
Investigating QoS of Real-World Web Services
Zibin Zheng, Member, IEEE, Yilei Zhang, Student Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—Quality of service (QoS) is widely employed for describing nonfunctional characteristics of web services. Although QoS of

web services has been investigated intensively in the field of service computing, there is a lack of real-world web service QoS data sets

for validating various QoS-based techniques and models. To investigate QoS of real-world web services and to provide reusable

research data sets for future research, we conduct several large-scale evaluations on real-world web services. First, addresses of

21,358 web services are obtained from the Internet. Then, three large-scale real-world evaluations are conducted. In our evaluations,

more than 30 million real-world web service invocations are conducted on web services in more than 80 countries by users from more

than 30 counties. Detailed evaluation results are presented in this paper and comprehensive web service QoS data sets are publicly

released online.

Index Terms—Web service, quality of service, service evaluation, QoS data set

Ç

1 INTRODUCTION

WEB services have been emerging in recent years and are
by now one of the most popular techniques for

building distributed systems. Service-oriented systems can
be built efficiently by dynamically composing different web
services, which are provided by other organizations. The
quality-of-service (QoS)-oriented systems are highly reliant
on the quality of employed web services. With the prevalence
of web services on the Internet, investigating quality of
web services is becoming more and more important.

QoS is widely employed for describing nonfunctional
characteristics of web services. With the increasing number
of web services, QoS has become an important differentiat-
ing point of different functionally equivalent web services.
Web service QoS includes a number of properties, such as
response time, throughput, failure probability, availability,
price, popularity, and so on [1]. Values of server-side QoS
properties (e.g., price, popularity) are usually advertised
by service providers and identical for different users. On
the other hand, values of the user-observed QoS properties
(e.g., user-observed response time, throughput, failure
probability) can vary widely for different users, influenced
by the unpredictable Internet connections and the hetero-
geneous user environments [1].

In the field of service computing [2], a number of QoS-
based approaches have been engaged for web service
recommendation [3], [4], [5], service composition [6], [7],
fault-tolerant web services [8], [9], [10], web service
search [11], and so on. However, there is still a lack of
comprehensive real-world web service QoS data sets for
validating various QoS-based approaches.

To obtain user-observed QoS values of real-world web
services, which are provided by different companies and
actively used by other organizations, evaluations from
different geographic locations under various network
conditions are required. However, it is not an easy task to
conduct large-scale web service evaluations from distrib-
uted locations, because 1) web service invocations consume
resources of both service users and service providers; 2) it is
time-consuming and expensive to conduct real-world
evaluations on all the service candidates when the number
of candidates is large; and 3) it is difficult to collect web
service QoS data from distributed service users. However,
without comprehensive real-world evaluations, sufficient
web service QoS values cannot be collected. It is thus
difficult to validate the feasibility and effectiveness of
various QoS-based approaches in service computing.

To attack this critical challenge, we make a great effort to
conduct three large-scale distributed evaluations on real-
world web services, collect comprehensive web service QoS
data sets, and publicly release these reusable data sets for
future research. First, 21,358 web service addresses are
obtained by crawling web service information from
the Internet. Then three web service evaluations are
conducted. In the first evaluation, failure probability of
100 web services is assessed by 150 distributed service users.
In the second evaluation, response time and throughput of
5,825 web services are evaluated by 339 distributed service
users. And in the third evaluation, QoS changing of 4,532
web services with time is studied by conducting 30,287,611
web service invocations by 142 users in 64 time slots with a
time interval of 15 minutes. First hand experiences on real-
world web service QoS are provided in this paper and
reusable QoS research data sets are publicly released for
future research.1 Extended from its previous conference
version [12], which reports the experimental results of the
first two evaluations, the extensions of this journal version
include: 1) providing detailed analysis and discussions
on the relationship between QoS values and time, and
2) showing the applicability of our data sets while engaging
research topics of QoS prediction, web service selection,
web service search, and fault-tolerant web services.

32 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

. The authors are with the Shenzhen Key Laboratory of Rich Media Big Data
Analytics and Applications, Shenzhen Research Institute, The Chinese
University of Hong Kong, and with the Ministry of Education Key
Laboratory of High Confidence Software Technologies (CUHK Sub-Lab)
Computer Science & Engineering Department, The Chinese University of
Hong Kong, Ho Sin-Hang Engineering Building, Shatin, N.T., Hong Kong.
E-mail: zbzheng@cse.cuhk.edu.hk.

Manuscript received 1 Apr. 2012; revised 11 Aug. 2012; accepted 3 Nov.
2012; published online 16 Nov. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2012-04-0033.
Digital Object Identifier no. 10.1109/TSC.2012.34. 1. http://www.wsdream.net.

1939-1374/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

The remainder of this paper is organized as follows:
Section 2 introduces the information of web services.
Section 3 presents our distributed QoS evaluations of
web services. Section 4 discusses the applications of the
web service QoS data sets. Section 5 introduces related
work, and Section 6 concludes the paper.

2 INFORMATION OF WEB SERVICES

Web services can be discovered from universal description,
discovery, and integration (UDDI), which is an XML-based
registry enabling company to publish and discover web
services on the Internet), web service portals (e.g.,
xmethods.net, webservicex.net, webservicelist.com), and
web service search engines (e.g., seekda.com, esynaps.com).
By crawling web service information from UDDI, web
service portals, and web service search engines, we obtain
21,358 addresses of WSDL (Web Service Description
Language) files. Seekda.com2 reports that there are a total
of 28,606 public web services on the Internet. Therefore, the
21,358 web services in our experiments cover most of the
publicly available real-world WSDL-based web services on
the Internet. As shown in Fig. 1, these services are
distributed all over the world. Most web services are
located in North America and Europe. Among all the
89 countries, the top three countries provide 55.5 percent of
the 21,358 obtained web services. These three countries are
United States (8,867 web services), United Kingdom
(1,657 web services), and Germany (1,246 web services).

By establishing HTTP connections to the 21,358 WSDL
addresses obtained, we successfully download 16,514
(77.32 percent) WSDL files. The WSDL download failures
are summarized in Table 1, where the first column lists the
HTTP codes indicating different types of failures. The HTTP
codes of the last four failure types in Table 1 are
nonavailable (N/A), since we fail to establish HTTP
connections and thus are unable to obtain the server
returned HTTP codes. As shown in Table 1, there is a total
of 4,844 failures. 48.49 percent of these failures are time-out
failures caused by network connection problems, including
788 (16.27 percent) Gateway Time-out, 774 (15.98 percent)
Connection timed-out, and 787 (16.25 percent) Read timed-out.
Besides the time-out failures, there are also a lot of File Not
Found failures (30.31 percent) and Internal Server Error
failures (10.43 percent). The File Not Found failures are
caused by the removal of WSDL files or update of WSDL
addresses, while the Internal Server Error failures are caused
by the fact that the servers encountered unexpected

conditions which prevented them from fulfilling the
request. These download failures indicate that WSDL files
on the Internet can become unavailable easily, because
1) the Internet is highly dynamic, 2) some web service
information on the Internet is out of date, and 3) some web
services (e.g., web service made for experimental purposes)
are removed from the Internet quickly.

Employing Axis2,3 we successfully generate client-side
web service invocation Java codes for 13,108 (79.38 percent)
web services among all the 16,514 web services. A total of
235,262,555 lines of Java codes are produced. There are
3,406 code generation failures, which are summarized in
Table 2. As shown in Table 2, among all the 3,406 genera-
tion failures, 249 Empty File failures are caused by the fact
that the WSDL files are empty; 1,232 Invalid File Format
failures are due to that these WSDL files do not follow
standard WSDL format; and 1,135 Error Parsing failures
are caused by syntax errors of WSDL files. There are also
22 Null QName failures and four Databinding Unmatched
Type failures. These generation failures indicate that the
WSDL files on the Internet are fragile, which may contain
empty content, invalid format, invalid syntax, and other
various types of errors.

3 QoS EVALUATION OF WEB SERVICES

To obtain comprehensive QoS data sets of web services, we
conduct several large-scale QoS evaluations of real-world
web services. Axis2 is employed to generate client-side
web service invocation codes and test cases automatically. To
evaluate real-world web services from distributed locations,

ZHENG ET AL.: INVESTIGATING QOS OF REAL-WORLD WEB SERVICES 33

Fig. 1. Locations of web services.

TABLE 1
WSDL File Download Failures

TABLE 2
Java Code Generation Failures

2. http://webservices.seekda.com. 3. http://ws.apache.org/axis2.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

we employ a number of distributed computers from
PlanetLab4 to serve as service users. PlanetLab is a global
research network made up of more than 1,000 distributed
computers globally. By deploying the web service evaluation
codes to the PlanetLab computers, we can monitor the QoS of
real-world web services from distributed locations. Since
2009, we have conducted three QoS evaluations and obtained
three comprehensive research data sets. Detailed descrip-
tions of these three data sets are provided in the following.

3.1 Data Set 1: Failure Probability

In the first evaluation, we randomly select 100 web
services from the 13,108 web services obtained in Section 2
and employ 150 computers in 24 countries from PlanetLab
to serve as service users. This evaluation focuses on
studying QoS property of failure probability, which is
defined as the probability that an invocation on a certain
web service by a user will fail. The value of failure
probability can be approximately calculated by dividing
the number of failed invocations by the total number of
invocations conducted by a user on a web service. In this
evaluation, each service user invokes all the 100 selected
web services for 100 times and records the detailed QoS
values. We select 100 times of invocations since a large
number of invocations consume too many resources of the
real-world web services which are typically designed for
business purpose, while a small number of invocations
may not be able to obtain accurate failure probability
values. A total of 1,542,884 web service invocations are
conducted by the service users. By processing the experi-
mental results, we obtain a 150� 100 user-item matrix,
where an entry fa;i in the matrix is the failure probability
of web service i observed by service user a.

As shown in Table 3, the mean and standard deviation of
all the 15,000 failure probabilities observed by 150 users on
100 web services are 4.05 and 17.32 percent, respectively,
indicating that the failure probabilities of different web
services observed by different service users exhibit a great
variation. Fig. 2 shows the value distribution of failure
probability. As shown in Fig. 2, although 85.68 percent of all
the failure probability values are smaller than 1 percent, a
large part (8.34 percent) of failure probabilities still encoun-
ter poor performance with values larger than 16 percent.

There are various types of web service invocation
failures. HTTP codes of the web service responses can be
employed for detecting the failure types (i.e., HTTP code 200
indicates invocation success, while other HTTP codes and
exceptions stand for various types of failures). As shown in

Table 4, among all the 1,542,884 web service invocations,

there are a total of 58,184 invocation failures. The detailed

failure information is summarized in Table 4. Descriptions

of different failure types are introduced as follows:

. (400)Bad Request. The web server was unable to
understand the request since the client request did
not respect the HTTP protocol completely.

. (500)Internal Server Error. The web server encoun-
tered an unexpected condition that prevented it
from fulfilling the client request.

. (502)Bad Gateway. A gateway or proxy server
received an invalid response from an upstream
server it accessed to fulfil the request.

. (503)Service Unavailable. The web server was unable
to handle the HTTP request due to a temporary
overloading or maintenance of the server.

. Network is unreachable. A socket operation was
attempted to an unreachable network, it did not
get a response and there was no default gateway.

. Connection reset: The socket was closed unexpectedly
from the server side.

. NoRouteToHostException. Socket connection failed
caused by intervening firewall or intermediate
router errors.

. Connection refused. An error occurred while at-
tempting to connect a socket to a remote address
and port. Typically, the connection was refused
remotely (e.g., no process was listening on the
remote address/port).

. Read timed-out. Time-out occurred on socket read.

34 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 2. Value distributions of data set 1.

TABLE 3
Statistics of Data Set 1

TABLE 4
Invocation Failures of Data Set 1

4. http://www.planet-lab.org.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

. UnknownHostException. The IP address of a host
could not be determined.

. Connect timed-out. A time-out has occurred on a
socket connect.

. Other failures. The invocation failure types cannot be
identified due to lack of information.

As shown in Table 4, about 85 percent of these failures are
due to socket connection problems, including 44,809 Connect
timed-out and 4,606 Read timed-out. These timed-out excep-
tions are caused by network connection problems during
socket connection and socket read. Besides the time-out
exceptions, there are also a lot of other failures caused by
network errors, including 33 Bad Gateway, 3 Network is
Unreachable, 415 No route to host, and 5,847 Unknown Host.
Some failures in Table 4 are caused by server-side errors,
including 3 Bad Request, 26 Internal Server Error, 608 Service
Unavailable, 1175 Connection reset, and 619 Connection refused.
These experimental observations on invocation failures
show that 1) web service invocations can fail easily, which
can be caused by gateway errors, networking errors, and
server errors; and 2) in the service-oriented environment,
providing reliable web services is not enough for building
reliable service-oriented system, since most invocation fail-
ures are caused by network errors.

3.2 Data Set 2: Response Time and Throughput

The second evaluation focuses on investigating the re-
sponse time and throughput performance of web services.
Response time is defined as the time duration between a
service user sending a request and receiving the corre-
sponding response, while throughput is defined as the
average rate of successful message size (here in bits)
delivery over a communication channel per second. The
second evaluation was conducted in August 2009. As
shown in Table 5, a total of 1,974,675 real-world web
service invocations are executed by 339 service users from
30 countries on 5,825 real-world web services in 73 countries
in this evaluation.

By processing the web service invocation results, we
obtain two 339� 5;825 matrices for response time and
throughput, respectively. Each entry in a matrix represents
the response-time value or throughput value observed by a
user on a web service. As shown in Table 5, the mean
and standard deviation of response time are 1.43 and
31.9 seconds, respectively, while the mean and standard
deviation of throughput are 102.86 and 531.85 kbps,
respectively. The large standard deviation values indicate

that response time and throughput have a wide range of
values which are quite different with each other. Fig. 3
shows the value distributions of response time and
throughput. Fig. 3a shows that most of the response-time
values are smaller than 1.6 seconds. Fig. 3b shows that most
throughput values are smaller than 64 kbps.

To provide detailed illustration of the web service
response-time and throughput values observed by different
service users, we randomly choose two users (User 1 from
the US and User 2 from Japan) to compare their response-
time and throughput performance on different web
services. We randomly select 100 web services and plot
the response-time and throughput values of these web
services observed by these two users. Figs. 4a and 4b show
the performance comparison of response time and through-
put, respectively. As shown in Fig. 4, although invoking the
same web services, values of response time and throughput
are quite different of these two users. For example,
response-time values of User 1 are around 6 seconds on
most of the web services, while response-time values of
User 2 is less than 2 seconds on most of the web services.
The long response time of user 1 may be caused by the poor
client-side network condition. This experimental observa-
tion indicates that different users may have different usage
experiences on the same web service, influenced by the
network connections and the heterogenous client-side
environments. Therefore, distributed web service evalua-
tion is important for obtaining accurate user-observed QoS
of web services.

3.3 Data Set 3: Time-Aware Performance

Since Internet is highly dynamic, the user-observed perfor-
mance (e.g., response time, throughput) of web services is
changing from time to time, influenced by the user

ZHENG ET AL.: INVESTIGATING QOS OF REAL-WORLD WEB SERVICES 35

TABLE 5
Statistics of Data Set 2

Fig. 3. Value distributions of data set 2.

Fig. 4. Two users’ QoS values.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

environment, network condition, server workload, and so
on. The third evaluation of web services focuses on
investigating time-aware performance of web services. In
March 2011, we employed the distributed PlanetLab
computers to monitor real-world web services continu-
ously. A total of 4,532 publicly available real-world web
services from 57 countries are monitored by 142 computers
located in 22 countries in 64 different time slots. The time
interval between neighboring time slots is 15 minutes.
The detailed response-time and throughput values of the
64 time slots are collected. Totally 30,287,611 real-world
web service invocations are conducted in this evaluation.

As shown in Table 6, the means of response time and
throughput are 3.165 seconds and 9.609 kbps, respectively.
The standard deviations of response time and throughput
are 6.12 seconds and 50.11 kbps, respectively. The large
standard deviation indicates that these QoS properties
includes a wide range of values. The distributions of
the response time and throughput are shown in Fig. 5.
From the figure, we can see that most response-time values
are between 0.1 and 0.8 seconds and most throughput
values are between 0.8 and 3.2 kbps.

In the highly dynamic Internet environment, QoS of web
services may change from time to time. To investigate the
QoS value changing with time, we employ the following
equation to evaluate the changing rate of QoS values
between two neighboring time slots:

ri ¼ ðqi � qi�1Þ=qi�1; ð1Þ

where qi and qi�1 represent the QoS values of the time slots i
and i� 1, respectively, and ri represents the changing rate
between these two time slots. Fig. 6 shows the changing rate
distributions of response time and throughput. As shown in

the figure, we can see that most changing rates of response
time and throughput are between �0:5 and 0.2. Moreover,
there is a small part of QoS changing rates with very large
values (e.g., larger than 10 or even larger than 100),
indicating that response time and throughput values of
web services can seriously change at different time.

To provide a detailed illustration of the web service
response time changing with time, we randomly choose a
user and plot his/her observed responsetime values on
three different web services in the 64 time slots. Fig. 7 shows
the response time values of these three web services in
different time slots. From the figure, we can see that 1) the
user-observed response time performance of web services
can change dynamically with time. For example, web
service 1 in the figure has quite different response time
values at different time slots. 2) The same user may
experience quite different response time changing patterns
on different web services. For example, response-time
performance of web service 1 is more dynamic than web
service 3 in the figure. This research observation indicates
that QoS changing relates to web services, since different
web services demonstrate quite different changing patterns
for the same user.

To further investigate the changing response time of
different users, we randomly select three users and plot
their observed response-time values on the same web
services in the 64 time slots. Fig. 8 shows the response-time
values of these three users. From the figure, we have a
similar observation with Fig. 7, i.e., the user-observed
response-time performance of web services can change
dynamically with time (e.g., user 3 in the figure). Another
interesting observation is that different users have different

36 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 6. Value distributions of QoS changing rate.

Fig. 7. Response time of three web services.

TABLE 6
Statistics of Data Set 3

Fig. 5. Value distributions of data set 3.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

response-time changing patterns on the same web service,
indicating that QoS changing relates to users.

In summary, the experimental observations in this
evaluation show that time is an important element when
investigating QoS of web services. The QoS fluctuation with
time brings a great challenge for various QoS-based
approaches of web services. To achieve optimal system
performance, dynamic adaptation and reconfiguration of
service-oriented systems become necessary.

4 APPLICATION OF QoS DATASETS

4.1 Web Service QoS Prediction

Obtaining QoS values of web services is critical for various
QoS-based approaches. Web service evaluation [13], [14],
[15], [16] is a main approach for obtaining QoS values.
However, conducting web service evaluation is difficult,
since real-world web service invocations consume resources
of service providers and impose costs of service users.
Moreover, since there are a lot of web services in the
Internet, it is impractical for service users to evaluate all the
web service candidates.

Instead of conducting real-world web service invoca-
tions, web service QoS prediction aims at providing
personalized QoS value prediction for service users,
employing the historical QoS values. Web service QoS
prediction usually includes a user-item matrix, where each
entry in the matrix represents the value of a certain QoS
property (e.g., response time) of a web service observed by a
service user. The user-item matrix is usually very sparse,
since a service user typically only invoked a small number
of web services in the past. The research problem of web
service QoS prediction is how to accurately predict the
missing QoS values in the user-item matrix by employing
the available QoS values. By predicting the web service QoS
values in the user-item matrix, personalized QoS value
prediction on the unused web services for service users can
be achieved.

In service computing, web service QoS prediction has
attracted a lot of attention in recent years. A number of QoS
prediction approaches have been proposed, including user-
based QoS prediction approach [17], UIPCC [4], matrix
factorization approach [5], ranking-oriented approach [18],
RegionKNN [3], and so on. To evaluate the prediction
accuracy of various prediction approaches, real-world web

service QoS values from different users are needed. Our
data sets can be employed in the experiments to evaluate
the prediction accuracy of different prediction approaches.

4.2 Web Service Selection

In service computing, complex applications can be built
efficiently by dynamically composing web services, which
are selected at runtime from a set of functionally equivalent
service candidates. These service candidates have the same
functionality but differ for nonfunctional characteristics,
which are described by QoS. The goal of service selection is
to select the best set of services at runtime, considering
process constraints, end-user preferences, as well as QoS of
service candidates.

The service selection problem is usually modeled as an
optimization problem. Local approaches [1], [7] select
optimal web service for each abstract task independently,
while global approaches [19], [7], [20] select a set of services
that satisfy the process constraints and user preferences for
the whole application together. To evaluate the perfor-
mance of different selection approaches, real-world QoS
values of web services are needed.

Our data sets include QoS values of a large number of
web services, which can be employed for experimental
studies of service selection. Moreover, our data set 3
includes the detailed QoS values of 64 different time slots.
These time-aware QoS data provide valuable information to
study the uncertainty of the highly dynamic Internet
environment, where QoS is changing from time to time.

4.3 QoS-Aware Web Service Search

Web service discovery is a fundamental research problem
in service computing. With the growing number of web
services in the Internet, many web services provide similar
functionalities to fulfil users’ requests. UDDI and web
service search engine are two major approaches for
discovering suitable web services. Recently, the availability
of web services in UDDI has decreased rapidly. Al-Masri
and Mahmoud [21] show that more than 53 percent of the
UDDI business registry registered services are invalid.
Using search engine to discover web services has become
more common nowadays.

Traditional web service search approaches [22] typically
only exploit keyword-based search techniques without
considering QoS of web services. In reality, web services
sharing similar functionalities may have very different
nonfunctionalities. To effectively provide personalized web
service search results to different users, it is requisite to
consider both functional and nonfunctional characteristics
of web services when searching web services.

Zhang et al. [11] proposed a web service discovering
approach, named WSExpress, by paying respect to func-
tional attributes as well as QoS values of web services. Our
released QoS data sets were employed in the experiments of
this work to study the performance of different QoS-aware
web service search approaches.

4.4 Fault-Tolerant Web Services

Comparing with the traditional stand-alone software sys-
tems, building reliable service-oriented systems is much
more challenging, because 1) remote web services are

ZHENG ET AL.: INVESTIGATING QOS OF REAL-WORLD WEB SERVICES 37

Fig. 8. Response time of three users.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

developed and hosted by other providers without any

internal design and implementation details; 2) performance

of web services may change frequently (e.g., caused by

workload change of servers, internal updates of web

services, performance update of communication links); and

3) the remote web services may become unavailable easily.
Software fault tolerance [23] is an important approach to

build reliable systems. One approach of software fault

tolerance, also known as design diversity, is to employ

functionally equivalent yet independently designed com-

ponents to tolerate faults. However, due to the cost of

developing redundant software components, software fault

tolerance is mainly used for critical systems. In the area of

service computing, there is a number of functionally

equivalent web services already diversely implemented by

different organizations and publicly available on the

Internet. These web services can be enclosed as alternative

components for building fault-tolerant service-oriented

systems. When designing optimal fault tolerance strategies

for service-oriented systems, QoS of the alternative service

candidates need to be considered to enhance the system

performance. In our previous work [10], a QoS-aware fault-

tolerant middleware is proposed for service-oriented

systems. Our released QoS data sets have been employed

in the experiments to study the performance of different

fault tolerance strategies.

5 RELATED WORK AND DISCUSSION

In service computing [2], a lot of QoS-based approaches

have been engaged for web service recommendation [3], [4],

[5], service composition [6], [7], fault-tolerant web services

[8], [9], [10], web service search [11], and so on. However,

there is a lack of real-world web service QoS data sets for

verifying these approaches. Without large-scale web service

data sets, characteristics of real-world web service QoS

cannot be fully mined, and various QoS-based approaches

are thus difficult to be realistic and practical.
In our previous work [9], a real-world web service

evaluation has been conducted by five service users on

eight publicly accessible web services. Since the scale of this

experiment is too small, the experimental results are not

much useful for future research. Al-Masri and Mahmoud

[21] released a web service QoS data set that is observed by

only one service user on 2,507 web services. The fact that

different users will observe quite different QoS of the same

web service limits the applicability of this data set. Our

released data sets of this paper, on the other hand, include

QoS information observed from distributed service users,

and in different time slots. Vieira et al. [24] conducted an

experimental evaluation of security vulnerabilities in

300 publicly available web services. Security vulnerabilities

usually exist at the server-side and are user-independent

(different users observe the same security vulnerabilities on

the target web service). Different from Vieira’s work [24],

this paper mainly focuses on investigating user-observed

QoS properties (i.e., failure probability, response time, and

throughput), which can vary widely among different users.

6 CONCLUSION AND FUTURE WORK

This paper conducts evaluations on user-observed QoS of

web services from distributed locations. A large number of

web service invocations are executed by service users under

heterogenous environments on real-world web services.

Comprehensive experimental results are presented and

reusable data sets are released. In our future work, besides

failure probability, response time, and throughput, more

QoS properties will be investigated.

ACKNOWLEDGMENTS

The work described in this paper was supported by the

National Basic Research Program of China (973 Project No.

2014CB347701), the National Natural Science Foundation of

China (Project No. 61100078), the Shenzhen Basic Research

Program (Project No. JCYJ20120619153834216), and the

Research Grants Council of the Hong Kong Special

Administrative Region, China (Project No. CUHK 415311).

REFERENCES

[1] D.A. Menasce, “QoS Issues in Web Services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72-75, Nov./Dec. 2002.

[2] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. Springer,
2007.

[3] X. Chen, Z. Zheng, X. Liu, Z. Huang, and H. Sun, “Personalized
QoS-Aware Web Service Recommendation and Visualization,”
IEEE Trans. Services Computing, vol. 6, no. 1, pp. 35-47, 2011.

[4] Z. Zheng, H. Ma, M.R. Lyu, and I. King, “QoS-Aware Web Service
Recommendation by Collaborative Filtering,” IEEE Trans. Service
Computing, vol. 4, no. 2, pp. 140-152, Apr.-June 2011.

[5] Z. Zheng, H. Ma, M.R. Lyu, and I. King, “Collaborative Web
Service QoS Prediction via Neighborhood Integrated Matrix
Factorization,” IEEE Trans. Service Computing, vol. 6, no. 3,
pp. 289-299, July-Sept. 2013.

[6] M. Alrifai and T. Risse, “Combining Global Optimization with
Local Selection for Efficient QoS-Aware Service Composition,”
Proc. 18th Int’l Conf. World Wide Web (WWW ’09), pp. 881-890, 2009.

[7] L. Zeng, B. Benatallah, A.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-Aware Middleware for Web Services
Composition,” IEEE Trans. Software Eng., vol. 30, no. 5,
pp. 311-327, May 2004.

[8] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, “Fault-Tolerant Web
Services,” J. System Architecture, vol. 53, no. 1, pp. 21-38, Jan. 2007.

[9] Z. Zheng and M.R. Lyu, “A Distributed Replication Strategy
Evaluation and Selection Framework for Fault-Tolerant Web
Services,” Proc. Sixth Int’l Conf. Web Services (ICWS ’08), pp. 145-
152, 2008.

[10] Z. Zheng and M.R. Lyu, “A QoS-Aware Fault Tolerant Middle-
ware for Dependable Service Composition,” Proc. 39th Int’l Conf.
Dependable Systems and Networks (DSN ’09), pp. 239-248, 2009.

[11] Y. Zhang, Z. Zheng, and M.R. Lyu, “WSExpress: A QoS-Aware
Search Engine for Web Services,” Proc. Eighth Int’l Conf. Web
Services (ICWS ’10), pp. 91-98, 2010.

[12] Z. Zheng, Y. Zhang, and M.R. Lyu, “Distributed QoS Evaluation
for Real-World Web Services,” Proc. Eighth Int’l Conf. Web Services
(ICWS ’10), pp. 83-90, 2010.

[13] V. Deora, J. Shao, W. Gray, and N. Fiddian, “A Quality of Service
Management Framework Based on User Expectations,” Proc. First
Int’l Conf. Service-Oriented Computing (ICSOC ’03), pp. 104-114,
2003.

[14] E. Maximilien and M. Singh, “Conceptual Model of Web Service
Reputation,” ACM SIGMOD Record, vol. 31, no. 4, pp. 36-41, 2002.

[15] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai, “On Testing and
Evaluating Service-Oriented Software,” IEEE Computer, vol. 41,
no. 8, pp. 40-46, Aug. 2008.

[16] G. Wu, J. Wei, X. Qiao, and L. Li, “A Bayesian Network Based QoS
Assessment Model for Web Services,” Proc. Int’l Conf. Services
Computing (SCC ’07), pp. 498-505, 2007.

38 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

[17] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei,
“Personalized QoS Prediction for Web Services via Collaborative
Filtering,” Proc. Fifth Int’l Conf. Web Services (ICWS ’07), pp. 439-
446, 2007.

[18] Z. Zheng, Y. Zhang, and M.R. Lyu, “CloudRank: A QoS-Driven
Component Ranking Framework for Cloud Computing,” Proc.
Int’l Symp. Reliable Distributed Systems (SRDS ’10), pp. 184-193,
2010.

[19] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans.
Web, vol. 1, no. 1, pp. 1-26, 2007.

[20] D. Ardagna and B. Pernici, “Adaptive Service Composition in
Flexible Processes,” IEEE Trans. Software Eng., vol. 33, no. 6,
pp. 369-384, June 2007.

[21] E. Al-Masri and Q.H. Mahmoud, “Investigating Web Services on
the World Wide Web,” Proc. 17th Int’l Conf. World Wide Web
(WWW ’08), pp. 795-804, 2008.

[22] K. Gomadam, A. Ranabahu, M. Nagarajan, A. Sheth, and K.
Verma, “A Faceted Classification Based Approach to Search and
Rank Web APIs,” Proc. Sixth Int’l Conf. Web Services (ICWS ’08),
pp. 177-184, Sept. 2008.

[23] M.R. Lyu, Software Fault Tolerance. Wiley, 1995.
[24] M. Vieira, N. Antunes, and H. Madeira, “Using Web Security

Scanners to Detect Vulnerabilities in Web Services,” Proc. 39th Int’l
Conf. Dependable Systems and Networks (DSN ’09), pp. 566-571, 2009.

Zibin Zheng is an associate research fellow at
the Shenzhen Research Institute, the Chinese
University of Hong Kong. His research interests
include service computing and cloud computing.
He received the Outstanding PhD Thesis Award
of the Chinese University of Hong Kong in
2012, the ACM SIGSOFT Distinguished Paper
Award at ICSE 2010, the Best Student Paper
Award at ICWS 2010, and the IBM PhD
Fellowship Award in 2010. He has served as

a PC member for conferences such as CLOUD 2009, SCC 2011, SCC
2012, and ICSOC 2012 He is a member of the IEEE.

Yilei Zhang received the BSc degree in
computer science from the University of Science
and Technology of China, Hefei, in 2009. He is
currently working toward the PhD degree in the
Department of Computer Science and Engineer-
ing, the Chinese University of Hong Kong. He
has served as a reviewer for international
journals as well as conferences, including the
IEEE Transactions on Software Engineering, the
IEEE Transactions on Services Computing,

WWW, KDD, and SCC. His research interests include services
computing and cloud computing. He is a student member of the IEEE.

Michael R. Lyu is currently a professor in the
Department of Computer Science and Engineer-
ing, the Chinese University of Hong Kong. His
research interests include software reliability
engineering, distributed systems, service com-
puting, information retrieval, social networks,
and machine learning. He has published more
than 400 refereed journal articles and confer-
ence papers in these areas. He is a fellow of the
IEEE and the American Association for the

Advancement of Science for his contributions to software reliability
engineering and software fault tolerance.

ZHENG ET AL.: INVESTIGATING QOS OF REAL-WORLD WEB SERVICES 39

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:57:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

