
A C M SIGSOFT S O F T W A R E ENGINEERING NOTES vol 16 no 2 Apr 1991 Page 23

PANEL: RESEARCH AND DEVELOPMENT ISSUES

IN SOFTWARE RELIABILITY ENGINEERING

Panel Chair:

Panelists:

Michael Lyu

Herbert Hecht
Hermann Kopetz
Douglas Miller
John Musa
Mits Ohba
David Siefert

(Universi ty o f Iowa)

(SoHaR Inc.)

(Technical Univers i ty o f Vienna)

(George Mason Univers i ty)

(A T & T Bell Labs.)

(IBM Corporat ion)

(NCR)

Introduction

Michael R. Lyu, University of lowa

Computers are bringing revolutionary changes to our
life with their involvement in most human-made sys-
tems for sensing, communication, control, guidance and
decision-making. As the functionality of computer
operations becomes more essential and complicated in
the modern society, the reliability of computer software
becomes more important and critical.

Research activities in software reliability engineering
have been vigorous in the past 20 years. Numerous
statistical models have been proposed in the literature
for the prediction and estimation of software reliabil-
ity, and many research efforts and paradigms have been
conducted for the design and engineering of reliable
software. However, there seems to be a gap in between
the achievements of software reliability research and
the results from software reliability practice. We keep
on hearing troublesome software projects, horrible
software failures, and misconceptions in software reli-
ability applications.

It is the purpose of this panel to bring together
researchers and practitioners of this field to discuss
the software reliability problems which will have
tremendous impact to our dally life. The panel is
expected to raise research and development issues
under this concern, to address existing and potential
problems, to resolve some misunderstandings and
conflicts, and to reach a fundamental basis for the

advancement of this field.

The panelists are invited to discuss those topics includ-
ing, but not limited to, the following:

(1) What are the most urgent needs for software relia-
bility practitioners?

(2) What kind of issues practitioners would like
researchers to pursue?

(3) Did practitioners get satisfactory results from
software reliability researchers?

(4) What are the most challenging software reliability
issues researchers are facing today?

(5) Did researchers gain enough support to perform
software reliability research?

(6) What kind of inputs or feedbacks researchers are
seeking from practitioners?

(7) What practices should be developed and con-
ducted based on the current research results?

(8) What is the gap in between software reliability
modelers and measurers? How to abbreviate it?

(9) What kind of multi-institutional efforts have
been, or should be conducted for acquiring
software reliability standards, handbooks, bench-
marks, database, tools, etc.?

The following sections consist the position statements
written by each panelist under the panel title and the
suggested topics.

1~) Copyright IEEE. Reprinted with pennission from the Proceedings of the IEEE ~ntemational Symposium on
Software Reliability Engineering (ISSRE), Austin, Texas, 17-18 May 1991. IEEE 91TH0336-5, ISBN
0-8186-2143-5.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 Apr 1991 Page 24

Quantitative and Qualitative Concepts

tTerbert Hecht, SoHaR

For Project Managers the reliability of the computing
function as a whole is of primary concern, and for that
purpose a combined quantitative hardware/software reli-
ability expression is required. The responsibility for
hardware and software functions is frequently separated
immediately below the project management level, and
therefore the project manager also needs separate
models for allocating and controlling the achievement of
adequate reliability. For these purposes broad statistical
reliability metrics are suitable, particularly failures per
unit time of computer usage or time unit loss of com-
puter availability due to failures. Examples: failures per
CPU-hr or outage-hrs per month.

The software manager is responsible for achieving the
statistical reliability goals but in order to know where
and how to improve the reliability more specific meas-
urements are required. Quantitative approaches have so
far been only of limited use in this domain. Audits,
employment of software development and test tools, and
test planning are largely guided by purely qualitative
considerations. 'Therefore there exists at present no con-
sistent methodology that permits the software manager
to meet the quantitative requirements imposed by sys-
tems considerations with the tools at their disposal.

Two activities can bring about a connection between the
quantitative and qualitative approaches, and can provide
sorely needed advances toward achieving more reliable
software. The first activity is the quantitative analysis of
failures in terms of software development and test tech-
niques that could have prevented them. The resulting
data, particularly if they are weighted by severity of the
failure, can provide the software manager with concrete
information on the means of improving the reliability of
his/her product.

The second step deals with the use of quantitative data
as a test termination criterion. The present practice of
ending test on the basis of schedule, budget, or (in the
very best cases) attainment of a period of failure free
operation, proviides little useful feedback to the team
that developed the software or for the test planning in
other projects. Reliability growth measurement during
formal test will permit termination on demonstration of
a defined reliabi[lity level and will also provide insights
into the effectiveness of different development and test
methodologies.

I will present examples of these integrated practices.

Reliability of Real Time Systems

Hermann Kopetz, Technical University of Vienna

Since my background is in the area of fault-tolerant dis-
tributed real-time systems, my view is determined from
this position.

In hard real-time systems, i.e., systems where a failure
can have catastrophic consequences, a result must be
correct, both in the domains of value and time. Since the
behavior in the domain of time depends on the proper-
ties of the underlying hardware, an integrated
software/hardware view has to be taken. The functional
correctness of the software per se (i.e., correctness in the
value domain) is not sufficient.

Many failures of real-time systems are related to syn-
chronization and performance errors which manifest
themselves as 'transient' system failures. In a failure
statistics of a complex real-time system [Gebman 1988],
it is recorded that less than 10% of the failures observed
in the operation of the system can be reproduced within
the sophisticated test environment. Similar results have
been reported by other manufacturers of real-time sys-
tems. This implies that we do not fully understand the
character and the interactions of the execution sequences
which unfold over time in complex real-time systems
and do not know how to build effective test procedures.

This problem has to be attacked from the perspective of
design. We have to build real-time architectures that are
easier to reason about. Most of the present day real-time
systems are event triggered, i.e., as soon as an event
occurs, the computer system takes a decision whether to
process the task associated with this event immediately
or the delay processing until sometimes later. These
dynamic scheduling decisions can take a signiticant
amount of processing time, which is then not available
for the application software. Every different order of
the events can give rise to a different scheduling deci-
sion and thus to a different execution sequence. The
potential input space of event-triggered systems is enor-
mous. It is difficult to reproduce an input scenario
because the exact timing of input cases cannot be con-
trolled easily. There are no methods known which can
be applied to reason formally about the timing behavior
(i.e. the performance) of complex real-time systems.

If we introduce a time-granularity in the system opera-
tion by looking at the events only at predefined points in
the time domain (i.e., a time triggered architecture), the
plurality of input cases can be substantially reduced.
Furthermore, static scheduling strategies become feasi-

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 Apr 1991 Page 25

ble. The system structure will be more regular, i.e.,
more predictable and easier to understand and test. The
price paid for this reduction in complexity is a reduced
flexibility.

We feel that in the field of real-time systems every effort
must be made to make the system clear and understand-
able. In our research on distributed real-time systems
[Kopetz 1989] this has always been our primary goal.
We have found that time-triggered real-rime software is
inherently easier to understand and test than event-
triggered software. Further research efforts in this area
seem to be well justified.

Statistical Issues in Software Reliability
Engineering Research and Development

Douglas R. Miller, George Mason University

There are two major issues concerning software reliabil-
ity: achievement and assurance. They are both very
important. Obviously, software in critical applications
must achieve high reliability in order for the system to
function safely. But it is also necessary to have strong
"a priori" assurance that the software is highly reliable
before it can be put into use. For example, without rea-
sonable assurance that high reliability has been
achieved, flight critical avionics software in commercial
aircraft should not be certified for public use.

So, the central focus of Software Reliability Engineering
R&D is methodologies for achieving and assuring
required levels of software reliability. The goal is reli-
able software. How do you do it? How do you know
when you've done it? Furthermore, what are the most
efficient ways to achieve and assure the reliability?

A central idea concerning reliability is "uncertainty." A
given piece of software may or may not contain design
flaws which will manifest themselves as system failures
when the software is used at some time in the future.
The point is that uncertainty is inherent to this
phenomenon: we do not know if failures will happen
and, if they do, when they will happen. To deal with
this uncertainty, a scientific approach should be taken.
The scientific approach involves experimentation, data
collection, statistical modelling and analysis, and draw-
ing inferences and conclusions which will support deci-
sions about developing, testing and using software. The
existence of probability seems inevitable here. It is
necessary to quantify the uncertainty in terms of proba-
bilities of various events occurring.

Based on information or data concerning software
development, testing, previous failures, the usage
environment, and any other observables, we would like
to estimate (with confidence) the probability that a par-
dcular piece of software fails dunng a given time inter-
val.

Reliability growth models attempt to estimate current
reliability and predict future reliability growth for a
given piece of software. These models base their esti-
mates and predictions only on past failure times of the
given piece of software. IBM's Clean Room used relia-
bility growth models successfully. At the May 1990
Meeting of the IEEE Subcommittee on Software Relia-
bility Engineering, successes were also reported by
AT&T, HP and Cray Research. Unfortunately, the relia-
bility growth modelling approach is limited in many
ways: The models treat the software as a black box and
are only valid for random batch (memoryless) testing or
usage. The distribution of usage must be well know.
The models do not make use of additional data or infor-
mation which comes out dunng testing or usage. The
approach does not give useful estimates for extremely
high levels of reliability (e.g., avionics software and
other safety-related systems).

There are many factors which contribute to the reliabil-
ity of a piece of software. Case studies such as those
sponsored by NASA Goddard's Software Engineering
Laboratory explore the effect of various factors on
software quality. Factors of interest include different
development scenarios, different testing strategies,
characteristics of programmers, and others. It can be
shown that software quality correlates with various
known factors, but calculating reliabilities from these
factors seems difficult if not impossible. One very
important category of information which should have
significant value in predicting reliability of a piece of
software is the programmer's personal subjective esti-
mate of its reliability, especially after he has seen and
done a post mortem on the first few bugs discovered.

Current practice is often based on engineering judge-
ment. For example, commercial avionics software must
be produced following guidelines presented in DO-
178A, "Software Considerations in Airbome Systems
and Equipment Certification," prepared by Special Com-
mittee 152 of the RTCA and currently under revision by
Special Committee 167. If appropriate documentation
supports compliance, the FAA certifies the software.
The actual software is never examined as part of the
certification. A major challenge facing the discipline of
Software Reliability Engineering involves justifying this

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 Apr 1991 Page 26

type of approach (also contained in various Military
Standards) in some objective, scientific sense.

To summarize: i)For certain classes of software pro-
jects, quantitative reliability estimation and prediction is
possible (and :is done) for individual programs.
ii)Through general case studies it is possible to identify
factors effecting reliability and thus a get qualitative
sense of what constitutes good software development
practice, iii)For many critical software systems requir-
ing high reliability, the approach to reliability is very
subjective.

It is clear that a quantitative, objective approach to
software reliability should be applied to more software
projects. This means going beyond the current practice
of software reliability growth modelling. The key seems
to be: It is necessary to use available data much more
efficiently (and imaginatively). There are two
categories of data sources: Additional data can be col-
lected (and used) specific to any particular piece of
software whose reliability is being assessed. More
importantly, there is data from similar and related pieces
of existing software; I don't think we know how to make
effective use of this data.

The goal is better quantitative understanding (and
exploitation of that knowledge) of many software
phenomena: behavior of real-time control systems, intri-
cacies of fault-tolerant systems, efficacy of testing,
identification of usage distributions, etc. All this
knowledge is related to classes of software. (It is neces-
sary to understand more than single software systems
individually, one at a time.) Software metrics must be a
key feature in this general quantitative understanding,
because the similarity between pieces of software must
be measured in order to define classes of software.

To progress it is :necessary to acquire data. An ideal (but
expensive) source is controlled experimentation. For
example, NASA Langley continues to sponsor experi-
ments where replicated software is written. A better
understanding of replicated batch-processing software
has emerged from such experiments. Current experi-
ments should improve understanding of replicated real-
time control software. A second general source of data
are real software projects. A prime example is the data
collected and published by Musa; his data stimulated a
flurry of activity in reliability growth modelling. Such
experimentation and data collection is crucial. Experi-
menting and collecting useful data across general classes
of software projects is a tremendous challenge.

The Software Reliability Gap: An O p p o r t u n i t y

John D. Musa, AT&T Bell Labs.

We are in the middle of both a problem and an oppor-
tunity. I like to call it the "software reliability gap"
because the needs of software customers have outrun the
current practice of software engineering. You can't tell
whether they have outrun the technology, because there
is much technology that hasn't been refined and applied.

The core of the problem is that intense international
competition has made unidimensional needs obsolete. If
we only needed to add reliability to software products,
we would have many tools and methodologies to help
us. The problem is that other customer requirements,
such as level of cost and delivery date, would not be
met. Customers have multidimensional needs that are
interdependent and hence must be set and met more pre-
cisely than ever before. The precision required can only
increase in the future.

Thus measurement is inevitable. Models are also inevit-
able; we need to know the factors that influence product
attributes and how much each of them does, so that the
software development process can be controlled to yield
the desired objectives for the attributes. In short, com-
petition is creating a technological vacuum or gap.

The principal quality attributes that customers cite as
being significant are reliability, cost, and delivery date.
Software reliability engineering is the last to develop of
the three technologies supporting the measurement and
modeling of these attributes. It is the keystone that
makes quantitative software quality engineering possi-
ble. Since quantitative hardware quality engineering
already exists, the development of software reliability
engineering also makes quantitative system quality
engineering possible.

Thus there is an enormous and rare opportunity to fill a
widening gap, which makes this an exciting and chal-
lenging time.

What must software reliability engineering do to meet
the challenge? In my opinion, several general things:

(1) We need to induce a variety of projects to try it.
This is already happening, but greater variety
would be useful. Care must be taken that it be
applied correctly.

(2) The experience on these projects must be
recorded, critiqued by others knowledgeable in

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 A p r 1991 Page 27

(3)

(4)

the field (to guard against misinformed applica-
tions), and published.

Published experience should be organized and
digested, so it can be more easily taught to practi-
tioners and future practitioners.

Problems that are blocking further progress and
opportunities for new areas of application need to
be identified, and they should be addressed by
researchers.

These activities clearly offer major possibilities for prac-
titioners, researchers, and educators. People who
acquire and use software play an important role in clari-
fying the needs of the customer that are at the core of
the driving forces acting on software reliability
engineering.

Can I say anything more specific? I would like to close
by entering brainstorming mode and throwing out some
thoughts for you to discuss:

(1) We need research to tie software reliability more
strongly to the earlier part of the development pro-
cess. Part of this effort involves determining how
fault density is affected by product and process
variables.

(2) Little has been done to fulfill the promise of
software reliability engineering for evaluating
software engineering methodologies and tools.
We need to help people do this.

(3) We need data on human and computer resource
usage in test, so that resource usage parameters
can be determined.

(4) The AIAA software reliability engineering guide-
lines effort, which includes development of a
handbook, looks promising. Because of the diver-
sity of contributors involved, it will be important
to devote much effort to interaction between and
integration of their views. We don't want a cata-
log.

(5) We need to strongly support our newsletter and
our conference through personal participation in
exchanging practical experience and research
results. We need to keep the exchange flowing all
year through our working committees.

(6) We need software tools (with as many generic
elements as possible) to record as large a propor-
tion of failures as possible automatically, particu-
larly in the field but also in test. We need to
integrate this system with manually-reported
failure systems, but consider implementing the

(7)
manual reporting online rather than on paper.

The Software Engineering Institute has a metho-
dology for assessing the quality level of software
development processes. It does not currently
directly include a software reliability engineering
program among its assessment criteria. It should,
and we should discuss with them how to add it.

I hope you will not only discuss these ideas here, but
chew on them later as well. I hope you will add to this
necessarily partial list of opportunities for action. I hope
you will then seize some of them that appeal to you, and
return as significant contributors next year or the year
after.

Software Reliability Engineering
from Japanese Perspective

Mits Ohba, IBM Corporation

"The wave comes from the East."

Both the computer technology and the quality control
method were invented and matured in the US, and they
were brought into Japan later. Japan has so far caught
up quickly and become competitive in both areas. Espe-
cially, Japan is viewed as the leader in the area of qual-
ity control and quality management.

"Technology transfer begins when it is imported."

If we carefully review the processes by which Japan has
caught up and gone further, we can find some similar
patterns of technology development. The processes gen-
erally begin at the importing phase where technology is
investigated and evaluated. Then there is the deploy-
ment phase, the migration phase, and finally, the Japani-
zation phase.

"How does it go through?"

The deployment phase is the phase where the imported
technology is widely used and the know-hows associate
with it are accumulated. The migration phase is the
phase where components of the technology are adjusted
for the target environment(s). The Japanization phase is
the phase where something additional and unique to
Japan is added to the technology.

"How has Japanese software engineering evolved?"

Software engineering is a case in point. It was intro-
duced into Japan in 1977, which was two years later

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 Apr 1991 Page 28

than the first IEEE Transaction on Software Engineering
issued. Two years were spent on the importing phase
followed by two years of deployment. The migration
phase began in 1982 and lasted six years. The Japaniza-
fion phase began in 1988. An example of the Japaniza-
tion phase is what has become known as the "Software
Factory" concept.

"Software reliability research is not an exception."

As a domain of research, software reliability engineer-
ing is not an exception to the Japanese process. The ear-
lier work done in the US by Musa, Goel and Okumoto
drew the attention of Japanese reliability researchers as
their new field of study.

"What have Japanese researchers done in this field?"

To date they have: 1) evaluated the basic models pro-
posed by the American researchers by applying them to
real project data, 2) modified the models in order to fit
the data, 3) developed new models by examining the
implication of data and the assumptions of the basic
models, and 4) addressed the new research issues of
models to be resolved.

"Software factory did not need theories."

On the other hand, software reliability engineering as a
practice has evolved differently. It was begun as a
branch of software quality control practices in order to
determine whether a product developed by a vendor was
acceptable. The logistic curve model and the Gompertz
curve model were widely used in the industry and
became de facto standard models for software factories.

"Technology transfer is really the problem."

The implemenl~tion of the theory which has been
developed by Japanese researchers is very slow. This is
because the old models, with which the practitioners are
familiar, are still sufficient for their needs. They will not
change as long as the old practices work or until they
recognize the advantages of the new theory. This is
similar to the fact that people had believed the stars were
rotating.

"How can we convince the people that the earth
rotates?"

The most serious issue of software reliability engineer-
ing as a practice in Japan is the education of the people.
It is similar to teach them that the earth rotates, not the
stars. The models are not crystal balls. Prediction is
made based on a set of assumptions. If the assumptions
are not valid, a model based on them becomes a great

nonsense. The Gompertz curve fits most of practical
project data because of its flexibility, But, no one can
explain what the model reeally means.

"Why do we believe that the earth is rotating?"

The most serious issue as a domain of research iis to
explain the relationship between test cases and reliabil-
ity growth using reasonable models, which is also simi-
lar to explain the reason why the earth seems to be rotat-
ing. What software reliability growth tells is characteri-
zation of the state of software under evaluation. It does
not tell how we can improve testing. Obviously, time is
not the real factor for improving software reliability dur-
ing the test phase.

"Can measurements and data be standardized?"

A serious issue for both practitioners and researchers is
to establish standard ways of measuring software relia-
bility in practice. The models are based on a set of
assumptions. The models should be categorized based
on 1) what they can predict (e.g., MTTF, number of
errors), 2) what type of data they need (e.g., time
between failures, number of failures between observa-
tions), 3) what assumptions they are based on, and 4)
what type of software they can analyze.

Back To The Future

David Siefert, NCR

For the past 20 years, Software Engineering has pro-
vided us with the capability for producing highly reli-
able software. Software reliability is achieved, in part,
through the applied discipline of standardized practices,
methodologies, tools, and processes comprising the "sci-
ence" of Software Engineering. Today, dependence on
automation is greater than at any point in time in the
world's history. Highly reliable products are expected
and assumed! The very nature of the level of sophistica-
tion and complexity of modem systems are intended to
be transparent to the end-user.

Applying Software Reliability Engineering Discip-
lines

Interestingly, the same practices, methodologies, etc.
that lead to the development of reliable software are also
the downfall! Why after all these years of "learning" is
the world still not applying and improving Software
Engineering disciplines etc.? Why do practitioners still
develop and maintain software based upon the

S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 A C M S I G S O F T A p r 1991 Page 29

approaches used 20 years ago (lack of applied discip-
line)? Why is it that researchers do not yet know
exactly what is the minimum that should be done to
develop reliable software? In support of consistently
producing reliable software, why after 20 years is there
still not a national database leading to the consistent pro-
ject data collection, analysis, and ultimate determination
of practices, tools, and therefore required disciplines?
Shouldn't a Software Engineering "Bluebook" exist?

Software Reliability Engineering is addressed in the fol-
lowing two ways:

(1) Technical Aspects of Software Reliability

Technical software reliability consists of many
items. Determining reliability goals is one
activity. Reliability goals are typically referred to
in "technical" terms. These technical terms are
placed in product specifications. As it pertains to
Software Reliability Engineering, these terms or
goals are then tracked through product production
to the achievement of the goals. The environment
that the software was produced in, plays a
significant impact on the results. These specified
reliability goals often are determined through the
application of software reliability models. An
AIAA effort addressing Software Reliability is in
the process of providing guidance to industry on
which models to use and when. The computing
industry has yet to standardize these specific
models.

(2) End-User Software Reliability

The second form of Software Reliability
Engineering is that of the end-user. The technical
specifications which include the software reliabil-
ity goals are expected to be mapped directly to the
end-user's needs and expectations. Too often
there is no known methodology to take qualitative
and rather subjective unstructured feedback from
the end-user and transform them into quantifiable
and technically oriented input for use in determin-
ing software reliability. Without this methodol-
ogy, there will remain to be software reliability
difficulties. Meeting "specification" infers meet-
ing the end-user's expectations. Meeting
specification is certainly one essential form of
measurement. Technical specifications are the
result of analysis of the end-user's expectation -
not the other way around. Too often the technical
specification and the end-user's expectations are

distinctly separate with no relationship between
each other. This results in minimal confidence
that the product will achieve it's expectations.

Environmental issues are also important. To understand
software reliability, one must understand the environ-
ment software resides. The environment for software is
systems! System components include other software
and hardware. Reliability should be computed or budg-
eted in such a manner that reliability for each of the
components of the computer environment can be deter-
mined, evaluated, measured, and tracked separately.
Reliability should also address a "total" system or
enterprise-wide solution. Typically, the end-user is
affected by using or experiencing the "total" system.
They typically have no ability to decipher the type of
defect or anomaly that has occurred. It is not clear that
they should. At any rate, Software Reliability Engineer-
ing needs to address the "total" system as well as the
individual system components.

The Software Engineering community has reliability
models that lead to establishing reliability goals. "High
Confidence" goals (outputs) produced through the use of
these models are dependent upon past history. This his-
tory should be retained in the form of a database.
Interestingly, no new significant software estimation
models have been revealed in the past 5 years. Without
the use of such databases as input to and the "tuning" of
such models, the community is no closer to estimating
with high confidence levels the goals produced from the
models as was able to be attained 5 years ago. The
goals produced through the use of these models may not
be any better than the "guess" of you or I.

Besides past history, the technically specified software
reliability goals are established and dependent on some
basic items of information:

m

How is end-user's "needs" quantified?

What is a software error, fault, and failure?

What are the categories of software?

How is Defect and Fault Density computed?

What and how is line-of-code or Function Point,
by language, determined?

How is line-of-code or Function Point translated
between languages?

How is Defect Density affected by software pro-
duction environmental issues?

How is software to be tracked?

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G NOTES vol 16 no 2 Apr 1991 Page,. 30

Recommendations in Improving Software Reliability

• For Practitioners:

O) Practitioners must apply the disciplines considered
to Software Engineenng. Techniques, methods,
tools, etc. as associated with planning, design,
development, testing (including verification and
validation), should be learned and rigidly applied.

(2) Each software production (or maintenance) organ-
ization should develop and maintain a Software
Engineering Environment Process (SEEP). This
process should consist of all disciplines, tools, etc.
actually used in the production of the software -
including the measurement systems, of which
software reliability is a part.

(3) Practitioners should develop a database of past
projects. The database should consist of such
information as: the environment that produced the
software, skill and types of personnel producing
the software, Defect Densities, etc. This database
is to be used as a basis for a Software Reliability
Measurernent Program (SRMP) and positioning
for continuous improvement in Software
Engineenng.

(4) A software reliability measurement program
(SRMP) should be put into place that consists of
measures that address both the scope of the
Software Engineering Environment Process and
specific product related results. Measures should
consist of indicator measures, e.g., Test Coverage
and estimator measures - models to estimate relia-
bility. The measurement program should consist
of a methodology that addresses the use of the
models beginning with the "how to" develop relia-
bility goals and ending with an approach of a pro-
ject post mortem. The previously mentioned data-
base would maintain all data. The database would
provide for causal root cause analysis and process
improvement of the Software Engineering
Environmental Process.

• For Computer Scientist Researchers:

(1) Researchers are to develop and maintain a
national ,database (see above). The information
contained in the database as previously noted
should contain both product and environmental
information. Researchers should evaluate the
information in such a manner as to determine the

best practices, methods, required skills etc. to con-
finuously improve software reliability.

(2) Researchers should provide standards on such
subjects as: language constructs, line-of-code
definitions, Function Point, etc.

(3) Researchers should determine minimum impacts
as to how to conclude with deriving "high
confidence" software reliability goals, etc.
Models are to be evaluated and maintained.

(4) Researchers should also determine education cur-
ncula for software engineenng enabling the con-
tinuous achievement of high confidence reliable
software.

(5) Researchers should determine how to quantify
results from evaluating user's needs. "I'hese
results are used as input into various different reli-
ability tools, models, etc. as discussed earlier.

(6) Researchers should establish and maintain a "Blue
Book for Software Engineering."

Concluding Comments

The world continues to embrace higher and higher levels
of technology. Software is at the heart of the demand
for complex features and functions which are packaged
to make the complexity transparent to the end-user.
High confidence software reliability is in jeopardy.
Software Engineering processes that consist of discip-
lines, tools, methods, etc. are not being utilized con-
sistently. The science of Software Engineering is not
being practiced.

A need exists to focus on the basics; in the simplest form
of understanding software and Software Engineering.
Data needs to drive decisions. Attaining highly reliable
software - consistently - positioned through processes
for the purpose of improvement is essential. Research-
ers need to provide the "data driven" credibility in the
baseline evaluations of software and software environ-
ments (and processes). Researchers need to see that the
appropriate Software Engineering disciplines are applied
- consistently and appropriately, evaluating the results,
and improving the disciplines and processes.

The disciplines exist in the form of Software Engineer-
ing to produce reliability software! The discipline and
formality required to achieve the results remain to be the
challenge! The solution is: "go BACK and apply the dis-
cipline TO get to THE FUTURE..."

