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Abstract—Cloud computing is becoming a popular and
important solution for building highly reliable applications on
distributed resources. However, it is a critical challenge to
guarantee the system reliability of applications especially in
voluntary-resource cloud due to the highly dynamic environ-
ment. In this paper, we present BFTCloud (Byzantine Fault
Tolerant Cloud), a Byzantine fault tolerance framework for
building robust systems in voluntary-resource cloud environ-
ments. BFTCloud guarantees robustness of systems when up
to 𝑓 of totally 3𝑓 + 1 resource providers are faulty, including
crash faults, arbitrary behaviors faults, etc. BFTCloud is
evaluated in a large-scale real-world experiment which consists
of 257 voluntary-resource providers located in 26 countries.
The experimental results shows that BFTCloud guarantees high
reliability of systems built on the top of voluntary-resource
cloud infrastructure and ensures good performance of these
systems.

I. INTRODUCTION

Cloud computing [1], [2] is Internet-based computing,
whereby shared resources, software, and information are
provided to computers and other devices on demand [3].
Currently, most of the clouds are deployed on two kinds of
infrastructures. One is well-provisioned and well-managed
infrastructure [4] managed by a large cloud provider (e.g.,
Amazon, Google, Microsoft, IBM, etc.). The other one
is voluntary-resource infrastructure which consists of nu-
merous user-contributed computing resources [5]. With the
exponential growth of cloud computing as a solution for
providing flexible computing resource, more and more cloud
applications emerge in recent years. How to build high-
reliable cloud applications, which are usually large-scale
and very complex, becomes an urgent and crucial research
problem.

Typically, cloud applications consist of a number of cloud
modules. The reliability of cloud applications is greatly
influenced by the reliability of cloud modules. Therefore,
building high-reliable cloud modules becomes the premise
of developing high-reliable cloud applications. Traditionally,
testing schemes [6] are conducted on the software systems

of cloud modules to make sure that the reliability threshold
has been achieved before releasing the software. However,
reliability of a cloud module not only relies on the system
itself, but also heavily depends on the node it has deployed
and the unpredictable Internet. Traditional testing has limited
improvement on the reliability of a cloud module under
voluntary-resource cloud infrastructure due to:

∙ Computing resources, denoted as nodes in the cloud,
are frangible. Different from the powerful and
performance-guaranteed nodes managed by large cloud
providers, user-contributed nodes are usually highly
dynamic, much cheaper, less powerful, and less reliable.
The reliability of a cloud module deployed on these
nodes is mainly determined by the robustness of nodes
rather than the software implementation.

∙ Communication links between modules are not reliable.
Unlike nodes in well-provisioned cloud infrastructure,
which are connected by high speed cables, nodes in
voluntary-resource cloud infrastructure are usually con-
nected by unpredictable communication links. Commu-
nication faults, such as time out, will greatly influence
the reliability of cloud applications.

Based on the above analysis, in order to build reliable
cloud applications on the voluntary-resource cloud infras-
tructure, it is extremely urgent to design a fault tolerance
mechanism for handling different faults. Typically, the reli-
ability of cloud applications is effected by several types of
faults, including: node faults like crashing, network faults
like disconnection, Byzantine faults [7] like malicious be-
haviors (i.e., sending inconsistent response to a request [8]),
etc. The user-contributed nodes, which are usually cheap and
small, makes malicious behaviors increasingly common in
voluntary-resource cloud infrastructure. However, traditional
fault tolerance strategies cannot tolerate malicious behaviors
of nodes.

To address this critical challenge, we propose a novel
approach, called Byzantine Fault Tolerant Cloud (BFT-
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Cloud), for tolerating different types of failures in voluntary-
resource clouds. BFTCloud uses replication techniques for
overcoming failures since a broad pool of nodes are available
in the cloud. Moreover, due to the different geographical
locations, operating systems, network environments and
software implementation among nodes, most of the failures
happened in voluntary-resource cloud are independent of
each other, which is the premise of Byzantine fault tol-
erance mechanism. BFTCloud can tolerate different types
of failures including the malicious behaviors of nodes. By
making up a BFT group of one primary and 3𝑓 replicas,
BFTCloud can guarantee the robustness of systems when up
to 𝑓 nodes are faulty at run-time. The experimental results
show that compared with other fault tolerance approaches,
BFTCloud guarantees high reliability of systems built on the
top of voluntary-resource cloud infrastructure and ensures
good performance of these systems.

In summary, this paper makes the following contributions:

1) We identify the Byzantine fault tolerance problem
in voluntary-resource cloud and propose a Byzan-
tine fault tolerance framework, named BFTCloud,
for guaranteeing the robustness of cloud application.
BFTCloud uses dynamical replication techniques to
tolerate various types of faults including Byzantine
faults. We consider BFTCloud as the first Byzantine
Fault Tolerant Framework in cloud computing litera-
ture.

2) We have implemented the BFTCloud system and test
it on a voluntary-resource cloud, Planet-lab 1, which
consists of 257 user-contributed computing resources
distributed in 26 countries. The prototype implementa-
tion indicates that BFTCloud can be easily integrated
into cloud nodes as a middleware.

3) We conduct large-scale real-world experiments to
study the performance of BFTCloud on reliability
improvement compared with other approaches. The
experimental results show the effectiveness of BFT-
Cloud on tolerating various types of faults in cloud.

The rest of this paper is organized as follows: Section II
describes the system architecture of BFTCloud. Section III
presents our BFTCloud fault tolerate mechanism in detail.
Section IV introduces the experimental results. Section V
discusses related work and Section VI concludes the paper.

II. SYSTEM ARCHITECTURE

We begin by using a motivating example to show the
research problem in this paper. As shown in Figure 1, cloud
applications usually consist of a number of modules. These
modules are deployed on distributed cloud nodes and con-
nected with each other through communication links. Each
module is supposed to finish a certain task (e.g., product
selection, bill payment, shipping addresses confirming, etc.)

1http://www.planet-lab.org
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Figure 1. Architecture of Cloud Applications

Figure 2. Architecture of BFTCloud in Voluntary-Resource Cloud

for a cloud application (e.g., shopping agency, etc.). A cloud
module will form a sequence of requests (e.g., browsing
products, choosing products, etc.) for the task (e.g, product
selection, etc.) and send the requests to a group of nodes in
the voluntary-resource cloud for execution.

Figure 2 shows the system architecture of BFTCloud in
voluntary-resource cloud environment. Under the voluntary-
resource cloud infrastructure, end-users contribute a larger
number of computing resources which can be provided to
cloud modules for request execution. Typically, computing
resources in the voluntary-resource cloud are heteroge-
neous and less reliable, and malicious behaviors of resource
providers cannot be prevented. Byzantine faults could be
very common in a user-contributed cloud environment. In
order to guarantee the robustness of the module, the repli-
cation technique is employed for request execution upon the
user-contributed nodes. After a cloud module generated a
sequence of requests, it first needs to choose a BFT group
from the pool of cloud nodes for request execution. Since
cloud nodes are located in different geographic locations
with heterogeneous network environments, and the failure
probabilities of nodes are diverse, a monitor is implemented
on the cloud module side as a middleware for monitoring
the QoS performance and failure probability of nodes. By
considering the QoS performance and failure probability, the
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cloud module first chooses a node as primary and send the
current request to the primary. After that, a set of replicas
are selected according to their failure probability and QoS
performance to both the cloud module and the primary.
The primary and replicas form a BFT group for executing
requests from the cloud module. After the BFT group returns
responses to the current request, the cloud module will judge
whether the responses can be committed. Then the cloud
module will send the next request or resend the current
request to the BFT group. If some nodes of the BFT group
are identified as faulty, the cloud module will update the
BFT group to guarantee the system reliability. The detailed
approach will be presented in Section III.

III. SYSTEM DESIGN

In this section, we present BFTCloud, a practical frame-
work for building robust systems with Byzantine fault toler-
ance under voluntary-resource cloud infrastructure. We first
give an overview on the work procedures of BFTCloud in
Section III-A. Then we describe the five phases of BFTCloud
in Section III-B to Section III-F respectively.

A. System Overview

Figure 3 shows the work procedures of BFTCloud. The
input of BFTCloud is a sequence of requests with specified
QoS requirements (e.g., preferences on price, capability,
bandwidth, workload, response latency, failure probability,
etc.) sent by the cloud module. The output of BFTCloud
is a sequence of committed responses corresponding to the
requests. BFTCloud consists of five phases described as
follows:

1) Primary Selection: After accepting a request from the
cloud module, a node is selected from the Cloud as
the primary. The primary is selected by applying the
primary selection algorithm with respect to the QoS
requirements of the request.

2) Replica Selection: In this phase, a set of nodes are
selected as replicas by applying a replica selection
algorithm with respect to the QoS requirements of the
request. The primary then forwards the request to all
replicas for execution. The selected replicas together
with the primary make up a BFT group.

3) Request Execution: In this phase, all members in the
BFT group execute the request locally and send back
their responses to the cloud module. After collecting
responses from the BFT group within a certain period
of time, the cloud module will judge the consistency
of responses. If the BFT group respond consistently,
the current request will be committed and the cloud
module will send the next request. If the BFT group
responds inconsistently, the cloud module will trigger
a fault tolerance procedure to tolerate up to 𝑓 faulty
nodes and trigger the primary updating procedure
and/or replica updating procedure to update the group

members. If more than 𝑓 nodes are identified as faulty,
the cloud module will resend the request to the refresh
BFT group and enter into the request execution phase
again.

4) Primary Updating: In this phase, faulty primary in
the BFT group will be identified and replaced by a
newly selected primary.

5) Replica Updating: In this phase, faulty replicas in the
BFT group will be identified and updated according
to the information obtained from the request execution
phase. The replica updating algorithm will be applied
to replace the faulty replicas with other suitable nodes
in the cloud.

B. Primary Selection

Under the voluntary-resource cloud infrastructure, a cloud
module will send the request directly to a node which it
believes to be the primary. Therefore, the primary plays
a important role in a BFT group. The responsibilities of
primary include: accepting requests from the cloud mod-
ule, selecting appropriate replicas to form a BFT group,
forwarding the request to all replicas, and replacing faulty
replicas with newly selected nodes. Since failures happened
on primary will greatly decrease the overall performance of
a BFT group, the requirements on primary attributes (e.g.,
capability, bandwidth, workload, etc.) are more strict than
those on replicas. In order to select an optimal primary, we
propose a primary selection algorithm.

We model the primary selection problem under voluntary-
resource cloud infrastructure as follows:

Let 𝑁 be the set of nodes available in the cloud
and 𝑄 be the set of 𝑚 dimension vectors. For each
node 𝑛𝑖 in 𝑁 , there is a 𝑞𝑖 = (𝑞𝑖1, 𝑞𝑖2, ⋅ ⋅ ⋅ , 𝑞𝑖𝑚)
in 𝑄 representing the QoS values of 𝑚 criteria.
Given a priority vector 𝑊 = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑚)
on the 𝑚 QoS criteria, the optimal primary should
be select from the set 𝑁 .

Note that 𝑤𝑘 ∈ ℝ
+ and

∑𝑚
𝑘=1 𝑤𝑘 = 1. Typically the QoS

values of can be integers from a given range (e.g. 0, 1, 2, 3
or real numbers of a close interval (e.g. [−20, 20]). Without
loss of generality, we can map a QoS value to the interval
[0, 1] using the function 𝑓(𝑥) = (𝑥− 𝑞𝑚𝑖𝑛)/(𝑞𝑚𝑎𝑥− 𝑞𝑚𝑖𝑛),
where 𝑞𝑚𝑎𝑥 and 𝑞𝑚𝑖𝑛 are the maximum and minimum QoS
values of the corresponding criterion respectively.

The proposed primary selection algorithm is shown in
Algorithm 1. After accepting the priority vector from the
cloud module, a rating value 𝑟𝑖 is computed for each node
𝑛𝑖 ∈ 𝑁 as follows:

𝑟𝑖 =

𝑚∑

𝑘=1

𝑞𝑖𝑘 × 𝑤𝑘, (1)

where 𝑟𝑖 fall into the interval [0, 1]. The cloud module will
choose the node 𝑛∗, which has the highest rating value, as
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Figure 3. Work Procedures of BFTCloud

Algorithm 1: Primary Selection Algorithm
Input: 𝑁 , 𝑄, 𝑊
Output: 𝑛∗

𝑛∗ = 𝑛𝑢𝑙𝑙;1
𝑟𝑚𝑎𝑥 = 0;2
for all 𝑛𝑖 ∈ 𝑁 do3

𝑟𝑖 =
∑𝑚

𝑘=1 𝑞𝑖𝑘 × 𝑤𝑘;4
if 𝑟𝑖 > 𝑟𝑚𝑎𝑥 then5

𝑛∗ = 𝑛𝑖;6
𝑟𝑚𝑎𝑥 = 𝑟𝑖;7

end8
end9
return 𝑛∗;10

the primary:
𝑛∗ = arg max

𝑛𝑖∈𝑁
𝑟𝑖. (2)

C. Replica Selection

After the primary is selected in Section III-B, a set of
replicas should be chosen to form a BFT group. Since
replicas in a BFT group need to communicate with both
the primary and the cloud module, the QoS performance of
a node should be considered from both the cloud module
perspective and the primary perspective. Let 𝑞𝑖 be the QoS
vector of node 𝑛𝑖 observed by the cloud module and 𝑞′𝑖
be the QoS vector of node 𝑛𝑖 observed by the primary.
Then the combined QoS vector 𝑞′′𝑖 is calculated by a set
of transformation rules as follows:

∙ minimum: 𝑞′′𝑖𝑘 = 𝑚𝑖𝑛(𝑞𝑖𝑘, 𝑞
′
𝑖𝑘), for QoS criterion like

bandwidth.
∙ average: 𝑞′′𝑖𝑘 = 𝑎𝑣𝑔(𝑞𝑖𝑘, 𝑞

′
𝑖𝑘), for QoS criterion like

response time.
∙ equality: 𝑞′′𝑖𝑘 = 𝑞𝑖𝑘 = 𝑞′𝑖𝑘, for QoS criterion like price.

Without loss of generality, the rule set can be easily extended
to include more rules for calculating complex QoS criterion
values.

Given the combined QoS vector 𝑞′′𝑖 , we can evaluate how
appropriate the node 𝑛𝑖 is as a replica of the BFT group. A
score 𝑠𝑖 is assigned to each node 𝑛𝑖 ∈ 𝑁 as follows:

𝑠𝑖 =

𝑚∑

𝑘=1

𝑞′′𝑖𝑘 × 𝑤𝑘, (3)

where 𝑠𝑖 falls into the interval [0, 1]. After ordering the
scores, we can select the nodes ranked in high positions
as replicas of the BFT group.

In order to decide the replication degree, we first consider
the failure probability of a BFT group in its entirety. Since
the BFTCloud guarantees the execution correctness when
up to 𝑓 nodes are faulty, a BFT group is faulty if and
only if more than 𝑓 nodes are faulty. We define the failure
probability of a BFT group 𝜎 as follows:

𝑃𝜎 = 𝑃 (∣𝐹 ∣ > 𝑓), (4)

where 𝐹 is the set of failure nodes in 𝜎.
In order to reduce the cost of request execution, the

replication degree 𝑓 should be as small as possible, and the
failure probability of a BFT group 𝜎 should be guaranteed
under a certain threshold at the same time. Let 𝑃0 be
the threshold of 𝑃𝜎 defined by the cloud module. The
replication degree decision problem can be formulated as
an optimization problem:

min
𝑓

𝑓 =
∣𝜎∣ − 1

3
,

𝑃𝜎 =
∑

𝐹∈Ω

∏

𝑛𝑖∈𝐹

𝑃𝑖

∏

𝑛𝑗∈𝜎∖𝐹
(1− 𝑃𝑗),

𝑃𝜎 < 𝑃0,

Ω = {𝐹 ∣𝑓 < ∣𝐹 ∣}. (5)

where 𝑃𝑖 is the failure probability of node 𝑛𝑖, and Ω is the
set of events that more than 𝑓 nodes of the BFT group 𝜎
are fault. Note that a solution to this problem decides the
replication degree and the replicas of BFT group 𝜎 at the
same time. We summarize the replica selection algorithm in
Algorithm 2.

D. Request Execution

After the BFT group members are determined, requests
can be sent to the BFT group for execution. The cloud mod-
ule first forms a request sequence and sends the sequence of
requests to the primary. The primary will order the requests
and forward the ordered requests to all the BFT group
members. Each member of the BFT group will execute the
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Algorithm 2: Replica Selection Algorithm

Input: 𝑁 , 𝑄, 𝑄′, 𝑊 , 𝑃0

Output: 𝜎
𝜎 = 𝑛𝑢𝑙𝑙;1
𝑓 = 0;2
𝑃𝜎 = 𝑃 ∗;3
for all 𝑛𝑖 ∈ 𝑁 do4

𝑞′′𝑖 ← (𝑞𝑖, 𝑞
′
𝑖) by applying the set of transformation rules;5

𝑠𝑖 =
∑𝑚

𝑘=1 𝑞
′′
𝑖𝑘 × 𝑤𝑘;6

end7

Generate a permutation < 𝑛′
1, 𝑛

′
2, ⋅ ⋅ ⋅ > of the set 𝑁 such8

that 𝑠′1 ≥ 𝑠′2 ≥ ⋅ ⋅ ⋅ ;
while 𝑃𝜎 > 𝑃0 do9

𝑓 = 𝑓 + 1;10

𝜎 = {𝑛′
1, 𝑛

′
2, ⋅ ⋅ ⋅ , 𝑛′

3𝑓};11
𝑃𝜎 = 0;12
for all 𝐹 ∈ Ω do13

𝑃𝜎 = 𝑃𝜎 +
∏

𝑛𝑖∈𝐹 𝑃𝑖

∏
𝑛𝑗∈𝜎∖𝐹 (1− 𝑃𝑗);14

end15
end16
return 𝜎;17

sequence of requests and send the corresponding responses
back to the cloud module. The cloud module collects all the
received responses from the BFT group members and make a
judgement on the consistence of responses. A action strategy
will be chose according to the consistence of responses as
follows:

∙ Case 1: The cloud module receives 3𝑓 + 1 consist
responses from the BFT group. In this case, the cloud
module will commit the current request since there is
no fault happens in the current BFT group.

∙ Case 2: The cloud module receives between 2𝑓 +1 to
3𝑓 consist responses. In this case, the cloud module
can still commit the current request since there are
less than 𝑓 + 1 faults happened. To commit the cur-
rent request and identify the faulty nodes, the cloud
module assembles a commit certificate and sends the
commit certificate to all the BFT group members.
Each member will acknowledge the cloud module with
a local-commit message once it receives the commit
certificate from the cloud module. If more than 2𝑓 +1
local-commit messages are received the cloud module
will commit the current request and invokes a replica
updating procedure to replace all the faulty BFT group
members with new members. If less than 2𝑓 +1 local-
commit messages are received, the cloud module will
resend the commit certificate until it receives local-
commit messages from more than 2𝑓 + 1 members.

∙ Case 3: The cloud module receives less than 2𝑓 + 1
response messages. In this case, either the primary is
faulty or more than 𝑓 +1 replicas are faulty. The cloud
module will then resend the current request again but to
all members this time. Each replica forwards the request
to the node it believes to be the primary. If the replica

receives a request from the primary within a given time
and the proposed sequence number is consistency with
that sent by the cloud module, the replica will execute
the request and send response to the cloud module. If
the replica does’t receive an ordered request from the
primary within a given time, or the request sequence
number isn’t consistency with the request sent by the
cloud module, the primary must be faulty. The replica
will send a primary election proposal to all replicas to
trigger a primary updating procedure.

∙ Case 4: The cloud module receives more than 2𝑓 + 1
responses, but fewer than 𝑓 + 1 responses are consis-
tency. This indicates inconsistent ordering of requests
by the primary. The cloud module will send a proof of
misbehavior of primary to all the replicas, and trigger
a primary updating procedure.

E. Primary updating

When the primary is faulty, a primary updating procedures
will be triggered in the Request Execution phase. The
procedures of primary updating phase are as follows:

1) A replica which suspects the primary to be faulty sends
an primary election proposal to all the other replicas.
However, it still participates in the current BFT group
as it may be only a network problem between the
replica and the primary. Other replicas, once receiving
a primary election proposal, just store it since the
primary election proposal could arrive from a faulty
replica as well.

2) If a replica receives 𝑓 + 1 primary election proposals
, it indicates that the primary is really faulty. It will
send a primary selection request to the cloud module.
The cloud module then will start the primary selection
phase and return a new primary which is one of the
current replicas. The replica then sends a primary
updating message to all the other replicas, which
includes the new primary name and 𝑓 + 1 primary
election proposals. Other replicas which receive such
primary updating message again confirm that at least
𝑓 + 1 replicas sent a primary election proposal, and
then resend the primary updating message together
with the proof to the new primary.

3) If the newly selected primary receives 2𝑓 +1 primary
updating messages, it sends a new BFT group setup
message to all the replicas, which again includes all
the primary updating messages as proof.

4) A replica which received and confirmed the new BFT
group setup message, will send out a BFT group
confirm message to all replicas.

5) If a replica receives 2𝑓 + 1 BFT group confirm
messages, it starts performing as a memeber in the
new BFT group.
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F. Replica Updating

In the voluntary-resource cloud environment, nodes are
highly dynamic and fragile. Different types of faults (e.g.,
response time out, unavailable, arbitrary behavior, etc.) may
happen to the nodes after a period of time. Under voluntary-
resource cloud infrastructure, the failure probability of a
BFT group increases sharply as the fraction of faulty nodes
increases. The failure probability of a BFT group under the
condition that a set of replicas are already faulty is:

𝑃𝜎 = 𝑃 (∣𝐹 ∣ > 𝑓 ∣𝐹 ∗)
= 𝑃 (∣𝐹 ∖ 𝐹 ∗∣ > 𝑓 − 𝑓∗), (6)

where 𝐹 ∗ is the set of replicas which are faulty already.
To ensure the failure probability of a BFT group below

a certain threshold, we need to replace the members once
they are identified to be faulty. Moreover, due to the highly
dynamic voluntary-resource cloud environment, the QoS
performance of nodes are changed rapidly. Updating replicas
timely could keep the performance of a BFT group stable.

Let 𝑇 be the set of new nodes which will be added to
the current BFT group. 𝐹 ∗ is the set of nodes which will
be removed from the current BFT group. Let 𝜎′ be the new
BFT group with updated replicas. We have 𝜎′ = 𝜎 ∖𝐹 ∗∪𝑇 ,
where 𝑇 consists of nodes which are in the top ∣𝑇 ∣ positions
ordered by score in Eq. (3).

The new BFT group 𝜎′, which can tolerate up to 𝑓 ′

nodes failure, should satisfy 𝑃𝜎′ > 𝑃0. Therefore, the replica
updating problem is reduced to a replication degree decision
problem, which can be further formalized as an optimization
problem as follows:

min
𝑓 ′

𝑓 ′ =
∣𝜎′∣ − 1

3
,

𝑃𝜎′ =
∑

𝐹 ′∈Λ

∏

𝑛𝑖∈𝐹 ′
𝑃𝑖

∏

𝑛𝑗∈𝜎′∖𝐹 ′
(1− 𝑃𝑗),

𝑃𝜎′ < 𝑃0,

Λ = {𝐹 ′∣𝑓 < ∣𝐹 ′∣}. (7)

where Λ is the set of events that more than 𝑓 ′ nodes of the
BFT group 𝜎′ are fault. We summarize the replica updating
algorithm in Algorithm 3.

IV. EXPERIMENTS

In this section, in order to study the performance im-
provements of our proposed approach, we conduct several
experiments to compare our BFTCloud with several other
fault tolerance approaches.

In the following, Section IV-A describes the system im-
plementation of BFTCloud and the experimental settings,
and Section IV-B compares the performances of BFTCloud
with some other fault tolerance methods.

Algorithm 3: Replica Updating Algorithm

Input: 𝑁 , 𝑄, 𝑄′, 𝑊 , 𝑃0, 𝜎, 𝐹 ∗

Output: 𝜎′

𝜎′ = 𝜎 ∖ 𝐹 ∗;1
𝑇 = 𝑛𝑢𝑙𝑙;2

𝑓 ′ = ⌈ 3𝑓−∣𝐹∗∣
3
⌉;3

𝑃 ′
𝜎 = 𝑃 ∗;4

for all 𝑛𝑖 ∈ 𝑁 ∖ 𝜎 do5

𝑞′′𝑖 ← (𝑞𝑖, 𝑞
′
𝑖) by applying the set of transformation rules;6

𝑠𝑖 =
∑𝑚

𝑘=1 𝑞
′′
𝑖𝑘 × 𝑤𝑘;7

end8

Generate a permutation < 𝑛′
1, 𝑛

′
2, ⋅ ⋅ ⋅ > of the set 𝑁 ∖ 𝜎 such9

that 𝑠′1 ≥ 𝑠′2 ≥ ⋅ ⋅ ⋅ ;
𝑇 = {𝑛′

1, 𝑛
′
2, ⋅ ⋅ ⋅ , 𝑛′

3𝑓 ′−∣𝜎′∣};10

𝜎′ = 𝜎′ ∪ 𝑇 ;11

while 𝑃 ′
𝜎 > 𝑃0 do12

𝑓 ′ = 𝑓 ′ + 1;13

𝑇 = {𝑛′
1, 𝑛

′
2, ⋅ ⋅ ⋅ , 𝑛′

3𝑓 ′−∣𝜎′∣};14

𝜎′ = 𝜎′ ∪ 𝑇 ;15

𝑃 ′
𝜎 = 0;16

for all 𝐹 ∈ Λ do17

𝑃 ′
𝜎 = 𝑃 ′

𝜎 +
∏

𝑛𝑖∈𝐹 ′ 𝑃𝑖

∏
𝑛𝑗∈𝜎′∖𝐹 ′(1− 𝑃𝑗);18

end19
end20

return 𝜎′;21

A. Experimental Setup

We have implemented our BFTCloud approach by Java
language and deployed it as a middleware in a voluntary-
resource cloud environment. The cloud infrastructure is con-
structed by 257 distributed computers located in 26 countries
from Planet-lab, which is a distributed test-bed consisting of
hundreds of computers all over the world. Each computer,
named as node in the cloud infrastructure, can participate
several BFT groups as a primary or replica simultaneously.

Based on the voluntary-resource cloud infrastructure, we
conduct large-scale experiments study the performance im-
provements of BFTCloud compared with other approaches.
In our experiments, each node in the cloud is configured
with a random malicious failure probability, which denotes
the probability of arbitrary behavior happens in the node.
Note that the failure probability of a node observed by
other nodes is not necessarily equal to the malicious failure
probability since other types of faults (e.g., node crashing,
disconnection, etc.) may also occur. Each node keeps the
QoS information of all the other nodes and updates the
information periodically. For simplicity, we use response-
time for QoS evaluation in this paper. Without loss of
generality, our approach can be easily extended to include
more QoS criteria. We also employed 100 computers from
Planet-lab to perform as cloud modules.

B. Performance Comparison

In this section, we compare the performance of our
approach BFTCloud with other fault tolerance approaches
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Table I
AVERAGE SENDING TIMES PER REQUEST

Benchmark BFTCloud BFTRandom Zyzzyva NoFT

0/0 KB 1.3428 1.7096 2.9167 1.0725
4/0 KB 1.3035 1.7248 3.1002 1.1042
0/4 KB 1.3820 1.7340 3.2058 1.3055

in the voluntary-resource cloud environment. We have im-
plemented four approaches:

∙ NoFT: No fault tolerance strategy is employed for task
execution in the voluntary-resource cloud.

∙ Zyzzyva: A state-of-the-art Byzantine Fault tolerance
approach proposed in [9]. The cloud module sends
requests to a fixed primary and a group of replicas.
There is no mechanism designed for adopting the
dynamic voluntary-resource cloud environment.

∙ BFTCloud: The Byzantine Fault tolerance framework
proposed in this paper. The cloud module employs
Algorithm 1-3 to mask faults and adopt the highly
dynamic voluntary-resource environment.

∙ BFTRandom: The framework is the same with BFT-
Cloud. However, this approach just randomly selects
nodes in primary selection, replica selection, primary
updating, and replica updating phases.

In Figure 4, we compare the throughput of all approaches
in terms of different number of cloud modules by executing
null operations. We change the number of cloud module
from 0 to 100 with a step value of 10. The requests are sent
by a variable number of cloud modules in each experiment
(0-100). We conducts experiments on three benchmarks [9]
with different request and response size. The sizes of re-
quest/response messages are 0/0KB, 4/0KB, and 0/4KB in
Figure 4(a), Figure 4(b), and Figure 4(c) respectively. The
parameter settings in this experiment are 𝑃0 = 0.5 and
𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 500𝑚𝑠, where 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 defines the maximum
waiting time for a message. From Figure 4, we can observe
that our approach BFTCloud can commit more requests per
minute than Zyzzyva and BFTRandom under different sizes
of request/response messages. The reason is that BFTCloud
always choose nodes with low failure probabilities as BFT
group members. Therefore, the high reliability of BFT group
guarantees that in most cases a request can be committed
without be resent. Note that NoFT achieves the highest
throughput among all approaches since NoFT employs no
fault tolerance mechanism. Every request will be committed
once the cloud module received a reply. However, NoFT
cannot guarantee the correctness of committed requests,
which will be discussed in Table II. Table I shows the
average sending times of a request by the cloud module
before it is committed. A request can be committed with
much fewer sending times in BFTCloud than request in
Zyzzyva, since BFT group members in BFTCloud are care-
fully selected and the probability of successfully executing a

Table II
CORRECT RATE OF COMMITTED REQUESTS

size BFTCloud BFTRandom Zyzzyva NoFT

0/0 KB 0.9855 0.9468 0.8726 0.2589
4/0 KB 0.9840 0.9259 0.8925 0.2107
0/4 KB 0.9794 0.9278 0.8621 0.2216

request is higher than that in Zyzzyva. Moreover, BFTCloud
always choose nodes with good QoS performance as BFT
group members which makes requests and responses are
transmitted more quickly than other approaches. In general,
BFTCloud achieves high throughput of committed requests
which demonstrates that the idea of considering failure
probability and QoS performance when selecting nodes is
realistic and reasonable.

In Table II, we evaluate the correctness of committed
requests of different approaches. The experimental result
shows that among all the committed requests, the percentage
of correctly committed requests is highest in BFTCloud.
This is because BFTCloud can guarantee a low probability
𝑃0 that more than 𝑓 BFT group members are faulty. While
Zyzzyva cannot guarantee the failure probability of BFT
group since the primary and replicas in Zyzzyva are fixed.
Most of the requests are not correctly committed in NoFT
despite high throughput of NoFT, since no fault tolerance
mechanism is employed.

V. RELATED WORK

Software fault tolerance techniques (e.g., N-Version Pro-
graming [10], distributed recovery block [11], etc.) are
widely employed for building reliable systems [12]. Zhang
et al. [13] propose a Web service search engine for rec-
ommending reliable Web service replicas. Salas et al. [14]
propose an active strategy to tolerate faults in Web services.
Zheng et al. [15] propose a ranking-based fault tolerance
framework for building reliable applications in cloud. How-
ever, these techniques cannot tolerate Byzantine faults like
malicious behaviors.

There are some works focus on Byzantine fault tolerance
for Web services as well as distributed systems. BFT-
WS [16] is a Byzantine fault tolerance framework for
Web services. Based on Castro and Liskov’s practical BFT
algorithm [17], BFT-WS considers client-server application
model running in an asynchronous distributed environment
with Byzantine faults. 3𝑓 + 1 replications are employed in
the server-side to tolerate 𝑓 Byzantine faults. Thema [18]
is a Byzantine Fault Tolerant(BFT) middleware for Web
services. Thema supports three-tiered application model,
where the 3𝑓 + 1 Web service replicas need to invoke an
external Web service for accomplishing their executions.
SWS [19] is a survivable Web Service framework that
supports continuous operation in the presence of general fail-
ures and security attacks. SWS applies replication schemes
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(a) Request/Response Size: 0/0 KB
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(b) Request/Response Size: 4/0 KB
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(c) Request/Response Size: 0/4 KB

Figure 4. Throughput Comparison for 0/0, 4/0, and 0/4 benchmarks as the number of cloud modules varies

and N-Modular Redundancy concept. Each web service is
replicated into a service group to mask faults.

Different from above approaches, BFTCloud proposed in
this paper aims to provide Byzantine fault tolerance for
voluntary-resource cloud, in which Byzantine faults are very
common. BFTCloud select voluntary nodes based on both
their reliability and performance characteristics to adapt to
the highly dynamic voluntary-resource cloud environment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose BFTCloud, a Byzantine fault tol-
erance framework for building reliable systems in voluntary-
resource cloud infrastructure. In BFTCloud, replication tech-
niques are employed for improving the system reliability
of cloud applications. To adapt to the highly dynamic
voluntary-resource cloud environment, BFTCloud select vol-
untary nodes based on their QoS characteristics and reliabil-
ity performance. Faulty voluntary resources will be replaced
with other suitable resources once they are identified. The
extensive experimental results show the effectiveness of our
approach BFTCloud on guaranteeing the system reliability
in cloud environment.

In the future, we will conduct more experimental analysis
on open-source cloud applications and conduct more inves-
tigations on different QoS properties of voluntary resources.
We will conduct more experiments to study the impact of
parameters and investigate the optimal values of parameters
in different experimental settings.
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