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Abstract. Software systems often undergo significant changes in their life cycle,
exposing increasingly complex API to their developers. Without methodical guid-
ances, it is easy to become bogged down in a morass of complex API even for
the professional software developers. This paper presents the Flow-Augmented
Call Graph (FACG) for taming API complexity. Augmenting the call graph with
control flow analysis brings us a new insight to capture the significance of the
caller-callee linkages in the call graph. We apply the proposed FACG in API rec-
ommendation and compare our approach with the state-of-the-art approaches in
the same domain. The evaluation result indicates that our approach is more effec-
tive in retrieving the relevant APIs with regard to the original API documentation.
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1 Introduction

Software systems often undergo significant changes during the in-service phrase of their
life cycle [7]. Most of contemporary software systems are becoming larger with expos-
ing increasingly complex API to developers [8]. A recent survey conducted in Microsoft
Research reveals that software developers usually become lost working on projects with
complex API, unsure of how to make progress by selecting the proper API for a cer-
tain task [15]. Previous literature [6,20] points out that working with complex APIs in
large scale software systems presents many barriers: understanding how the APIs are
structured, selecting the appropriate APIs, figuring out how to use the selected APIs and
coordinating the use of different APIs together all pose significant difficulties. Facing
with these difficulties along, developers spend an enormous amount of time navigating
the complex API landscape at the expense of other value-producing tasks [16].

A methodical investigation of the API usage in large software systems is more ef-
fective than an opportunistic approach [2]. The API relevance is usually considered to
tame the API complexity. Two APIs are relevant if they are often used together or they
share the similar functionality. According to previous literature [19], the original API
documentation which groups the APIs into modules is the best resource to indicate the
API relevance. However, few projects provide the insight to capture the relevant APIs
in their documentation [8]. With the need exposed, recommendation systems specific to
software engineering are emerging to assist developers [13]. Recommending relevant
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APIs (namely, API recommendation) in software systems is also a long-standing prob-
lem that has attracted a lot of attention [4,8,9,14,19,22]. Generally, there are two funda-
mental approaches in API recommendation concerned with data mining techniques and
the other with structural dependency. The mining approaches emphasize on “How API
is used” and extract frequent usage patterns from client code. The structural approaches,
on the other hand, focus on “How API is implemented” and recommend relevant APIs
according to structural dependencies in library code.

Previous work on API recommendation heavily relies on the call graph. The call
graph is a fundamental data representation for software systems, which provides the
first-hand evidence of interprocedural communications [17]. Especially for the work
concerned with API usage, the impact of the call graph is critical. The call graph itself
does not imply the significance of callees to the same caller. However, the callees are
commonly invoked by a caller under various constrains. For example, the callees en-
closed with no conditional statement will be definitely invoked by the caller, whereas
the callees preceded by one or more conditional statements are not necessarily invoked.
Previous approaches relying on the call graph do not distinguish the differences between
callees.

Our approach takes a different path from the previous work by extending the very
foundation in API recommendation—the call graph. We introduce the Flow-Augmented
Call Graph (FACG) that assigns weights to each callee with respect to the control flow
analysis of the caller. The key insight of the FACG is that a caller is more likely to
invoke a callee preceded by less conditional statements. Thus the bond between them is
stronger comparing to the others preceded by more conditional statements. Therefore,
the significance of caller-callee linkages can be inferred in the FACG. The insignificant
callees in the FACG can be eliminated, so that the API complexity can be reasonably
reduced with respect to specific software tasks. In this work, we employ the FACG
in API recommendation and conduct our evaluation on several well-known software
systems with three state-of-the-art API recommendation tools.

This paper makes the following contributions:

– We propose the Flow-Augmented Call Graph (FACG) as a new foundation for tam-
ing API complexity. The FACG extends the call graph by presenting the signifi-
cance of caller-callee linkages in the call graph.

– We apply the FACG in API recommendation and evaluate our approach on several
well-documented software projects. We employ their module documentation as a
yardstick to judge the correctness of the recommendation. The evaluation indicates
our approach is more effective than the state-of-the-art API recommendation tools
in retrieving the relevant APIs.

– We implement our API recommendation approach as a scalable tool built on GCC.
Our tool copes with C projects compliable with GCC-4.3. All the supplemental
resources are available online1.

The rest of the paper is organized as follows. Section 2 describes the motivating
example. Section 3 presents the approach to build FACG and recommend relevant APIs.

1 http://www.cse.cuhk.edu.hk/˜qrzhang/facg.html

http://www.cse.cuhk.edu.hk/~qrzhang/facg.html
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1 APR DECLARE(apr status t) apr pool create ex(...)
2 {
3 ...
4 if ((node = allocator alloc(allocator, MIN ALLOC - APR MEMNODE T SIZE)) == NULL)
5 {
6 ...
7 }
8 ...
9 #ifdef NETWARE

10 pool->owner proc = (apr os proc t)getnlmhandle();
11 #endif /* defined(NETWARE) */
12 ...
13 if ((pool->parent = parent) != NULL)
14 {
15 #if APR HAS THREADS
16 ...
17 if ((mutex = apr allocator mutex get(parent->allocator)) != NULL)
18 apr thread mutex lock(mutex);
19 #endif /* APR HAS THREADS */
20 ...
21 #if APR HAS THREADS
22 if (mutex)
23 apr thread mutex unlock(mutex);
24 #endif /* APR HAS THREADS */
25 }
26 ...
27 return APR SUCCESS;
28 }

Fig. 1. apr pool create ex() in Apache

Section 4 compares our approach with three state-of-the-art tools. Section 5 summaries
the previous work. Section 6 conducts the conclusion.

2 Motivating Example

We motivate our approach by selecting a real world API apr pool create ex()2

from the latest Apache HTTP server-2.2.16. Consider the code snippet shown in Fig. 1,
if we investigate the control flow of this API, we may obtain two interesting observa-
tions. First, the call-site of API getnlmhandle() at line 10 is subject to the macro
NETWARE 3, and this API will never be called by apr pool create ex() on the plat-
forms other than Netware R©. Second, the call-site of allocator alloc() at line 4
is unconditional, whereas apr thread mutex lock() at line 18 is subject to two
conditions. As a result, allocator alloc() is much more likely to be called by
apr pool create ex() than apr thread mutex lock(). However, in the conven-
tional call graph shown in Fig. 2(a), the callees are identical to the caller. These observa-
tions reveal that the conventional call graph is blind to the significance among different
callees, and we are likely to miss some critical information if we treat every callee as
the same in a call graph.

2 The irrelevant code is omitted.
3 Netware is a network operating system developed by Novell, Inc. Find more on http://
httpd.apache.org/docs/2.0/platform/netware.html

http://httpd.apache.org/docs/2.0/platform/netware.html
http://httpd.apache.org/docs/2.0/platform/netware.html
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Table 1. Flow distributions of each API in the previous example

API name Description Flow
apr pool create ex Creating a new memory pool.
allocator alloc Allocate a block of mem from the allocator 1
apr allocator mutex get Get the mutex currently set for the allocator 0.5
apr thread mutex lock Acquire the lock for the given mutex. 0.25
apr thread mutex unlock Release the lock for the given mutex. 0.25
getnlmhandle Returns the handle of the NLM owning the calling thread. 0

(a) Call Graph (b) Flow-Augmented Call Graph

Fig. 2. Call Graph and Flow-Augmented Call Graph

In this paper, we propose the Flow-Augmented Call Graph (FACG), which aims to
address the limitations of the conventional call graph. We build the FACG with respect
to the fact that some of the call-sites are unconditional while others are conditional;
some are concerned with more conditions while the others are with fewer conditions.
By applying the control flow analysis, we observe that the unconditional call-sites oc-
cupy the caller’s major control flow, whereas the call-sites under more conditions tend
to reside in a less important sub branch. It is more possible for the caller to invoke
the callee with fewer or without conditions. In order to cope with individual call-sites,
we split the control flow equally for every branch in the control flow graph. For the
motivating example in Fig. 1, we initialize the inflow by 1. The final distribution of
the control flow for each callee is shown in Table 1. Especially, getnlmhandle()
is eliminated since our analyzer is built on GCC Gimple IR, where all of the macros
have been preprocessed by the compiler. Finally, we extract the description of each
API from Apache Http Documentation4 to interpret the insight beyond our FACG. As
shown in Table 1, among the five callees, API allocator alloc() is more likely
to accomplish “creating a new memory pool” than other less important APIs (e.g.,
apr thread mutex lock()) in this case. The FACG shown in Fig. 2(b) indicates that
the linkage of apr pool create ex() and allocator alloc() is the most signifi-
cant one among all potential caller-callee pairs.

4 http://apr.apache.org/docs/apr/1.4/modules.html

http://apr.apache.org/docs/apr/1.4/modules.html
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3 Approach

3.1 Augmenting the Call Graph with Control Flow

Parsing Source Code The GCC compiler is chosen as the backbone parser. Our static
analyzer takes the advantage of Gimple [10] Intermediate Representation and is able to
capture essential information (e.g., basic block, API call-site and structure accessing)
from the source code. The current implementation only works for C; however, it can be
easily extended to other languages through different GCC front ends.

Reducing CFG We adopt the definition of CFG from those presented by Podgurski
and Clarke [11].

Definition 1. A Control Flow Graph (CFG) G = (N, E) for procedure P is a directed graph
in which N is a set of nodes that represent basic blocks in procedure P . N contains two distin-
guished nodes, ne and nx, representing ENTRY and EXIT node, where ne has no predecessors
and nx has no successors. The set of N is partitioned into two subsets, NS and NP , where NS

are statement nodes with each ns ∈ NS having exactly one successor, where NP are predicate
nodes representing predicate statements with each np ∈ NP has two successors5. E is a set
of directed edges with each ei,j representing the control flow from ni to nj in procedure P . All
nodes in N are reachable from ENTRY node ne.

In the common case that the CFG is reducible [21], eliminating loop back-edges
results in a DAG and this can be done in linear time[1]. For the irreducible CFG, we
adapt the conservative approximation from [12] and unroll every loop exactly once.
This is done at early stage so that the DAG instead of CFG is considered in building the
FACG.

Calculating the Flow of Callees For a callee Q, if a path with flow x contains Q, we
say Q has flow x along the path, otherwise Q has flow 0 along the path. The flow of Q
in the caller is the sum of the flow of Q along all the paths. To calculate the flow of Q,
a naive strategy is to employ an exhausted graph walking strategy to collect the flow of
callees in each path. However, this is infeasible as there are an exponential number of
paths [12]. We propose an approach to calculate the flow of Q incrementally. We define
the inflow and outflow of each basic block ni as the following:

Definition 2. The inflow of a basic block is defined as:

IN(ni) =

8><>:
X

ej,i∈E

OUT (nj) if(ni 6= ne)

n0 if(ni = ne)

(1)

Definition 3. The outflow of a basic block is defined as:

OUT (ni) =

8<:
IN(ni) if(ni ∈ NS)

IN(ni)

2
if(ni ∈ NP )

(2)

5 As indicated in [11], the outedge of each ni in CFG is at most two. This restriction is made for
simplicity only.
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Algorithm 1: Algorithm to determine the flow of each callee in the DAG.
Input : G(V, E),directed, acyclic CFG of procedure P ;

V is topologically sorted;
the set of Q, where Q is the callee of P ;

Output: Q.F low = IN(nx)Q for each callee Q;
foreach callee Q of procedure P do

foreach ni ∈ V do
foreach nj ∈ PRED(ni) do

IN(ni)← IN(ni) + OUT (nj);
IN(ni)Q ← IN(ni)Q + OUT (nj)Q;

end
if ni has call-site of Q then

IN(ni)Q ← IN(ni);
end

end
Q.F low ← IN(nx)Q

end

The inflow IN(ni) denotes the flow of all the paths arriving the basic block ni (ni

is counted in the paths), and the outflow OUT (ni) denotes the flow of all the paths
arriving a successor of ni through ni. We also use IN(ni)Q and OUT (ni)Q to denote
the inflow and outflow of ni associated with a callee Q. IN(ni)Q denotes the flow of
Q in all the paths arriving ni, and OUT (ni)Q denotes the flow of Q in all the paths
arriving a successor of ni through ni.

Definition 4. The inflow of a basic block associated with Q is defined as:

IN(ni)Q =

8>>><>>>:
X

ej,i∈E

OUT (nj)Q if(ni 6= ne and ni does not contain Q)

0 if(ni = ne and ni does not contain Q)

IN(ni) if(ni contains Q)

(3)

Definition 5. The outflow of a basic block associated with Q is defined as:

OUT (ni)Q =

8<:
IN(ni)Q if(ni ∈ NS)

IN(ni)Q

2
if(ni ∈ NP )

(4)

In order to calculate the flow information effectively, we first rank the basic blocks
using topological sorting. For ne, we calculate IN(ne)Q according to the definition. We
then calculate the inflow of the basic blocks associated with Q in the order of topologi-
cal sorting. If ni contains Q, IN(ni)Q is determined by IN(ni). Otherwise, IN(ni)Q

is the sum of the inflow of the predecessors of ni associated with Q, which has been
calculated. Finally, the flow of Q is equal to the inflow of nx associated with Q, i.e.,
IN(nx)Q. The overall algorithm is shown in Algorithm 1.

Augmenting the Call Graph We initialize the inflow of each procedure P by 1 (i.e.,
n0 = 1), and propagate the flow in the CFG . Upon the completion of Algorithm 1, we
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Fig. 3. The FACG Example

augment every caller-callee edge according to Q.F low for each callee Q to build the
FACG.

In the FACG, the significance of each caller-callee linkage can be indicated on each
edge in the call graph. We revise the definition of the call graph [3] to give a formal
definition of FACG.

Definition 6. A Flow-Augmented Call Graph (FACG) G = (N, E) for procedure P is
a directed multigraph in which each node n ∈ N corresponds to either a caller P or a
callee Q, and each weighted edge e ∈ E represents a call-site augmented with control
flow.

3.2 Recommending the Relevant APIs

The relevant APIs have similar functionalities, and thus they may access some program
elements (i.e., the callee APIs and the structures) in common. Therefore, we adopt the
set of program elements accessed by the APIs to recommend relevant APIs. However,
an API may access many program elements (along with its callees), most of which are
irrelevant to the main functionality of the API. These irrelevant elements can easily
dominate the relevance calculation of APIs, and introduce noises to recommendation
results6. To reduce the impact of the irrelevant elements, one may consider only the
elements directly accessed by the APIs in the conventional call graph (For example,
Saul et al. [19] consider only the neighboring functions of an API as the candidates for
recommendation). But many relevant APIs for a API query may be far from the query
in the call graph, and are missed by such kind of approaches.

Despite the difficulty of selecting a representative set of program elements accessed
by an API from the conventional call graph, the task is feasible using the FACG. Given
the FACG, the significant callees of a caller API can be found with regard to the flow-
augmented edge. The representative set of program elements of an API is determined
along with its significant callees. Basically, if a callee is called with a large flow in the
FACG, it is considered to be the significant callee. Note that the flow can be propagated
along the FACG, and a callee that is called indirectly by an API can be significant to

6 We further discuss this in section 4.4
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Table 2. Subject Project

Software Version KLOC #C files #Functions
Httpd 2.2.16 299.7 571 2188
D-Bus 1.1.3 99.2 108 1608

Tcl 8.5.9 227.1 207 1880
Tk 8.5.9 260.1 201 2303

the API as well. For example, in Fig. 3, f0 calls g0 with flow 1, and g0 calls h0 with
flow 0.5, therefore, the flow of f0 to h0 is 1 ∗ 0.5 = 0.5. If we use 0.5 as the threshold
of flow for determining significant callees, then the significant callees of f0, f1, and f2

are: g0, h0 of f0; g1, h0 of f1; and g2, h1 for f2.
We then calculate the relation of two APIs as the cosine similarity of their represent-

ing vectors. Cosine similarity can capture the similarity of two vectors without biasing
to vectors with large norm, and it is widely used in text retrieval. The cosine similarity
of two vectors is

cosine(f, g) =
f · g

||f || · ||g||
(5)

For the example shown in Fig. 3, the relation of f0 and f1 is 0.5, and the relation of f0

and f2 is 0 (for simplicity of presentation, we omit the structures accessed by the APIs).
While it is difficult to distinguish the relevance of f1 and f2 to f0 in the conventional
call graph, it is clear that f1 is more relevant to f0 than f2 is in the FACG, since f1

and f0 have some main functionalities in common. We thus recommend f1 as a highly
relevant API of f0.

4 Evaluation

We compare the proposed approach with three state-of-the-art API recommendation
tools: Suade [14], Fran [19] and Altair [8]. Suade recommends a set of API by analyzing
the specificity and reinforcement, Fran performs a random walk algorithm in the call
graph to find relevant APIs. Altair suggests the recommendation based on API’s internal
structural overlap. Our evaluation over the four tools is conducted with regard to the
specific task suggested by Fran [19]: Given a query API, retrieve other APIs in the same
module. The subject projects in our evolution section are Apache HTTP Server, Tcl/Tk
library, and D-Bus message bus system. These subject projects are chosen because they
are documented well, and the original API documentation which groups the APIs into
modules is the best resource to tell the API relevance. Table 2 gives the basic description
on the subject projects.

4.1 Experimental Setup

The experiments are conducted on an Intel Core 2 Duo 2.80GHz machine with 3GB
memory and Linux 2.6.28 system. Suade, Altair, and Fran are freely available online.
As mentioned in Altair [8], Suade is not initially designed for API recommendation; we
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use a re-implementation from Fran [19]. Fran proposes two algorithms,namely, FRAN
and FRIAR. They concludes that a combination of the two algorithms can achieve bet-
ter performance. We use their implementation of the combined algorithm in our ex-
periment, denoted as Fran to avoid the naming confusion. Suade and Fran need to be
initialized with a call graph. We feed them with the call graph extracted by our im-
plementation based on Gcc Gimple IR. Altair is built on LLVM, which can gracefully
handle the source code. Moreover, Fran implements the top-k precision/recall measure-
ment, we adopt the result to calculate the F1 score for Fran and Suade in our evaluation.

4.2 Case Studies

Case study is de rigueur in evaluating the result obtained by API recommenders [19].
Suade, Fran and Altair used human examination [14,19] and API naming [8] (concerned
with the prefix apr and ap in Apache HTTP server). However, without convincing
ground truth to support the judgement, these case studies have several limitations, which
have been well-discussed in Fran [19] (which conducted an additional quantitative study
as a supplement).

We sought to judge the result objectively and bring about fair comparisons among
four tools. As suggested in Fran [19], the original project documentation which groups
the APIs into modules is the best resource to judge the API relevance. Therefore, we
take the module content as a yardstick to avoid subjective judgement on the correctness
of relevant APIs and underline the relevant APIs that appear in the module in Table 3.
Table 3 shows the recommendation set obtained by the four tools with respect to the
queries list below. The cases are chosen in order to indicate the typical situations in the
related projects.

Case 1: apr os file get() is a function in the Apache Portable Runtime (APR)
which the Apache HTTP server is built on top of. The APR documentation indicates
that this API belongs to the Portability Routines module7 and its functionality is to
“convert the file from apr type to os specific type”. This API is not directly called
by Apache HTTP server, yet it exports the interface for developers to extend Apache
HTTP server. In this case, Suade and Fran return no result with regard to this query
because it is not in the call graph. Among the top 10 results returned by Altair, there is
no relevant APIs according to the documentation. We investigate the source code and
find that apr os file get() is a simple function with two lines of code and accesses
only one data structure apr status t. Altair computes the structural overlap among
APIs; however, the useful information available for this query is limited and there are
many APIs, which only access apr status t. Altair cannot distinguish the difference
among them and returns the irrelevant results. Our approach investigates the structral
information with the help of FACG and records how data structures are accessed by the
APIs explicitly. Take pipeblock() in Altair’s result for example, this API accesses
apr status t in different branches with regard to the control flow, where our approach
is capable of distinguishing this case from a single access as in apr os file get().

7 http://apr.apache.org/docs/apr/1.4/group__apr__portabile.html

http://apr.apache.org/docs/apr/1.4/group__apr__portabile.html


10 Qirun Zhang et al.

Table 3. A Comparison of API Recommendation Tools. Curly underline indicates a matched
recommendation.

Suade Fran Altair our approach

apr os file get N/A N/A

apr file writev
pipeblock
pipenonblock
proc mutex posix cleanup
proc mutex posix acquire
proc mutex posix release
proc mutex sysv cleanup
proc mutex sysv acquire
proc mutex sysv release
proc mutex fcntl cleanup

:::::::::
apr os pipe put

:::::::::::
apr os pipe put ex

apr file pool get

:::::::::
apr os file put

apr file buffer size get
apr file close
apr file ungetc
apr unix child file cleanup
apr file name get
apr file open stderr

apr fnmatch

tolower
rangematch
make autoindex entry

apr palloc
apr pstrdup
strlen
apr pstrcat
ap make full path
ap make dirstr parent
find item
toupper
memset
ignore entry

N/A

rangematch
pcre maketables
apr uri unparse

::::::::::
apr fnmatch test

ap str tolower
atoq
strip paren comments
ap filter protocol

:::::::::
apr match glob

is token

Tcl SetVar2

::::::
Tcl SetVar

::::::::
Tcl SetVar2Ex
EnvTraceProc
TclpSetVariables
Tcl NewStringObj
Tcl GetString
TclFreeObj

::::::
Tcl SetVar
TclpSetVariables
EnvTraceProc
Tcl ExternalToUtfDString
getuid
uname
ctype b loc

Tcl DStringInit
TclpGetPwUid
Tcl DStringFree

ObjFindNamespaceVar
Tcl FindNamespaceVar
TclLookupSimpleVar
TclObjLookupVarEx
TclObjLookupVar
TclLookupVar

:::::::::
Tcl ObjSetVar2

::::::::
Tcl SetVar2Ex

::::::
Tcl SetVar

:::::::::
Tcl ObjGetVar2

::::::::
Tcl SetVar2Ex

::::::::
Tcl UnsetVar2

::::::::
Tcl GetVar2Ex

:::::::
Tcl GetVar2

::::::
Tcl UpVar2

TclVarErrMsg
TclLookupVar

::::::
Tcl SetVar

TclObjLookupVar
Tcl FindNamespaceVar

Among the top 10 results obtained by our approach, three APIs can be found in the doc-
umentation which are identified to be relevant to the query shown by a curly underline.

Case 2: apr fnmatch() is a member of the Filename Matching Module in Apache
HTTP server, which is described in the documentation as “to match the string to the
given pattern”8. This query is a self-contained API, which simply manipulates the
strings without accessing any data structures. As discussed in Altair [8], Altair may not
return any result for these self-contained API. However, apr fnmatch() is called by
many other APIs in Apache HTTP server, and the documentation indicates that there
are two APIs apr finatch test() and apr match glob(), that are relevant to it.
Suade and Fran attempt to answer the query by searching the call graph. Since the call
graph is not able to tell the significance of each callees to the caller. The result returned
by Suade and Fran implies that those approaches rely on the conventional call graph
may “get lost” in the API jungle because all the neighbour nodes in the call graph ap-
pear to be “the same”. Our approach, on the other hand, only considers the callee APIs
on the major flow of the caller rather than those less important ones. Within our FACG,
such explorations in the API jungle can be directed to the caller/callee more relevant
to the query. In the end, our approach finds both of the other two APIs in the module
according to the top 10 result.

8 http://apr.apache.org/docs/apr/1.4/group__apr__fnmatch.html

http://apr.apache.org/docs/apr/1.4/group__apr__fnmatch.html
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Case 3: Tcl SetVar2() in Tcl library belongs to the group of APIs that manipulate
Tcl variables9. All of the four tools return meaningful results with regard to the query.
Tcl SetVar2() is widely used in Tcl to create/modify the variable, consequently, it
has large neighbour sets (i.e., parent, child, sibling and spouse set defined by Fran). Both
of Suade and Fran return Tcl SetVar() which is a wrapper function of the query.
Suade also returns Tcl SetVar2Ex() which is called by the query. Most of the rest
APIs in their results has nothing to do with variable manipulation. The situation is quite
the same as in case 2; the conventional call graph does not distinguish the differences
between callees. The top 10 results obtained by Altair and our approach are all related
to variable manipulation in Tcl. This can be confirmed by taking look at the naming
of these APIs. However, the relevant APIs (which are listed in the documentation and
are the ground truth of F1 comparison) rank higher in our result. The reason behind is
our approach supported by FACG is likely to consider the most important neighbours
in the call graph. For example, query Tcl SetVar2 calls four APIs. Among them,
Tcl SetVar2Ex occupies the main flow of the query, so that it ranks high in the result.
The result precisely illustrates the main advantage of the FACG. Moreover, in our top
10 results, we retrieve six out of the nine APIs that are documented in the same module,
which is the best result from all four tools.

4.3 Quantitative Study

To perform the quantitative study, we compared the effectiveness of the four tools in
retrieving relevant APIs at four recommendation-set size cutoffs, top-5, top-10, top-
15 and top-20. Three measures (precision, recall and the F1-measure) of perfor-
mance in information retrieval are adopted in our evaluation. All are defined by the
recommendation set retrieved by the four tools. Let A be the recommended set ob-
tained by each tools, and B be the set of relevant APIs which appear in the mod-
ule. The precision and recall is defined as follows: precision = |A ∩ B|/|A| and
recall = |A ∩ B|/|B|. Precision measures the accuracy of obtaining the relevant
APIs while recall measures the ability to obtain the relevant APIs. The F1-measure
is the equally-weighted harmonic mean of the precision and recall measures, defined as
F = 2 ∗ presion ∗ recall/(presion + recall). It is usually engaged as the combined
measure of both precision and recall.

The summary of precision and recall performance is shown in Table 4. It can be seen
that our approach achieves the highest precision. Moreover, our approach improves the
precision rate over Suade, Fran and Altair by 184.8%, 120.6% and 31.7% respectively,
which indicates that our approach is able to suggest the most precise recommend set
among the four. In addition, our approach achieves recall improvement over Suade, Fran
and Altair by 828.4% , 167.7% and 83.3% respectively. Finally, the overall performance
measurement is determined by F1-Score, where our approach achieves the highest F1
score with a large improvement of 495.6%, 166.7% and 59.7% over Suade, Fran and
Altair respectively. The performance measurement indicates that our approach is able to
recommend relevant APIs much more effectively than all other tools. Fig. 4 shows the

9 http://www.tcl.tk/man/tcl8.5/TclLib/SetVar.htm

http://www.tcl.tk/man/tcl8.5/TclLib/SetVar.htm
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Table 4. The Precision and Recall Performance

Suade Fran Altair Our approach

Precison

Top-5 0.111 0.155 0.266 0.384
Top-10 0.104 0.134 0.236 0.319
Top-15 0.109 0.135 0.222 0.278
Top-20 0.109 0.135 0.212 0.252

Recall

Top-5 0.025 0.072 0.099 0.173
Top-10 0.027 0.094 0.136 0.242
Top-15 0.028 0.103 0.154 0.283
Top-20 0.029 0.109 0.163 0.314

F1 Score

Top-5 0.033 0.070 0.114 0.181
Top-10 0.034 0.075 0.132 0.209
Top-15 0.035 0.080 0.133 0.213
Top-20 0.035 0.081 0.132 0.213

(a) F1 Comparison on Tcl-8.5.9 Library (b) F1 Comparison on Tk-8.5.9 Library

(c) F1 Comparison on Apache-2.2.16 (d) F1 Comparison on D-Bus-1.1.3

Fig. 4. Overall F1 Score Comparison

F1 score comparisons over all the subject projects in our experiment. It is clearly seen
that our approach dominates the performance in all recommendation-set size cutoffs.
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Table 5. F1 Score of Top-20 Result

Subject Project Httpd D-bus Tcl Tk
Approach relying on the call graph 0.16 0.17 0.17 0.10

Approach relying on the FACG 0.23 0.24 0.23 0.15

Table 6. Top-10 results of our recommendation algorithm on the call graph.

Query apr os file get apr fnmatch Tcl SetVar2

Top-10 Result

apr file pool get
apr file buffer size get
apr file ungetc
apr file name get
apr file buffer set
apr file flush locked
apr unix child file cleanup
database cleanup
apr file unlock

:::::::::::
apr os pipe put ex

rangematch
find desc
make parent entry

:::::::::
apr match glob

ap file walk
ap location walk
ap process request internal
ap process resource config
include config
dummy connection

::::::
Tcl SetVar

::::::::
Tcl SetVar2Ex

Tcl TraceVar2
Tcl ResetResult

:::::::::
Tcl ObjSetVar2

TclGetNamespaceForQualName
Tcl TraceVar
TclObjLookupVarEx
EstablishErrorInfoTraces
Tcl DeleteNamespace

4.4 Discussion on the Impact of FACG

The main insight in our work is to deploy the FACG to address the significance of
caller-callee linkages. We conduct this subsection investigating our recommendation
algorithm on the conventional call graph to further illustrate the impact of the FACG.

We apply our algorithm on the conventional call graph which treats every caller-
callee linkage identically. Table 5 shows the F1 score of top-20 recommendation sets
compared with our FACG approach on the four subject projects. On average, the perfor-
mance of recommendation using the FACG is 41.7% higher than using the conventional
call graph. More specifically, Table 6 lists the top 10 results of the case study in sec-
tion 4.2. The relevant APIs supported by the module documentation are underlined with
a curly line as well. As mentioned before, the recommendation algorithm based on the
conventional call graph is blind to the difference between callees; therefore, it searches
more candidates than our FACG approach, without distinguishing the significance of
each candidate. Take Tcl SetVar2 for example, the first two results are directly linked
with the query in call graph, thus they rank on the top in Table 6. However, although
other relevant APIs (e.g., Tcl GetVar2) appear in the candidate set, their significance
is not clear enough in the call graph to be distinguished from other insignificant ones in
the top 10 result. Moreover, the approach based on the call graph introduces some APIs
(e.g., TclGetNamespaceForQualName) irrelevant to variable manipulation into the
top 10 result, whereas the FACG approach can properly filter them as shown in Table 3.
The evaluation demostrates the benefit of the FACG in capturing the essence concerned
with API usage and the impact of applying the FACG in API recommendation.

5 Related Work

There are mainly two categories of API recommendation approaches. The approaches
which recommend APIs by using mining techniques belong to the first category. These
approaches usually mine certain patterns or code snippets from sample code reposi-
tories. Prospector [9] developed by Mandelin et al. synthesizes the Jungloid graph to
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answer a query providing the input and output types. Prospector traverses the possible
paths from input type to output type and recommends certain code snippets accord-
ing to API signatures and a corpus of the client code. XSnippet [18] developed by
Sahavechaphan et al. extends Prospector by adding more queries and ranking heuris-
tics to mine code snippets from a sample repository. Context-sensitive is introduced to
enhance the queries in XSnippet and produce more relevant results. Strathcona [4] de-
veloped by Holmes et al. is dedicated to recommending code examples matching the
structural context. Six heuristics are applied to obtain the structural context description
in the stored repository. MAPO [24] developed by Zhong et al. takes the advantage
of mining frequent usage patterns of an API with the help of code search engines.
PARSEWeb [22] developed by Thummalapenta et al. mines open source repositories
by using code search engines as well. Different from MAPO, PARSEWeb accepts the
queries of the form “Source type⇒Destination type” and suggests the relevant methods
that yield the object with the destination type.

The approaches in the second category aim at recommending APIs with respect
to structural dependency. Zhang et al. propose a random-walk approach [23] based on
PageRank algorithm to rank “popular” and “significant” program elements in Java pro-
grams. Inoue et al. proposed another approach [5] inspired by PageRank algorithm,
which can be employed to rank valuable components in software systems based on the
use relations. Suade [14] developed by Robillard is focused on providing suggestions
for aiding program investigation. It accomplishes the suggestion by ranking the desired
program elements concerned with the topological properties of structural dependency
in software systems. Fran [19] developed by Saul et al. extends the topological prop-
erties by considering neighbouring relationships in the call graph. Altair [8] developed
by Long et al. recommends the relevant APIs according to the overlap of commonly
accessed variable information.

To the best of our knowledge, all of the previous API recommendation approaches
rely on the conventional call graph. By distinguishing the significance of caller-callee
linkages, the proposed FACG improves the accuracy of recommending relevant APIs.

6 Conclusion

This paper presents the Flow-Augmented Call Graph (FACG) to tame the API com-
plexity. Augmenting the call graph by control flow analysis brings us a new foundation
to capture the significance of caller-callee linkages. We employed API recommendation
as a client application and engaged the FACG to retrieve the relevant APIs. We further
conduct the experiment on four large projects with original documentation as ground
truth to judge the performance, and compared our approach with three other state-of-
the-art API recommendation tools. The case studies and quantitative evaluation results
indicate our approach is more effective in retrieving the relevant APIs.
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