTCloud can be employed by

designers of cloud applications to design more reliable and

robust cloud applications efficiently and effectively.
The contribution of this paper is twofold:

. This paper identifies the critical problem of locating
significant components in complex cloud applica-
tions and proposes a ranking-based framework,
named FTCloud, to build fault-tolerant cloud appli-
cations. We first propose two ranking algorithms to
identify significant components from the huge
amount of cloud components. Then, we present an
optimal fault-tolerance strategy selection algorithm
to determine the most suitable fault-tolerance strat-
egy for each significant component. We consider
FTCloud as the first ranking-based framework for
developing fault-tolerant cloud applications.

. We provide extensive experiments to evaluate the
impact of significant components on the reliability of
cloud applications.

The rest of this paper is organized as follows: Section 2
introduces a motivating example and system architecture,
Section 3 proposes two ranking algorithms for discovering
significant components, Section 4 presents an optimal fault-
tolerance strategy selection algorithm, Section 5 shows
experiments, Section 6 introduces related work, and
Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Motivating Example

We begin by using a motivating example to show the
research problem of this paper. Amazon1 delivers computer
infrastructure as a service to the cloud users (known as
Infrastructure as a Service (IaaS)). As shown in Fig. 1, there
are a number of distributed components in the Amazon
cloud, including Amazon Elastic Compute Cloud (EC2)2 for
providing computing capability, Amazon Simple Storage
Service (S3)3 for providing content storage, and so on. These
cloud components are employed by application designers
to implement and deploy their own cloud applications.

To enhance the system reliability, the cloud application
designer wants to provide fault-tolerance mechanisms by
replicating the components. When designing fault-tolerance

mechanisms for the cloud application, the cloud application
designer encounters the following problems:

. There are a lot of components within the cloud
application. It is too expensive to provide alternative
components for all the cloud components, since
there is a charge for using the Amazon cloud
components (e.g., the virtual machines of EC2 or
S3). To save money, the designer wants to only
tolerate faults of the most important components,
whose failures have great impact on the whole
system. However, since the cloud applications are
usually very complex, it is not easy to identify
the important components for a cloud application.

. There are a number of fault-tolerance strategies. The
designer may not be an expert on software fault
tolerance. It is a challenging task for the application
designer to find out the optimal fault-tolerance
strategies for the significant cloud components.

To address the above problems, we first propose a
component ranking framework at Section 3, which ranks
the component automatically for the application designer.
After that, we present an optimal fault-tolerance strategy
selection algorithm at Section 4, which suggests optimal
fault-tolerance strategies for application designers.

2.2 System Architecture

Fig. 2 shows the system architecture of our fault-tolerance
framework (named FTCloud), which includes two parts:
1) ranking and 2) optimal fault-tolerance selection. The
procedures of FTCloud are as follows:

1. The system designer provides the initial architecture
design of a cloud application to FTCloud. A
component graph is built for the cloud application
based on the component invocation relationships.

2. Significance values of the cloud components are
calculated by employing component ranking algo-
rithms. Based on the significance values, the compo-
nents can be ranked.

3. The most significant components in the cloud app-
lication are identified based on the ranking results.

4. The performance of various fault-tolerance strat-
egy candidates is calculated and the most suitable
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Fig. 1. Motivating example.

Fig. 2. System architecture of FTCloud.

1. http://www.amazon.com.
2. http://aws.amazon.com/ec2.
3. http://aws.amazon.com/s3.



fault-tolerance strategy is selected for each sig-
nificant component.

5. The component ranking results and the selected
fault-tolerance strategies for the significant compo-
nents are returned to the system designer for
building a reliable cloud application.

Section 3 will introduce the technique details of the
component ranking algorithm and Section 4 will present the
optimal fault-tolerance strategy selection algorithm.

3 SIGNIFICANT COMPONENT RANKING

The target of our significant component ranking algorithm is
to measure the importance of cloud components based on
available information (e.g., application structure, component
invocation relationships, component characteristics, etc.). As
shown in Fig. 2, our significant component ranking includes
three steps (i.e., component graph building, component
ranking, and significant component determination), which
will be described in Sections 3.1 to 3.3, respectively.

3.1 Component Graph Building

A cloud application can be modeled as a weighted directed
graph G, where a node ci in the graph represents a
component and a directed edge eij from node ci to node cj
represents a component invocation relationship, i.e., ci
invokes cj. Each node ci in the graph G has a nonnegative
significance value V ðciÞ, which is in the range of (0,1). Each
edge eij in the graph has a nonnegative weight value
W ðeijÞ, which is in the range of [0,1]. The weight value of an
edge eij can be calculated by

W ðeijÞ ¼
frqijPn
j¼1 frqij

; ð1Þ

where frqij is the invocation frequency of component cj by
component ci, n is the number of components, and frqij ¼ 0
if component ci does not invoke cj. In this way, the edge eij
has a larger weight value if component cj is invoked more
frequently by component ci compared with other compo-
nents invoked by ci.

For a component graph which contains n components, an
n� n transition probability matrix W can be obtained by
employing (1) to calculate the invocation weight values of
the edges. Each entry wij in the matrix is the value of W ðeijÞ.
wij ¼ 0 if there is no edge from ci to cj, which means that ci
does not invoke cj. If a component does not invoke itself,
wii ¼ 0. Otherwise, the value of wii can be calculated by (1).
In the case that a node ci has no outgoing edge, wij ¼ 1

n . For
8i, the transition probability matrix W satisfies:

8i;
Xn
j¼1

wij ¼ 1: ð2Þ

3.2 Component Ranking

Based on the component graph, two component ranking
algorithms, named as FTCloud1 and FTCloud2, are pro-
posed in this section. The first approach employs the system
structure information (i.e., the component invocation
relationships and frequencies) for making component
ranking. The second approach not only considers the system
structure, but also considers the component characteristics

(i.e., critical components or noncritical components) for
making component ranking.

3.2.1 FTCloud1: Structure-Based Component Ranking

In a cloud application, some components are frequently
invoked by a lot of other components. These components
are considered to be more important, since their failures
will have greater impact on the system compared with other
components. Intuitively, the significant components in a cloud
application are the ones which have many invocation links
coming in from the other important components. Inspired
by the PageRank algorithm [7], we propose an algorithm to
calculate the significance values of the cloud components
employing the component invocation relationships and
frequencies. The procedure of this structure-based compo-
nent ranking algorithm is shown in the following steps:

1. Randomly assign initial numerical scores between
0 and 1 to the components in the graph.

2. Compute the significance value for a component ci by:

V ðciÞ ¼
1� d
n
þ d

X
k2NðciÞ

V ðckÞWðekiÞ; ð3Þ

where n is the number of components and NðciÞ is a
set of components that invoke component ci. The
parameter d (0 � d � 1) in (3) is employed to adjust
the significance values derived from other compo-
nents, so that the significance value of ci is composed
of the basic value of itself (i.e., 1�d

n ) and the derived
values from the components that invoked ci. By (3), a
component ci has larger significance value, if the
values of jNðciÞj, V ðckÞ, and WðekiÞ are large,
indicating that component ci is invoked by a lot of
other significant components frequently.

In vector form, (3) can be written as

V ðc1Þ
..
.

V ðcnÞ

2
64

3
75 ¼

ð1� dÞ=n
..
.

ð1� dÞ=n

2
64

3
75þ dWt

V ðc1Þ
..
.

V ðcnÞ

2
64

3
75; ð4Þ

where Wt is the transposed matrix of the transition
probability matrix W .

3. Solve (4) by computing the eigenvector with
eigenvalue 1 or by repeating the computation until
all significance values become stable.

With the above approach, the significance values of the
cloud components can be obtained. A component is
considered to be more significant, if it has a larger
significance value. The failure of such these significant
components will have great impact on other components
and the whole system.

3.2.2 FTCloud2: Hybrid Component Ranking

The structure-based approach ranks the components by
only employing the information of component invocation
relationships and frequencies. It does not consider the
characteristics of the components. For example, some
components fulfill critical tasks (e.g., payment), while other
components accomplish noncritical tasks (e.g., providing
advertisements to display in the web page). Failures of the
critical components have great impact on the system and
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thus have higher fault-tolerance requirement. On the other
hand, failures of the noncritical components have smaller
impact on the system. Fault-tolerance requirement for the
noncritical components is therefore not high.

In order to rank the components as accurate as possible,
we propose a hybrid component ranking approach, which
considers both the system structure as well as the
component characteristics (i.e., critical components or
noncritical components) as follow:

1. Randomly assign initial numerical scores between 0
and 1 to the components in the graph. Divide the
components in the graph into two component sets,
critical components C and noncritical components
NC, employing the prior knowledge provided by
the system designers.

2. If a component ci is a critical component (ci 2 C),
compute the significance value for component ci by

V ðciÞ ¼ ð1� dÞ
�

jCj þ d
X

k2NðciÞ
V ðckÞW ðekiÞ; ð5Þ

and if a component ci is a noncritical component
(ci 2 NC), compute the significance value for com-
ponent ci by

V ðciÞ ¼ ð1� dÞ
1� �
jNCj þ d

X
k2NðciÞ

V ðckÞW ðekiÞ; ð6Þ

where jCj and jNCj are the numbers of critical
components and noncritical components, respec-
tively, jCj þ jNCj ¼ n, and NðciÞ is a set of compo-
nents that invoke component ci. The parameter d
(0 � d � 1) in (5) is employed to adjust the signifi-
cance values derived from other components, so
that the significance value of ci is composed of the
basic value of itself and the derived values from
the components that invoke ci. The parameter �
(jCjn � � � 1) is employed to determine how much the
hybrid approach relies on the critical components
and the noncritical components. When � ¼ jCj

n , the
hybrid approach degrades to the structure-based
approach, which treats the critical components and
the noncritical components equally. When jCjn < � � 1,
the hybrid approach bias toward critical components.
In other word, the basic value of the critical
component ð1� dÞ �jCj is larger than that of the
noncritical components ð1� dÞ 1��

jNCj . When � ¼ 1, the
basic value of the noncritical components is equal to
0, leading to smaller significance values of the
noncritical components.

In vector form, (3) can be written as

V ðc1Þ
..
.

V ðcnÞ

2
64

3
75 ¼

x1

..

.

xn

2
64

3
75þ dWt

V ðc1Þ
..
.

V ðcnÞ

2
64

3
75; ð7Þ

where

xi ¼
ð1� dÞ �jCj ; if ci 2 C
ð1� dÞ 1��

jNCj ; if ci 2 NC:

(
ð8Þ

3. Solve (7) by computing the eigenvector with
eigenvalue 1 or by repeating the computation until
all significance values become stable.

With the above approach, the significance values of the
cloud components can be calculated by employing both
the system structure information and the component
characteristics.

3.3 Significant Component Determination

Based on the obtained significance values of the compo-
nents in the cloud application, the components can be
ranked and the top k (1 � k � n) most significant compo-
nents can be returned to the designer of the cloud
application. In this way, the application designer can
identify significant components early at the architecture
design time and can employ various techniques (e.g., fault-
tolerance techniques which will be introduced in Section 4)
to improve the reliability of these significant components.

4 FAULT-TOLERANCE STRATEGY SELECTION

4.1 Fault-Tolerance Strategies

Software fault tolerance is widely adopted to increase the
overall system reliability in critical applications. System
reliability can be improved by employing functionally
equivalent components to tolerate component failures.
Three well-known fault-tolerance strategies are introduced
in the following with formulas for calculating the failure
probabilities of the fault-tolerant modules. In this paper,
failure probability of a cloud component is defined as the
probability that an invocation to this component will fail.
The value of failure probability is in the range of [0,1].

. Recovery block (RB). Recovery block [25] is a well-
known mechanism employed in software fault
tolerance. As shown in Fig. 3a, a recovery block is
a means of structuring redundant program modules,
where standby components will be invoked sequen-
tially if the primary component fails. A recovery
block fails only if all the redundant components fail.
The failure probability f of a recovery block can be
calculated by:

f ¼
Yn
i¼1

fi; ð9Þ
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Fig. 3. Fault-tolerance strategies.



where n is the number of redundant components
and fi is the failure probability of the ith component.

. N-version programming (NVP). N-version pro-
gramming, also known as multiversion program-
ming, is a software fault-tolerance method where
multiple functionally equivalent programs (named
as versions) are independently generated from the
same initial specifications [5]. As shown in Fig. 3b,
When applying the NVP approach to the cloud
applications, the independently implemented func-
tionally equivalent cloud components are invoked in
parallel and the final result is determined by
majority voting. The failure probability f of an
NVP module can be computed by

f ¼
Xn
i¼nþ1

2

F ðiÞ; ð10Þ

where n is the number of functionally equivalent
components (n is usually an odd number in NVP)

and F ðiÞ is probability that i alternative components
from all the n components fail. For example, when
n ¼ 3, then f ¼ Fð2Þ þ Fð3Þ, where F ð2Þ ¼ f1f2ð1�
f3Þ þ f1ð1� f2Þf3 þ ð1� f1Þf2f3 and F ð3Þ ¼ f1f2f3.
In other words, an NVP module fails only if more

than half of the redundant components fail.
. Parallel. As shown in Fig. 3c, parallel strategy

invokes all the n functional equivalent components
in parallel and the first returned response will be
employed as the final result. An parallel module
fails only if all the redundant components fail.
The failure probability f of a parallel module can be
computed by

f ¼
Yn
i¼1

fi; ð11Þ

where n is the number of redundant components

and fi is the failure probability of the ith component.

Different fault-tolerance strategies have different fea-
tures. As shown in Table 1, the response time performance
of RB and NVP strategies is not good compared with
Parallel strategy, since RB strategy invokes standby compo-

nent sequentially when the primary component fails, NVP
strategy needs to wait for all the n responses from the
parallel invocations for determining the final result, while
Parallel strategy employs the first returned response as
the final result. The required resources of NVP and Parallel
are much higher than those of RB since parallel component

invocations consume a lot of networking and computing
resources. All RB, NVP, and Parallel strategies can tolerate
crash faults (e.g., component crash, communication link

crash, etc.). NVP strategy can also mask value faults (e.g.,
data corruption), since majority voting is employed for
determining the final results in NVP.

Employing a suitable fault-tolerance strategy for the cloud
components is important to achieve optimal cloud applica-
tion design. For example, RB strategy for the resource-
constrained components, NVP strategy for the components
with value faults and Parallel strategy for the components
which have restrict real-time requirements. Since cloud
applications usually include a large number of distributed
components, automatic optimal fault-tolerance strategy
selection reduces the workload of system designers and
helps achieve optimal allocation of resources.

Employing the component ranking algorithm in Section 3,
a set of significant components can be identified from the
cloud application. The optimal fault-tolerance strategies can
be determined for these significant components employing
the approach proposed in Section 4.2.

4.2 Optimal FT Strategy Selection

The fault-tolerance strategies have a number of variations
based on different configurations. For example, both RB
and Parallel strategies have n� 1 variations (i.e., configured
with 2; 3; . . . ; n redundant components), where n is the
maximal number of redundant components. NVP strategy
has ðn� 1Þ=2 variations (i.e., NVP with 3; 5; . . . ; n redun-
dant components), where n is an odd number. For each
significant component in a cloud application, these fault-
tolerance strategy variations are candidates and the optimal
one needs to be identified.

For each significant component that requires a fault-
tolerance strategy, the designer can specify constraints (e.g.,
response time of the component has to be smaller than 1,000 milli-
seconds, etc.). Two user constraints are considered: one for
response time and one for cost. The optimal fault-tolerance
strategy selection problem for a cloud component with user
constraints can then be formulated mathematically as

Problem 1. Minimize:
Pm

i¼1 fi � xi
Subject to:

.
Pm

i¼1 si � xi � u1,

.
Pm

i¼1 ti � xi � u2,

.
Pm

i¼1 xi ¼ 1,
. xi 2 f0; 1g.

In Problem 1, xi is set to 1 if the ith candidate is selected
for the component and 0 otherwise. Moreover, fi, si, and ti
are the failure probability, cost, and response time of the
strategy candidates, respectively, m is the number of fault-
tolerance strategy candidates for the component, and u1 and
u2 are the user constraints for cost and response time,
respectively. Problem 1 is extensible, where more user
constraints can be readily included in the future.

To solve Problem 1, we first calculate the cost, response-
time, and the aggregated failure probability values of
different fault-tolerance strategy candidates employing the
equations presented in Section 4.1. Then, Algorithm 1 is
designed to select the optimal candidate. First, the candi-
dates which cannot meet the user constraints are excluded.
After that, the fault-tolerance candidate with the best failure
probability performance will be selected as the optimal
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strategy for component i. By the above approach, the

optimal fault-tolerance strategy, which has the best failure

probability performance and meets all the user constraints,

can be identified.

Algorithm 1. Optimal FT Strategy Selection

Input: si, ti, and fi values of candidates; user constraints

u1, u2;
Output: Optimal candidate index �.

m: number of candidates;

for (i ¼ 1; i � m; iþþ) do

if (si � u1&&ti � u2) then

vi ¼ fi;
end

end

if no candidate meet user constraints then

Throw exception;

end

Select vx which has minimal value from all the vi;

� ¼ x;

5 EXPERIMENTS

5.1 Prototype Implementation

A prototype of FTCloud is implemented. As shown in

Fig. 4, our FTCloud implementation includes several

modules:

. Component extraction. The components are extracted
from a cloud application.

. Invocation extraction. The invocation links of different
components are extracted from a cloud application.

. Weight calculation. The weight values of the invoca-
tion links are calculated by (1), which has been
introduced in Section 3.1.

. Component graph building. Based on the components
and the invocation links, a component graph is built
for a cloud application.

. Component ranking. The significant component rank-
ing algorithms in Section 3.2 are implemented and
encapsulated in this module. The input of this
module is the component invocation probability
matrix and the output is a list of ranked components
based on their significance values. Our component

ranking framework is extensible. Most component
ranking algorithms can be added easily in the future.

. FT strategy selection. The optimal fault-tolerance
strategy selection algorithm presented in Section 4.2
is implemented in this module. This module calcu-
lates failure probabilities of various fault-tolerance
strategy candidates and selects the most suitable one
for each significant component.

. FT strategies. This module defines different fault-
tolerance strategies. The design of this module
makes our fault-tolerance model extensible, where
more fault-tolerance strategy candidates can
be added easily.

5.2 Experimental Setup

Our significant component ranking algorithms are imple-
mented by C++ language. To study the performance of
reliability improvement, we compare five approaches,
which are as follows:

. NoFT. No fault-tolerance strategies are employed for
the components in the cloud application.

. RandomFT. Fault-tolerance strategies are employed
to mask faults of K percent components, which are
randomly selected.

. FTCloud1. Fault-tolerance strategies are employed
to mask faults of the Top-K percent significant
components. The components are ranked by em-
ploying the structure information of the cloud
application.

. FTCloud2. Fault-tolerance strategies are employed
to mask faults of the Top-K percent significant
components. The components are ranked by em-
ploying the hybrid component ranking algorithm,
which considers the structure information as well as
the prior knowledge of component characteristics.

. AllFT. Fault-tolerance strategies are employed for all
the cloud components.

A scale-free graph is a graph whose degree distribution
follows a power law. Many empirically observed networks
appear to be scale free, including the protein networks,
citation networks, and some social networks. Several
previous work [10], [15] show that the internal structures
of software programs (e.g., class collaboration graphs, call
graphs for procedural code, inter package dependency of
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applications, etc.) exhibit approximate scale-free properties.
We use Pajek [6] to generate scale free directed component
graphs for making experimental studies and comparing the
performance of different approaches.

For a cloud component, we employ the fault-tolerance
strategy determination algorithm to automatically select the
optimal fault-tolerance strategy for tolerating faults. During
the execution of the cloud application, the execution is
considered as failed if an invoked component is failed and
there is no fault-tolerance strategy for this component. If a
fault-tolerance strategy is applied for this component, the
component fails only when the whole fault-tolerance
strategy fails. In the FTCloud1 and FTCloud2 approaches,
the parameter d balances the significance value derived
from the other components and the basic value of the
component itself. In our experiment, the component ranks
are fairly stable when we change the parameter d of (3) from
0.75 to 0.95. Therefore, similar to the work [7], [16], we also
set the parameter d to be 0.85 in all the experiments.

5.3 Performance Comparison

We employ random walk to simulate the invocation
behavior in cloud applications. Specifically, Pajek [6] is
employed to generate scale free directed component graphs
and the generated edge weights are used to present the
component invocation probability. To start a random walk,
a node in the invocation graph is randomly selected as the
start node. A very small stop rate is used for the random
walk to guarantee the invocation coverage of all nodes in
the graph. In our experiments, 10,000 invocation sequences
are generated for each setting of node numbers (e.g., 100,
1,000, and 10,000 nodes). Five types of fault-tolerance
mechanisms (i.e., NoFT, RandomFT, FTCloud1, FTCloud2,
AllFT) are applied on these invocation sequences, and the
average results are reported in Table 2.

In Table 2, Component FP represents the failure
probability of the cloud components, Top-K (K ¼ 1; 5; 10,
and 20 percent) indicates that fault-tolerance mechanisms
are applied for the K percent components (K percent most
significant components in FTCloud1 and FTCloud2, and
K percent randomly selected components in RandomFT).
The experimental results in Table 2 show that,

. Among the four approaches, AllFT provides the best
failure probability performance (smallest failure
probability values) while NoFT provides the worst
failure probability performance. Because AllFT
employs fault-tolerance strategies for all the compo-
nents while NoFT provides no fault-tolerance
strategies for the components.

. Compared with RandomFT, FTCloud1, and
FTCloud2 obtains better failure probability perfor-
mance in all experimental settings. This experimen-
tal result indicates that tolerating failures of the
significant components can achieve better system
reliability than tolerating failures of randomly
selected components. This is because the significant
components identified by FTCloud1 and FTCloud2
are invoked more frequently and their failures have
greater impact on the whole system.

. Compared with FTCoud1 and FTCloud2 obtain better
failure probability performance in all experimental
settings. This experimental result indicates that the
component ranking achieves more accurate results
when fusing the prior knowledge of critical compo-
nents as well as the system structure information.

. When the Top-K value increases from 5 to 20 percent,
the failure probabilities performance of FTCloud1
and FTCloud2 decrease monotonically, while failure
probability of RandomFT may or may not decrease.
This observation indicates that by tolerating failures
of more components (set Top-K to be a larger value),
the system reliability can be improved by employing
FTCloud1 and FTCloud2 approaches.

. With the increase of the node number from 100 to
10,000, the failure probability performance of NoFT
increases, since a larger system is easier to fail in
error-prone environments than a smaller one.
FTCloud1 and FTCloud2 can consistently provide
better performance compared with RandomFT with
different node numbers, indicating that by tolerating
faults of the important components, the system
reliability can be greatly improved for different sizes
of cloud applications.

. With the increase of the component failure prob-
ability ranging from 0.1 to 1 percent, the failure
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probability for all the approaches is greatly in-
creased. Because 1 percent component failure prob-
ability makes the application execution fail easily. In
this case, we need to tolerate more significant
components to provide highly reliable systems.

5.4 Impact of � in FTCloud2

In the component ranking approach FTCloud2, the para-

meter � determines how we incorporate the basic value of

each component based on characteristics of critical or

noncritical component. When � ¼ jCjn , FTCloud2 is equal

to FTCloud1, which ranks the components by only employ-

ing the system structure information. To study the impact

of parameter � on the ranking results, we employ 1,000

components, which includes 100 critical components and

900 noncritical components. We study the fault-tolerance

performance of FTCloud2 under different Top-K values and

� values (jCjn � � � 1 and jCj
n ¼ 0:1 in this experiment).

The experimental results in Fig. 5 show that

. With the increase of � value from 0.1 to 1, the system
failure probability first decreases and then increases
slightly, indicating that a suitable � value setting can
achieve better component ranking and system fault-
tolerance performance. In this experiment, optimal
fault-tolerance performance can be achieved when
the value of � is around 0.7.

. In all the four figures with different Top-K value
settings, the failure probability of � > 0:1 is better
than � ¼ 0:1, indicating that considering prior
knowledge on critical and noncritical components
can obtain better fault-tolerance performance.

. With the increase of Top-K value from 1 to 20 percent,
the system failure probability becomes smaller, since

faults of more significant system components are
masked by the fault-tolerance mechanism.

5.5 Impact of Top-K

To study the impact of the parameter Top-K on the system

reliability, we compare RandomFT, FTCloud1, FTCloud2

with different Top-K value settings. The node number in

this experiment is 1,000. Table 3 shows the experimental

results of application failure probabilities under different
Top-K value settings.

Table 3 shows that

. Under different component failure probability set-
tings (i.e., 0.1, 0.5, and 1 percent), FTCloud1, and
FTCloud2 consistently outperform RandomFT from
Top-K ¼ 1% to Top-K ¼ 90%. The performance of
FTCloud1, FTCloud2, and RandomFT is the same in
Top-K ¼ 100%, since fault-tolerance strategies are
applied to all the components in all the three
approaches in this experimental setting.

. With the increase of Top-K value, the failure
probability of FTCloud1 and FTCloud2 decreases
much faster than that of RandomFT, indicating that
the system reliability can be improved by tolerating
faults of the significant components suggested by
our component ranking approaches.

. FTCloud2 obtains a smaller failure probability than
FTCloud1 consistently under different Top-K value
settings.

. With the increase of component failure probability
from 0.1 to 1 percent, the system failure probability
becomes larger, which is mainly caused by the
failures of the components without any fault-
tolerance strategies. Larger Top-K value is required
to achieve good application failure probability
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performance under large failure probability settings.
The experimental results show that the optimal
Top-K value is influenced by the component failure
probability.

5.6 Impact of Component Failure Probability

To study the impact of the component failure probability
on the system reliability, we compare RandomFT,
FTCloud1, and FTCloud2 under failure probability settings
of 0.1 to 1 percent with a step value of 0.1 percent. The
node number in this experiment is 1,000. Fig. 6 shows the
experimental results of cloud application failure probabil-
ities under different Top-K settings.

Fig. 6 illustrates that

. As shown in Figs. 6a, 6b, 6c, and 6d, under different
Top-K values, FTCloud1, and FTCloud2 outperform
RandomFT in all the component failure probability
settings from 0.1 to 1 percent consistently.

. With the increase of component failure probability
from 0.1 to 1 percent, the application failure
probabilities of all the three approaches become
larger. A larger Top-K value is required to build
reliable cloud applications under larger component
failure probability settings.

. With the increase of Top-K value, the application
failure probability of FTCloud1 and FTCloud2
approach decreases much faster than that of Ran-
domFT, indicating that FTCloud1 and FTCloud2
have a more effective use of the redundant compo-
nents than RandomFT.

The above experimental results show, again, that
FTCloud2 achieves the best failure probability performance
under different experimental settings.

6 RELATED WORK AND DISCUSSION

The main approaches to build reliable software systems
include fault prevention, fault removal [33], fault tolerance
[20], [39], and fault forecasting [12], [36]. Software fault
tolerance is widely employed for building reliable distributed
systems [13]. The major software fault-tolerance techniques
include recovery block [25], N-Version Programming (NVP)
[5], N self-checking programming [18], distributed recovery
block [17], and so on. The major fault-tolerance strategies
can be divided into passive strategies and active strategies
[40]. Passive strategies have been discussed in FT-SOAP [11]
and FT-CORBA [31], while active strategies have been
investigated in FTWeb [29], Thema [23], WS-Replication
[28], SWS [19], and Perpetual [24]. In the cloud-computing

environment, the abundant resources make software fault
tolerance a feasible approach for building reliable cloud
applications. Complementary to the previous research
efforts which are mainly focused on the design of fault-
tolerance strategies, this paper proposes an extensible
framework for building fault-tolerant cloud applications.

Component ranking is an important research problem in
cloud computing [41], [42]. The component ranking
approaches of this paper are based on the intuition that
components which are invoked frequently by other im-
portant components are more important. Similar ranking
approaches include Google PageRank [7] (a ranking
algorithm for web page searching) and SPARS-J [16]
(software product retrieving system for Java). Different
from the PageRank and SPARS-J models, component
invocation frequencies as well as component characteristics
are explored in our approaches. Moreover, the target of our
approach is identifying significant components for cloud
applications instead of web page searching (PageRank) or
reusable code searching (SPARS-J).

Cloud computing [3] is becoming popular. A number of
works have been carried out on cloud computing, including
storage management [32], resource allocation [9], workload
balance [34], dynamic selection [14], etc. In recent years, a
great number of research efforts have been performed in the
area of service component selection and composition [30].
Various approaches, such as QoS-aware middleware [38],
adaptive service composition [2], efficient service selection
algorithms [37], reputation conceptual model [22], and
Bayesian network-based assessment model [35] have been
proposed. Some recent efforts also take subjective informa-
tion (e.g., provider reputations, user requirements, etc.) to
enable more accurate component selection [27]. Instead of
employing nonfunctional performance (e.g., QoS values) or
functional capabilities, our approaches rank the cloud
components considering component invocation relation-
ship, invocation frequencies, and component characteristics.

The FTCloud framework is mainly designed for cloud
applications, since

1. Cloud applications are usually large scale, involving
a large number of distributed components. It is time
consuming to identify significant components manu-
ally. Automatically component ranking approaches
become important, which provide valuable informa-
tion for application designers.

2. Resources (e.g., virtual machines) scale up and scale
down dynamically on demand are main feature of
cloud computing. Therefore, the cloud application
structures may be dynamically updated at runtime.
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In this highly dynamic context, automatically sig-
nificant component identification and fault tolerance
become necessary.

3. There are a lot of software/hardware resources in
the cloud which can be used on demand. Redundant
components are easier to be obtained in the cloud
environment. Therefore software fault tolerance
becomes a feasible approach for building reliable
cloud application.

4. The global information of component invocation
structures and invocation frequencies can be ob-
tained since the components are all running on the
same cloud.

7 CONCLUSION

This paper proposes a component ranking framework for
fault-tolerant cloud applications. In our proposed compo-
nent ranking algorithms, the significance value of a
component is determined by the number of components
that invoke this component, the significance values of these
components, how often the current component is invoked
by other components, and the component characteristics.
After finding out the significant components, we propose
an optimal fault-tolerance strategy selection algorithm to
provide optimal fault-tolerance strategies to the significant
components automatically, based on the user constraints.
The experimental results show that our FTCloud1 and
FTCloud2 approaches outperform other approaches.

Our current FTCloud framework can be employed to
tolerate crash and value faults. In the future, we will
investigate more types of faults, such as Byzantine faults.
Different types of fault-tolerance mechanisms can be added
into our FTCloud framework easily without fundamental
changes. We will also investigate more component ranking
algorithms and add them to the FTCloud framework.
Moreover, we will extended and applied our FTCloud
framework to other component-based systems.

In this paper, we only study the most representative
type of software component graph, i.e., scale-free graph.
Since different applications may have different system
structures, we will investigate more types of graph models
(e.g., small-world model, random-graph model, etc.) in our
future work.

Our future work also includes

1. considering more factors (such as invocation latency,
throughput, etc.) when computing the weights of
invocations links;

2. investigating the component reliability itself besides
the invocation structures and invocation frequencies;

3. more experimental analysis on real-world cloud
applications (e.g., employing the NASA NPB
benchmark);

4. more investigations on the component failure corre-
lations; and

5. more experimental studies on impact of incorrect-
ness of prior knowledge on the invocation frequen-
cies and critical components.
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