A Runtime Dependability Evaluation Framework for Fault Tolerant Web Services

Zibin Zheng and Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Hong Kong, China

PFARM 2009, Lisbon, Portugal, June 29, 2009
Outlines

1. Introduction
2. System Architecture
3. Methodology
4. Experiments
5. Conclusion
1.1 Web services

- Web service is becoming popular.
- Difficult to build reliable service-oriented systems
 - Internet and Web services are highly dynamic
 - Web service components are provided by different organizations
 - The compositional nature is hard to predict
1.2 Fault Tolerant Web Services

• Fault tolerant Web services by design diversity
 – Becomes less expensive, as the alternative components are available in the Internet
 – Requires adaptation, as the traditional fault tolerance strategies are too static

• Runtime evaluation on the target Web services

• Runtime proactive reconfiguration of the fault tolerance strategy
2 System Architecture
3.1 QoS of Web Services

• QoS offered by service provider:
 – Availability
 – Price
 – Popularity
 – Datasize

• QoS observed by service users:
 – Failure-rate
 – Response-time
 – Overall failure-rate
 – Overall response-time

\[q = (q^1, ..., q^m), \]
3.2 Fault Tolerance Strategy

1) Time

2) Active

3) Passive

Table 1. Formula for FT Strategies

<table>
<thead>
<tr>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) (r = 1 - \prod_{i=1}^{m} (1 - r_i)); (t = \left{ \begin{array}{ll} \min {T_{ij}} :</td>
</tr>
<tr>
<td>2) (r = 1 - (1 - r_1)^m ; t = \sum_{i=1}^{m} t_i (1 - r_1)^{i-1});</td>
</tr>
<tr>
<td>3) (r = 1 - \prod_{k=1}^{m} (1 - r_k) ; t = \sum_{k=1}^{m} t_k (1 - r_k));</td>
</tr>
<tr>
<td>4) (r = 1 - (\prod_{i=1}^{m} (1 - r_i))^m ; t = \sum_{j=1}^{m} t_j (\prod_{i=j}^{m} (1 - r_i))^{j-1} ; t_i = \left{ \begin{array}{ll} \min {T_{ij}} :</td>
</tr>
<tr>
<td>5) (r = 1 - \prod_{j=1}^{m} (1 - r_j)^m ; t = \left{ \begin{array}{ll} \min {T_{ij}} :</td>
</tr>
<tr>
<td>6) (r = 1 - \prod_{j=1}^{m} (1 - r_j) ; t = \left{ \begin{array}{ll} \min {T_{ij}} :</td>
</tr>
<tr>
<td>7) (r = 1 - (1 - r_1)^m ; t = \left{ \begin{array}{ll} \min {T_{ij}} :</td>
</tr>
<tr>
<td>8) (r = 1 - (1 - r_1)^m ; t = \sum_{i=1}^{m} t_i (1 - r_i) \prod_{k=1}^{m} (1 - r_k));</td>
</tr>
<tr>
<td>9) (r = 1 - (\prod_{i=1}^{m} (1 - r_i))^m ; t = \sum_{j=1}^{m} (\sum_{i=1}^{m} t_i \prod_{k=1}^{m} (1 - r_k))^j - 2 ;)</td>
</tr>
</tbody>
</table>
3.3 Optimal Web Service Selection

• Method 1: rank target Web services by their overall QoS performance (OP)

\[OP = \sum_{i=1}^{m} w_i \tilde{q}^i, \quad \tilde{q}^i = \frac{1}{n} \sum_{j=1}^{n} q^{i,j}, \]

• Weak point: new service users may not obtain similar performance
 – The network condition is different
 – The user geographic location is different
3.3 Optimal Web Service Selection

- Method 2: collaborative filtering algorithm
 - Similarity computation

\[
Sim(a, u) = \frac{\sum_{i \in I} (r_{a,i} - \bar{r}_a)(r_{u,i} - \bar{r}_u)}{\sqrt{\sum_{i \in I} (r_{a,i} - \bar{r}_a)^2} \sqrt{\sum_{i \in I} (r_{u,i} - \bar{r}_u)^2}},
\]

 - Similar user selection
 - QoS performance prediction

\[
P(r_{u,i}) = \bar{u} + \sum_{u_a \in S(u)} \frac{Sim'(u_a, u)(r_{u_a,i} - \bar{u}_a)}{\sum_{u_a \in S(u)} Sim'(u_a, u)}
\]

 - Optimal Web service selection
3.4 Dynamic FT Strategy Reconfiguration

• Update QoS performance of target Web service candidates dynamically.

• Update user requirements.
 – e.g., response-time < 1000 ms.
 – e.g., failure-rate < 5%.

• Dynamic optimal fault tolerance strategy determination
4.1 Experimental setup

- Prototype: http://www.wsdream.net
 - Client: Java applet.
 - Server: Java servlet, MySQL
- Service users: CN, TW, AU, SG, HK, US
- Functionally equivalent Amazon Web services: a-us, a-jp, a-de, a-ca, a-fr, a-uk.

http://ecs.amazonaws.com
http://ecs.amazonaws.jp
http://ecs.amazonaws.de
http://ecs.amazonaws.ca
http://ecs.amazonaws.fr
http://ecs.amazonaws.co.uk
4.2 Evaluation of Individual WS

Table 2. Failure-rate of the Web Services

<table>
<thead>
<tr>
<th>WS</th>
<th>CN</th>
<th>TW</th>
<th>AU</th>
<th>SG</th>
<th>HK</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-us</td>
<td>22.52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.38</td>
<td>0</td>
</tr>
<tr>
<td>a-jp</td>
<td>26.55</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>a-de</td>
<td>23.40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.45</td>
<td>0</td>
</tr>
<tr>
<td>a-ca</td>
<td>24.23</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0.58</td>
<td>0</td>
</tr>
<tr>
<td>a-fr</td>
<td>19.27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.52</td>
<td>0</td>
</tr>
<tr>
<td>a-uk</td>
<td>20.28</td>
<td>0.03</td>
<td>0.25</td>
<td>0</td>
<td>3.87</td>
<td>0</td>
</tr>
</tbody>
</table>
4.3 Evaluation of FT Strategies

<table>
<thead>
<tr>
<th>Type</th>
<th>Cases</th>
<th>RTT(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Fail</td>
</tr>
<tr>
<td>1</td>
<td>21556</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>22719</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>23040</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>21926</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>21926</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>21737</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>21737</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>21735</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>21808</td>
<td>0</td>
</tr>
</tbody>
</table>
5.1 Conclusion

- QoS of Web services
- Fault tolerance strategies
- Web service selection framework
- Proactive reconfiguration of optimal FT strategy