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Recommender System Approache

A Content based filtering A Collaborative filtering

i Content analyzer it OATAT S 20KS
i Profile learner ratings to recommend

i Filtering component I Neighborhood based
I Model based
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Recommender System Approache

A Content based filtering A Collaborative filtering

I News recommendation I Music movie
i Pros recommendation
A User independent I Pros
A Explainable A Domain independent
A New items A Discovery new items
i Cons A Accurate
A Domain dependent I Cons
A Overspecialization A New items or users

A New users A Black box algorithm



Problem Statement

A Givend dza Splarﬁanatlngs ony items, collaborative filtering
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the rating useb assigned tdQ

i Alternatively, the ratings can be arranged in a set of trigteigxo)
N

-“ﬂ“
5 2

u2 4 3 5
4 2 2 4
5 1 2 4 3
4 3 2 4 3 5

1/23/2015 Learning to Improve Recommender Systems 7



Problem Statement

A Givend dza Splarﬁanatlngs ony items, collaborative filtering
YSGK2Ra GNB (2 LINBRAOG SI OK dza

A Notations ) )

i Ousersy {6 HEM D items'  "“CHQHE hQ , all items
rated byd are denoted by , all users who have ratédare denoted
by >

i Ratings are arranged in a partially observed magnxherew denote
the rating useb assigned tdQ

i Alternatively, the ratings can be arranged in a set of trigteigxo)
N

-I!Iﬂ“

e
4 3 5
Ratings are arranged 4 2 2 4
inad 0 matrixw
5 1 2 4 3
4 3 2 4 3 5

1/23/2015 Learning to Improve Recommender Systems 7



Problem Statement

A Givend dza Splarﬁanatmgs ony items, collaborative filtering
YSGK2Ra GNB (2 LINBRAOG SI OK dza

A Notations ) )

i Ousersy {6 HEM D items'  "“CHQHE hQ , all items
rated byd are denoted by , all users who have ratédare denoted
by >

i Ratings are arranged in a partially observed magnxherew denote
the rating useb assigned tdQ

i Alternatively, the ratings can be arranged in a set of trigteigxo)
N

-“m“
5 2 ? 3 ? 4 ?

Usually, we predict
the rating values

A OO B~ D
WPk VYW
NN VO DN Y
N D D D
E TR S SN S AN &)
N WY Y Y
WD VN
O v v b vV

1/23/2015 Learning to Improve Recommender Systems 7



Neighborhood Based Methods

User Based Methods Iltem Based Methods

A Leveragesimilardzd S NB QA Leverag&t A YA £ | NJ A
ratings ratings

|:
N
w
=

Ul
U2
U3
U4
us

A W A~ DN B
W o1 N 01 O
[ N N - N
A N D PO



Neighborhood Based Methods

User Based Methods Iltem Based Methods

A Leveragesimilardzd S NB QA Leverag&t A YA £ | NJ A
ratings ratings

|:
N
w
=

Ul
U2
U3
U4
us

A W MNP
W U1 N oo
(RO N | EN
AN DIRIIO



Neighborhood Based Methods

User Based Methods Iltem Based Methods

A Leveragesimilardzd S NB QA Leverag&t A YA £ | NJ A
ratings ratings

|:
N
w
=

Ul
U2
U3
U4
us

A W A~ DN B
W o1 N 01 O
[ N N - N
A N D PO



Neighborhood Based Methods

User Based Methods Iltem Based Methods

A Leveragesimilardzd S NB QA Leverag&t A YA £ | NJ A
ratings ratings

N
w

Ul
U2
U3
U4
us

[hl\)-hl—\-\)E]

[-b w AN P ,:]
w o OO
[ N N N



Neighborhood Based Methods

User Based Methods Iltem Based Methods

A Leveragesimilardzd S NB QA Leverag&t A YA £ | NJ A
ratings ratings

|:
N
w
=

Ul
U2
U3
U4
us

A W A~ DN B
W o1 N 01 O
[ N N - N
A N D PO



Neighborhood Based Methods

User Based Methods Iltem Based Methods

A Leveragesimilardzd S NB QA Leverag&t A YA £ | NJ A
ratings ratings



Neighborhood Based Methods

User Based Methods Item Based Methods

A Leveragsimilardzd S NBR QA Leveragéi A YA f I NJ A (
ratings ratings

A Pros

A Simple and easy to implement
A Clear interpretation

A Cons
A Manipulate ratings directly lead to high time complexity
A Prone to sparseness problem



Model Based Methods

A Do not manipulate ratings directly
A Train a predefined compact model
A Usually efficient at prediction time

A Successful methods
I Probabilistic latent semantic analysis
I Matrix factorization based methods, etc.



Matrix Factorization Based Methods

A Assumption
i whas a lowrank structure
i ASNREQ LINSFSNByOSa FyR AQOS
using a few factors
i User feature matrixyn s
i ltem feature matrixoN 9

V.

X = U7

N x M KxN KxM
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A Assumption
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Matrix Factorization Based Methods

A Assumption

I whas a lowrank structure

i AaSNBRQ LINBFSNBYyOSa IyR AGS
using a few factors

i User feature matrixyYN s

T Item feature matrixoN 4

Methods

VD L2 norm None None
L1-SVD L1 norm None None
PMF L2 norm None FrobeniusNorm on U and"
NMF L2 norm U>0, V>0 None
MMMF Hinge loss None Trace™Y
RMF Cross Entropy None FrobeniudNorm on U and

Loss?
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Probabilistic Matrix Factorization PMF

A Conditional distribution over observed ratings:

p(X|U,V, o> H H (419U V), o] His Oy TU
1=17=1 |
A Spherical Gaussian priors on user and item featu @
vectors: (} )
Y N

N
p(Ulot) = | [N (U0, 07) g
U %

N
p(Viev) = [[V(Vil0.07)

i=1

A Maximize posterior:

p(U, VX, 0% atr, 0t) o p(X|U, V, 0%)p(U ot )p(V o)



Probabilistic Matrix Factorization PMF

A Maximize

p(U, VX, 0% ot 0t) o p(X|U, V, 0%)p(U|ot,)p(V|o3)

- - - Ll - GV GU
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Probabilistic Matrix Factorization PMF

A Maximize
p(U, V|X, 0%, 0f;,01) o p(X|U,V,0%)p(Uot)p(V]oi)

A Equivalent to minimize the following loss: |

1 N M A\ \

U V
£=52_ > Tl — g1+ S IUNE + SV IE
i=1 j=1 N

r'd
Squared loss @
. i=1,...,N

A Using gradient descent to minimize loss: el
o
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7 le
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i=1
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Ranking Matrix Factorization RMF

A Top one probability
I The probability that an iterfibeing ranked on top

D (QJ ) GXp((Eui)
X ui — ]‘l[
k=1 Iuk‘ eXp(xuk) V
N exp(gui) X = Ut
pUV' (guz) - ﬂ[
Zk:l Iuk eXP(Quk)
A Minimize cross entropy N x M KxN KxM

I Cross entropy measures the divergence betweei:
two distributions

I Unnormalized Kdivergence

H(p,q) = Ey[-log ¢] = Zp ) log q(a



Ranking Matrix Factorization RMF

A Model loss is defined as:

N M exp(r;) _ exp(gij) A s AV
L= =2 Tu log § =7 + SR + SV
= Jik)

=LY Tpexp(ai) 2 Tiw exp(gi
E—1 k=1

v

X = UuT
A Using gradient descent to minimize:
N x M KxN KxM

oL exp(gij) exp(xi;) P )
U; <+ U, — 1 oL ou; ZIH{ e M " }U?ﬂ"j + AU

oU; -1 Z Ligexp(gir) 22 L exp(wix)

k=1 k=1
oL - N |

. oy oL i XP(Lj /o ;
VieVi—mn 2% v, ZIH{ L M e }%Dz +AvVj

L =1 ;21 Izﬂ\ exXp (f]-i!c.) }LZ1 I-i!c. exp(:rz‘.f\‘.)
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Ranking Matrix Factorization RMF

A Model loss is defined as:

al M exp(x;;) exp(gii) A A
- . [r T I-'r 7112
=14 g=l Z Tir exp(ik) > Lk exp(gir)
—1 k=1
Cross Entropy
X
A Using gradient descent to minimize:
N x M
- 0 or oL _ Z I ;{ exp(gij) B exp(x;
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C T TS Lewl) S Lesp(en
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Ranking Matrix Factorization RMF

A Model loss is defined as:

M
P exp(x;j) los
Z AN 0g
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=1

s

7

exp(gij) At A
M . }} +7”(—”H%+
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v

X = UT
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Problems Faced by Recommender
Systems

A Dynamic system are handled by static method
I Online learning algorithms

A Unrealistic implicit assumptions
I Response aware methods

A Spammer problem
I User reputation estimation framework and method

A Coldstart problem
I Combine ratings with reviews



Outline

A Online Collaborative Filtering



Motivation

In realworld recommender In laboratory simulated
systems experiments
A New ratings are collected A Dataset is prepared
constantly beforehand
i Update the model A No new ratings, users or
A New users items
A New items A Relatively small dataset

A Huge dataset



Motivation

In realworld recommender In laboratory simulated
systems experiments
A New ratings are collected A Dataset is prepared
constantly beforehand
i Update the model A No new ratings, users or
A New users items
A New items A Relatively small dataset

A Huge dataset

Online algorithms can
bridge the gap




Online Algorithms for PMF and RMF

A We propose two online algorithms respectivel
for both PMF and RMF

I Stochastic gradient descent
A Adjust modebtochasticalljor each observation

I Regularized dual averaging
AMaintain an approximated average gradient
A Solve an easy optimization problem at each iteration



Stochastic Gradient Descent PMF

A Recall the loss function for PMF

N M
Av

1 }\U'
=32 Tijlais = gi)* + S IUIG + SV
i=1 j=1

A Squared loss can be dissected and associated with
each observation tripldfoh@y N v

v v SN

A Update model using gradient of this los | &/
U 4= U = 1((9ui = 2)9:Vi + A Us). A—

Vi = Vi—=0((gui — 2)9,,;Uu + AV Vi),



Reqgularized Dual Averaging PMF

A Maintain the approximated average gradient

ty — 1 1
< Yu, + t—(gm — )9, Vi

t Uu U

vy (Q ©'Q wfo

t y 1 1
Yy, < Lt Yy, + t_(gui — x)giLiUu
v v
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Reqgularized Dual Averaging PMF

A Maintain the approximated average gradient

Number of items
rated byo
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tu tu
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Reqgularized Dual Averaging PMF

A Maintain the approximated average gradient

Number of items
rated byo

Previous gradient
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Reqgularized Dual Averaging PMF

A Maintain the approximated average gradient

Number of items Previous gradient
rated byo
t'UJ - 1 1 /
< Yu, + —Kgm- - -cv)ngz]
2% tu
o (Q »'Q wfo Gradient due to new observatigoiery ¥ 0
th - 1 1 /
Yy, 4 p Yv, + t_(gui — )9, U
v v
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Reqgularized Dual Averaging PMF

A Solve the following optimization problem to
obtain

i New user feature vectoly
I New item feature vectow

U, = arg minw{Y(};w + )\UHwH%}

Vi = arg minw{Y{gw + )\vaH%}




Experiments and Results

A We conduct experiments on real life data set
I MovieLensYahoo! Music and Jester

Dataset Users Movies Ratings Rating Range
MovieLens 6040 3900 1,000,209 1-5
Yahoo! Music 1,000,990 624,961 252,800,275 1-100
Jester 24,938 100 1,810,455 -10-10

I Three settings
AT1: 10% training, 90% testing
AT5: 50% training, 50% testing
AT9: 90% training, 10% testing
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Online versus Batch Algorithms

s Batch PMF
SGD-PMF
— B —DA-PMF

Mumber of ratings revealed
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Scalability to Large Dataset

A Experiment environment
I Linux workstation (Xeon Dual Core 2.4 GHz, 32 GB RAM)
I Batch PMF: 8 hours for 120 iteration
I Online PMF: 10 minutes
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A Experiment environment
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Outline

A Response Aware Collaborative Filtering



Unrealistic Assumptions

A Implicit assumption of previous CF methods
I All response or random response
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Unrealistic Assumptions

Rating value distribution afser Rating value distribution aiindomly
selectedtems selectedtems

A A lot of high rating items A Very few high rating items

0.35

0.3

0.25

=
ha

[=]
n
Rating Probability

Rating Probalslity

=] I

5

[=]




Response Aware Collaborative Filterin

A Information embedded in ratings
I Rating value indicate preferences
I Rating response patterns

11 12 13 14 15
Ul 5 4
U2 S
U3 4
U4 5 5
us 4 5
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Missing Data Theory

A Two step procedure

<
wGenerate full data matrix

Data Generatior il €9 0 (Q)l%-

Model

J

<
wModel observation process

Data Observatio [l €9 0 !YS.I)H

Model

J

P(R,X|p,0) = P(R|X, 1, 0)P(X|p.0)
= P(R|X, p)P(X10),
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Missing Data Theory

A Two step procedure

N
wGenerate full data matrix TR R e B
_ 5 on u2 | 3 5 2 4 4
bata Generator IVIVI(&V B REEEREREE
J u4 5 3 5 2 3
~N U5 2 4 1 3 5
wModel observation process X
Data Observatio [ ¢¥] L~) !Yg’):)ﬁ
J

P(R,X|p,0) = P(R|X, 1, 0)P(X|p.0)
= P(R|X, p)P(X10),
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Missing Data Theory

A Three missing data assumptions
I Missing Completely At Random (MCAR)

Example: Response
determined by a
P(R| X, ) = P(R|p) Bernoulli tail with

success probability

I Missing At Random (MAR)

P(R|X, 1) = P(R| X ope. 1)

I Not Missing At Random (NMAR)
Alf Both MCAR and MAR fail to hold
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Missing Data Theory

A If MAR fail to hold, ML learns biased data
model parameter—



