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ABSTRACT

In recent years, the development of Natural Language Processing (NLP) technology
has led to an increasing demand of powerful Semantic Parser. However, in most
cases, determining the the efficacy of a semantic parser model can be rather difficult.
Especially, there are various kinds of requirements for those models. During the
summer research internship, we attempted to attack a text-to-SQL model and find
out the influence from the perturbation on input data to the final output. And in
this report, we would present the process, result and thinking we get through the
research.

1 Introduction

Semantic parsing technology is an important part in the Natural Language Processing technology.
And through the developing process of semantic parsing, various kinds of presentation language was
chosen to represent the semantic output concisely and accurately. In our research, SQL was chosen
for its high conciseness and popularity in database industry. In addition, the Schema-based Graph
Neural Network (GNN)[1] model was evaluated and chosen as the model to be attacked. The dataset
for training the model and generating adversarial examples is Spider[2] which is relatively large
and diverse. We also get the detailed information about Spider and other datasets[2] for comparison
in the Table 2.

Table 1: Spider dataset and other datasets[2]

Dataset Spider WikiSQL GeoQuery
# Question 10,181 80,654 877
# SQL 5,693 77,840 247
# Database 200 26,521 247
# Domain 138 - 1
Table/DB 5.1 1 20
ORDER BY 1335 0 20
GROUP BY 1491 0 46
NESTED 844 0 167
HAVING 388 0 9
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For the attacking part, we choose the generally used method Fast Gradient Sign Method (FGSM)
to generate adversarial examples. And considering the compatibility for the NLP model, we also
applied some approximation to ensure the perturbed input is in natural language. However, as the
generated question examples may not make sense to people, we also try to manually select some
special examples and adjust them until they are grammatical correct.

The final perturbed result was counted and we discovered some potential drawbacks for the model
with the statistical data.

2 Methodology

The main method for attacking process can be divided into three major parts:

• Automatically generate adversarial examples, attack the model, verify the successful exam-
ples and count the successful rate
• Manually select the examples with incorrect grammar and re-attack the model with the

corrected examples
• Manually select the natural adversarial examples in correct grammar and analyze the

difference i the output

Before the attacking process, we firstly evaluate the GNN model with the modified code from the
paper[1].

Figure 1: The structure of GNN Model

The model with its structure presented in the Figure 1 has two major features over other models:

• Graph-based structure: The GNN model uses graph data format to represent the relation
between data items(like a database, a table or a column). In addition to the data items, graph
is also used to build the linking table for every pair of database schema, which is crucial in
building the weight over each schema.
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• Database schema: In the training process, database schema is provided for each pair of
question-SQL data. Generally, database schema consists of two parts–the schema items
which is mainly the name of database, table or column and the reference relation between
schema items. In the testing process, the database schema is either extracted from the
question provided or dataset used to train the model.

Then we train the model on the Spider dataset for 100 epochs. The final training accuracy of our
model and the fully-trained model from the paper[1] are presented in the Table 2.

Table 2: Evaluation result for GNN Model

Model General Accuracy Single Accuracy Multiple Accuracy
Our model 37.9% 49.1% 24.9%

Fully-trained model 40.7% 52.2% 26.8%
SyntaxSQL 18.9% 23.1% 7.0%

Note: single and multiple mean the number of domains involved.

According to the data in the Table 2, in comparison to the previous SyntaxSQL Net[3], the model
improves the single accuracy by about only 1 time while improve the multiple accuracy by almost 3
times. The greater increasing in the multiple accuracy indicates that the graph structure optimizes
stability for the complex question(according to the multiple accuracy) more apparently.

And in the experiment part(Section 3), we will examine the stability and robustness for the model
with adversarial examples.

3 Experiments

First, we use the FGSM with approximation mentioned in the methodology part (Section 2). The
process is presented as follows:

1. For each input sentence x and expected output y, calculate the gradient of the embedding of
x denoted by grad.

2. Calculate the perturbed sentence with the formula: xperturb = x+ ε sign(grad).

3. Find the index i where gradi reaches its maximum.

4. Find the word closest to xperturbi denoted by x′i, that is where |x′i − xperturbi | reaches its
minimum.

5. Create a new sentence according to the original sentence with the ith word replaced by x′i.
The new sentence is denoted by x′.

6. Input x′ into the model and get the result y′. Compare y′ with y. If y 6= y′, the attack is
successful, otherwise it is unsuccessful.

For the process above, we have an uncertain coefficient ε which determines the perturbation result.
Thus, we examined the model with several values for the coefficient ε and counted the successful
rate for each value. The detailed information about the attacking process is presented with the
Figure 2.
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Figure 2: The successful rates for values of ε

From the Figure 2, we can find that the initial decreasing in the successful rate indicates that in
some range of perturbation (for some value of the coefficient ε), the model can maintain the stability
when there is no perturbation. However, when the perturbation is out of that range, the perturbation
will increasingly influence the successful rate until the random factor dominates the influence.

Except the automatic part above, to learn about how the model react with grammatical correct
adversarial examples, we also manually select the grammatical correct examples. One representative
example is presented as follows.

Example 1

Original sentence:
What ... with highest average attendance ? =>
select ... from stadium order by stadium.average desc limit 1

Perturbed sentence:
What ... with greatest average attendance ? =>
select ... from stadium group by stadium.stadium_id order by
avg ( stadium.average ) desc limit 1

We also test some other examples through correcting the generated examples manually and re-
atacking the model with these examples. But in this part, in general, the correction of the grammar
does not change the attacking result, which indicates that the model will not be easily influenced by
the grammar difference. Through this part, we successfully verify the robustness of the model in
handling natural language sentences with grammar mistakes.

For the last part of the experiment, we also manually test some cases by replacing the word with
its synonyms and antonyms. The result shows that when replacing the word with its synonyms,
the model in most cases can always handle this condition and generate the same output. However,
when attacking the model through replacing the word with its antonyms, the reaction of the model
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is more complicated. The flipping of the sentence semantic may lead to enormous change in the
output. One example is as follows.

Example 2
Original sentence:
How much ... youngest dog weigh ? =>
select weight from pets order by pet_age limit 1

Perturbed sentence:
How much ... oldest dog weigh ? =>
select count ( * ) from has_pet where has_pet.stuid = ’ value ’

For this example, the little difference in the sentence but large difference in the semantic leads to
enormous difference in the output. Specially, the syntax structure of the generated SQL query is a
large change.

This phenomenon indicates that while the sentence along with the database schema can determine
the weight of each item, the change of the keyword which may be weighed too much can lead to
the flipping of the sentence meaning. And the large flipping of the sentence meaning makes the
influence of the change of one word enlarged. And ultimately, the syntax structure of the output is
changed.

4 Conclusion

Through the evaluation process and the attacking experiment, we have verified the robustness of the
chosen model. Simultaneously, as mentioned above, we have also discovered some special cases
like Example 1 and Example 2.

Generally speaking, the GNN model performs as expected and can handle most of the manually
selected examples well. While some special cases indicate that the graph-based data structure along
with "schema" have some drawbacks that the weight got with the graph-based structure over the
items in the sentence can be hard to examine their validity. In the condition that some word gets
weighed too much, little change of that word can lead to enormous change of the output.
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