Introduction

Recent studies have shown that by generating a series of adversarial samples can cause a well-trained model to be fooled[1]. As we can see from the following example, after deleting four letters of the original sentence, we can flip the prediction of the classifier.

DVD player crapped out after one year, I also began having the incorrect disc problems that I've read about on here. the VCR still works, but the DVD side is useless...

99.87% negative

DVD player crapped out afer one year, I also began having the incorrec disc problems that I've read about on her. the VCR still works, but the DVD side is useess...

47.22% negative

Model

In this project, we choose three models, include word-based LSTM [2], word-based CNN [3] and character-based CNN [4] to evaluate our attack strategies. The character-based CNN model is 9 layers with 6 convolutional layers and 3 fully-connected layers.

The word-based CNN model is similar to the character-based CNN model, plus an extra word embedding layer.

All these models are trained on Amazon Review Polarity Dataset, which is a binary classification dataset. Each class has 1,800,000 training samples and 200,000 testing samples.

GENERATING ADVERSARIAL EXAMPLES IN TEXT CLASSIFICATION

Yuxiao QU & Zhenyuan LIU Supervisor: Michael R. Lyu

Department of Computer Science and Engineering, The Chinese University of Hong Kong

Method

Recurrent Scoring Algorithm

Input: Input sequence x, Scoring function score func, Modification function *modif func*, maximum edit distance ϵ cost = 0

repeat forever:

score each token in x using score $func(\cdot)$

alter the token with the greatest score using *modif* func(\cdot) increase *cost* accordingly

if $cost > \epsilon$ or length(x) == 0:

return ATTACK FAIL

if prediction of x flips: return x

	Original		Occlusion		Deletion	
Word-based	I love computer science I am from Hong Kong		I computer science I am Hong Kong		e I computer science I am Hong Kong	
Char-based	I love computer science I am from Hong Kong Table 1. Differ		I lov_computer science I am f_om Hong Kong rent modification functions		e I lov computer science I am fom Hong Kong	
Delete-1 Score $D1S(x_i)$ Delete-2 Score $D2S(x_i)$ Temporal Head Score $THS(x_i)$ Temporal Tail Score $TTS(x_i)$ Combined Score $\mathcal{LS}(x_i)$ Fig		I love computer science and engineering x_i I love computer science and engineering x_i I love computer science and engineering x_i I love computer science and engineering x_i $CS(x_i) = THS(x_i) + \lambda TTS(x_i)$ ure 4. Scoring functions		gineeringIgineeringdgineeringfgineeringp (x_i) ppp	llustration of scoring oken 'science' using lifferent scoring unctions. The score is equal to the prediction probability of the blue part minus the prediction probability of the orange part.	

Experiment

Evaluation Metrics: The decrease of accuracy after the model being attacked 1. Compare scoring functions on different models with different maximum

edit distance.

Figure 7. LSTM model

Figure 6. Word-CNN model

• Word-based models are more robust than character-based one Delete-1 scoring function is the best one among the four functions.

2. Attacking method is more efficient on Char-based model than on Word-based models.

Word-based models are more robust since the attacking method is less efficient on word-based models

Figure 10. Delete-m

- There is some strategies that outperform the greedy one in the black-box scenario.
- Worth further investigations

- Deletion and occlusion have the same effects.

[1] Bin Liang et al. "Deep Text Classification Can be Fooled". In: CoRR abs/1704.08006 (2017). arXiv: 1704.08006. url: http://arxiv.org/abs/1704.08006. [2] Sepp Hochreiter and Ju["]rgen Schmidhuber. "Long Short-Term Memory". In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url: http://dx.doi.org/10.1162/neco.1997.9.8.1735. [3] Yoon Kim. "Convolutional Neural Networks for Sentence Classification". In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1746–1751. doi: 10.3115/v1/D14-1181. url: https://www.aclweb.org/anthology/D14-1181. [4] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. "Character-level Convolutional Networks for Text Classification". In: CoRR abs/1509.01626 (2015). arXiv: 1509.01626. url: http://arxiv. org/abs/1509.01626.

Figure 9. Word-CNN model

4. Comparison between deletion and occlusion									
		Char	-CNN	Word-CNN					
D1S		DEL	OCL	DEL	OCL				
-D2S	Original	90.00	90.00	90.97	90.97				
D3S	D1S	6.79	6.79	37.26	37.26				
 D4S	THS	82.00	82.00	73.08	73.08				
-D5S	TTS	70.11	70.11	72.65	72.65				
	CS	43.74	43.74	63.92	63.92				
	D2S	3.36	3.36	55.98	55.98				

OCL: Occlusion **DEL:** Deletion

Deletion and occlusion have the same attacking effect.

Conclusion

• Word-based models are more robust than character-based models in terms of accuracy decrease under the same constraint on maximum edit distance. • Delete-m scoring functions may outperform the greedy algorithm.

References