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Personalized Reliability Prediction of Web Services

ZIBIN ZHENG and MICHAEL R. LYU, Shenzhen Research Institute, The Chinese University
of Hong Kong

Service Oriented Architecture (SOA) is a business-centric IT architectural approach for building distributed
systems. Reliability of service-oriented systems heavily depends on the remote Web services as well as the
unpredictable Internet connections. Designing efficient and effective reliability prediction approaches of Web
services has become an important research issue. In this article, we propose two personalized reliability
prediction approaches of Web services, that is, neighborhood-based approach and model-based approach.
The neighborhood-based approach employs past failure data of similar neighbors (either service users or
Web services) to predict the Web service reliability. On the other hand, the model-based approach fits a
factor model based on the available Web service failure data and use this factor model to make further
reliability prediction. Extensive experiments are conducted with our real-world Web service datasets, which
include about 23 millions invocation results on more than 3,000 real-world Web services. The experimental
results show that our proposed reliability prediction approaches obtain better reliability prediction accuracy
than other competing approaches.
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1. INTRODUCTION

Web services are self-contained and self-describing computational components de-
signed to support machine-to-machine interaction by programmatic Web method
calls [Zhang et al. 2007]. By discovering and integrating available Web services of dif-
ferent organizations, service-oriented systems can be efficiently built. Service-oriented
systems have been widely engaged in a lot of domains, such as business-to-business
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collaboration [Ye et al. 2006], automotive systems [ter Beek et al. 2008], multimedia
services [Scholz et al. 2008], etc. Reliability of service-oriented systems heavily relies
on the employed Web services. To optimally select and integrate reliable Web services,
we must be able to predict the reliability of Web services. The ability to predict relia-
bility of invoked Web services early at the system architecture design phase can help
to reduce re-engineering cost and to produce more reliable service-oriented systems.

Software reliability is the probability of failure-free software operation for a speci-
fied period of time in a specified environment [ANSI/IEEE 1991]. In order to predict
the reliability of software systems, failure data need to be properly collected by various
means during software development and operational phases [Lyu 2007]. A number of
software reliability models have been proposed for predicting software reliability by ob-
serving, accumulating, and analyzing previous failure data (e.g., Musa’s execution time
model [Musa et al. 1990], Putnam’s model [Putnam and Myers 1992], Rome Labora-
tory model [Friedman et al. 1992], etc.). Traditionally, comprehensive testing schemes
are conducted on the software systems to collect failure data and to make sure that the
reliability threshold has been achieved before releasing the software to end users. In
the environment of service computing, user-observed reliability of a service-oriented
system not only relies on the system itself, but also heavily depends on the remote
Web services and the user characteristics (e.g., geographic locations, network condi-
tions, operational profiles [Musa 1993], etc.). Influenced by the unpredictable Internet
connections and many other environmental and operational factors, different service
users may experience quite different reliability performance on the same Web service.
Therefore, personalized Web service reliability prediction is required for different ser-
vice users.

To obtain the past failure data of Web service for making reliability prediction, Web
service evaluation [Tsai et al. 2008] from the client-side is usually required. Unfortu-
nately, traditional exhaustive testing becomes difficult and sometimes even impossible
for the service-oriented systems due to the following reasons.

— Invocations of Web services may be charged since Web services are owned and hosted
by different organizations. Even if the invocations are free, executing a large number
of Web service invocations consume resources of both the service users and the ser-
vice providers. Moreover, Web service invocations may produce irreversible effects
in the real world.

— Since there are typically a lot of alternative Web service candidates in the Internet,
it is time-consuming and expensive to conduct real-world evaluations on all the can-
didates. However, without a comprehensive evaluation, sufficient past failure data
of Web services cannot be collected. It is thus difficult for the system designers to
make accurate reliability prediction of the Web services.

A number of reliability prediction methods have been proposed for component-based
systems [Cheung 1980; Gokhale and Trivedi 2002; Goseva-Popstojanova and Trivedi
2001; Yacoub et al. 1999] and service-oriented systems [Cardoso et al. 2002; Grassi and
Patella 2006]. Most of these prediction approaches focus on system-level compositional
analysis and assume that reliabilities of the components (or Web services) are known.
A few approaches [Cheung et al. 2008; Goseva-Popstojanova et al. 2003; Reussner et al.
2003], which consider component-level reliability prediction, are mainly designed for
traditional component-based systems. As discussed in Tsai [2005], reliability predic-
tion of service-oriented systems is quite different from that of traditional systems.
Compared with reliability prediction of software components, reliability prediction of
Web services is much more challenging, because: (1) it is difficult to collect sufficient
past failure data as discussed above; (2) the internal information of Web services are
unavailable, since Web services are designed and developed by other organizations;
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and (3) user-observed Web service reliability is greatly influenced by the unpredictable
Internet connections.

To attack this challenge, we propose two personalized reliability prediction ap-
proaches for Web services. By these approaches, the reliability of Web services can
be personally predicted for a service user even if this current user has not invoke these
services previously and has no idea on their internal information. In the field of ser-
vice computing, service users refer to the systems/applications that use the Web ser-
vices. Complementary to the existing reliability prediction approaches [Cardoso et al.
2002; Cheung 1980; Gokhale and Trivedi 2002; Goseva-Popstojanova and Trivedi 2001;
Grassi and Patella 2006; Wang et al. 2006b; Yacoub et al. 1999], which mainly focus on
system-level compositional analysis, this paper focuses on component-level reliability
prediction. The Web service reliability obtained by our approaches can be employed as
input to other system-level reliability prediction approaches. This article extends from
its preliminary version [Zheng and Lyu 2010], which proposed a neighborhood-based
approach for Web service reliability prediction, and includes the following additional
contributions.

— First, our preliminary neighborhood-based approach [Zheng and Lyu 2010] has been
improved. We propose an enhanced similarity computation approach to improve the
similarity computation accuracy, and present an enhanced weight computation to
increase the influence of users with larger similarity values.

— Second, beside the neighborhood-based approach, a model-based approach is pro-
posed for making personalized Web service reliability prediction. The premise be-
hind our model-based approach is that there is a small number of factors influencing
the user-observed Web service failure probability. Based on the available Web ser-
vice failure data, we can train a factor model and employ this model to make further
reliability prediction.

— Third, our most up-to-date Web service dataset is employed for the experimental
study, which contains about 23 millions Web service invocation results from 102
service users on 3568 real-world Web services. Extensive experiments are conducted
to compare the neighborhood-based approach, the model-based prediction approach,
and other competing approaches.

The rest of this article is organized as follows. Section 2 describes the research
problem. Section 3 and Section 4 present our neighborhood-based and model-based
reliability prediction approaches, respectively. Section 5 shows the experiments.
Section 6 discusses the comparisons between our neighborhood-based approach and
model-based approach. Section 7 surveys related work and Section 8 concludes the
article.

2. PROBLEM DESCRIPTION

Web service selection aims at selecting an optimal Web service from a set of function-
ally equivalent service candidates by considering non-functional properties, such as
reliability, security, performance, etc. Reliability is one of the most important crite-
ria when making service selection. The most straightforward way for obtaining user-
observed Web service reliability is to conduct client-side evaluation on all the service
candidates. However, it is time-consuming, expensive, and sometimes even impossible
to make a comprehensive evaluation on all the Web service candidates.

Another approach is to employ the past failure data of Web services observed by
other service users for predicting the Web service reliability for the current user. For
example, for the new service users who did not invoke any Web services previously, the
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Fig. 1. A 5 × 6 user-item matrix.

Fig. 2. Procedures of neighborhood-based reliability prediction.

performance of a Web service can be predicted by its average failure probability (pi),
which is defined as:

pi = 1
m

m∑
a=1

pu,i, (1)

where pu,i is the failure probability of Web service candidate i observed by service user
u, m is the number of service users, and pi is the average failure probability of the
Web service candidate i. Based on the average failure probabilities of the service can-
didates, the best performing candidate can be determined. However, since different
service users have different characteristics (e.g., in different geographic locations, un-
der different network conditions, with different operational profiles [Musa 1993], etc.),
the current user may not experience similar failure probability performance as the av-
erage failure probability. Personalized approaches are therefore needed to accurately
predict the Web service failure probability for a certain user.

The process of personalized Web service failure probability prediction can be per-
ceived as involving a user-item matrix [Zheng and Lyu 2010] such as shown in
Figure 1, where each entry in the matrix represents the value of failure probability
of a Web service (e.g., i1 to i6) observed by a service user (e.g., u1 to u5). In Figure 1,
each service user observes several failure probability values of the invoked Web ser-
vices, while a missing entry represents an uninvoked service by the user. The problem
we investigate in this article is how to accurately predict the missing failure probabil-
ity values in the user-item matrix by employing the available values. By predicting the
Web service failure probability values in the user-item matrix, we can provide person-
alized reliability prediction on the uninvoked Web services for both existing and new
service users.

To predict the missing values in the user-item matrix, we propose a neighborhood-
based prediction approach in Section 3 and a model-based prediction approach in
Section 4.

3. NEIGHBORHOOD-BASED RELIABILITY PREDICTION

In this section, we propose a neighborhood-based reliability prediction approach for
Web services, which is designed as a four-phase process. As shown in Figure 2, in
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Table I. Notations of Neighborhood-Based Reliability Prediction

Notations Descriptions
u and a service user u and service user a
i and j Web service i and Web service j
pu,i failure probability of Web service i observed by user u
pi average failure probability of Web service i observed by different users
pu average failure probability of service user u on different Web services
n number of Web services
m number of users
Iu and Ia Web services invoked by user a and u, respectively
Ui and Uj service users who invoked Web service i and j, respectively
S(u) a set of similar service users of user u
S(i) a set of similar Web services of Web service i
Sim(u, a) the similarity between user u and a via Pearson Correlation Coefficient (PCC)
Sim′(u, a) the similarity between user u and a via enhanced PCC
λ a parameter for combining prediction results from UPCC and IPCC.
R(t) reliability of a Web service for a time period t
β the number of Web service failures during a certain time duration (failure rate)
f invocation frequency of Web services

Phase 1, similarities between the current user with other service users are calculated.
In Phase 2, a set of similar users are identified based on the calculated similarities.
In Phase 3, the invocation failure probabilities of Web services are predicted for the
current user by employing the past usage experiences of the similar users. Finally, in
Phase 4, reliability of the target Web service is predicted. Details of these phases are
presented at Section 3.1 to Section 3.4, respectively. The notations of our neighborhood-
based approach are summarized in Table I.

3.1. Phase 1: Similarity Computation

We assume that there are m service users, n Web services, and the relationship be-
tween the users and the Web services is denoted by an m×n user-item matrix. Figure 1
shows an example of user-item matrix. Each entry pu,i in the matrix represents the
failure probability of Web service i observed by the service user u. pu,i = null if user u
did not invoke Web service i previously.

Pearson Correlation Coefficient (PCC) is a commonly used approach for similar-
ity computation. The purpose of PCC is to indicate a linear relationship between
two variables. PCC has been widely applied in a number of recommendation sys-
tems [Shardanand and Maes 1995], since it considers the differences in the user value
style and can achieve high accuracy. PCC employs the following equation to compute
the similarity between service user u and service user a based on their commonly in-
voked Web services:

Sim(u, a) =

∑
i∈Iu∩Ia

(pu,i − pu)(pa,i − pa)

√ ∑
i∈Iu∩Ia

(pu,i − pu)2
√ ∑

i∈Iu∩Ia

(pa,i − pa)2
, (2)

where Iu ∩ Ia is a set of commonly invoked Web services by both user u and user a,
pu,i is the failure probability of Web service i observed by the service user u, and pu
represents the average failure probability of all the Web services invoked by user u.
The PCC similarity Sim(u, a) is in the interval of [-1,1], where a larger value indicates
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12:6 Z. Zheng and M. R. Lyu

higher similarity. PCC value of 1 indicates a perfect positive correlation between two
users. PCC value of -1 means a complete negative correlation between two users. PCC
value of 0 indicates that two users are independent and have no correlation with each
other. For the example shown in Figure 1, Iu1 = {i1, i2, i4, i6} and Iu2 = {i2, i4, i5}. There-
fore, Iu1 ∩ Iu2 = {i2, i4}, indicating that the co-invoked Web services of u1 and u2 are i2
and i4. Employing the failure probability values of these co-invoked Web services, PCC
can calculate the similarity of u1 and u2.

Similar to this procedure, PCC can also be employed to calculate the similarity be-
tween Web service i and Web service j by using:

Sim(i, j) =

∑
u∈Ui∩Uj

(pu,i − pi)(pu,j − pj)

√ ∑
u∈Ui∩Uj

(pu,i − pi)
2
√ ∑

u∈Ui∩Uj

(pu,j − pj)
2

, (3)

where Ui ∩ Uj is a set of service users who invoke both the Web services i and j, and pi
is the average failure probability of Web service i, which can be calculated by Eq. (1).

When the number of co-invoked Web services is large, PCC can provide accurate
similarity computation. However, when the number of co-invoked Web services is small
and the observed failure probability values happen to be similar, it is possible that PCC
provides high similarity value for the users who are actually not similar, since PCC
does not consider the number of co-invoked Web services when making the similarity
computation. Consequently, service reliability can be overestimated. To address this
problem, we employ a logistic function to reduce the influence of a small number of
similar yet co-invoked Web services. An enhanced PCC for the similarity computation
between two service users is defined as:

Sim′(u, a) = 1
1 + e−|Iu∩Ia| Sim(u, a), (4)

where Sim′(u, a) is the new similarity value, |Iu ∩ Ia| is the number of Web services
that are invoked by both user u and user a. When two users have a small number
of co-invoked Web services (i.e., the value of |Iu ∩ Ia| is small), the logistic function

1
1+e−|Iu∩Ia| will decrease the similarity estimation between the service users u and a.

When the value of |Iu ∩ Ia| is large, the logistic function 1
1+e−|Iu∩Ia| is approximately

1, which has no impact on the PCC similarity estimation. For the example shown in
Figure 1, since Iu1 ∩ Iu2 = {i2, i4}, therefore |Iu1 ∩ Iu2 | = 2.

Just like the user-based methods, an enhanced PCC for the similarity computation
between different Web services is defined as:

Sim′(i, j) = 1

1 + e−|Ui∩Uj| Sim(i, j), (5)

where |Ui ∩Uj| is the number of service users who invoked both Web service i and item
j previously.

3.2. Phase 2: Similar User Selection

After calculating and ranking the PCC values between the current user and other
users, a set of similar users can be identified. In our neighborhood-based approach, a
parameter Top-K is employed to select similar users. Top-K indicates that k users,
who have larger PCC values than the others, will be selected as similar users. In
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reality, a service user may have limited similar users and the dissimilar users (e.g.,
with negative PCC values) may be selected when the number of similar users is less
than k. However, including dissimilar users may greatly reduce the prediction accu-
racy. In our approach, the service users who have negative correlation (negative PCC
values) with the current user will be excluded.

To predict a missing entry pu,i in the failure probability matrix, a set of similar
service users S(u) can be identified as:

S(u) = {a|Sim′(u, a) ≥ Sim′
k, Sim′(u, a) > 0, a �= u}, (6)

where Sim′
k is the kth largest PCC value with the current user u, Sim′(u, a) > 0 is to

exclude the dissimilar users, and Sim′(u, a) can be calculated by Eq. (4).
Similar to the above procedure, a set of similar Web services S(i) with the current

Web service i can also be identified as:

S(i) = {j|Sim′(i, j) ≥ Sim′
k, Sim′(i, j) > 0, j �= i}, (7)

where Sim′
k is the kth largest PCC value with the current Web service i and Sim′(i, j)

can be computed by Eq. (5).

3.3. Phase 3: Failure Probability Prediction

Employing the information from similar users, the user-based approaches [Breese
et al. 1998] (named as UPCC) predict the missing value pu,i in the user-item matrix by
the following equation:

pu,i = pu +
∑

a∈S(u)

wa(pa,i − pa), (8)

where pu and pa are average failure probabilities of different Web services observed by
users u and a, respectively, and wa is the weight of the similar user a. In our prelimi-
nary version [Zheng and Lyu 2010], the weight wa is calculate linearly by:

wa = Sim′(a, u)∑
b∈S(u) Sim′(b, u)

. (9)

In this article, to increase the influence of users with higher similarity values, we
calculate wa by

wa = Sim′(a, u)2∑
b∈S(u) Sim′(b, u)2 . (10)

By squaring the similarity values, Eq. (10) gives a relatively high weight to users
with large similarity values, which will impose stronger influence on the missing value
prediction. Equation (10) is effective when similar users are particularly desirable.
Section 5.4.2 will provide performance comparison of Eq. (9) and Eq. (10) by employing
real-world Web service failure probability values.

Similar to the user-based approach, we can employ the information of similar Web
services S(i), also known as item-based approaches [Sarwar et al. 2001] (named as
IPCC) to predict the missing value pu,i by:

pu,i = pi +
∑

k∈S(i)

wk(pu,k − pk), (11)
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where pi and pk are average failure probabilities of Web services i and k observed by
different service users, respectively, and wk is the weight of the similar Web service k
with respect to Web service i, which is defined as:

wk = Sim′(i, k)2∑
j∈S(i) Sim′(i, j)2 . (12)

The values of Web service failure probability is in the range of [0,1]. However, the
predicted values by UPCC (Eq. (8)) and IPCC (Eq. (11)) may not fall in this value
range. Therefore, the predicted value is set to be 0 when it is smaller than 0, and set
to be 1 when it is larger than 1.

Due to the sparsity of the m × n user-item matrix, predicting failure probability
only by similar service users (UPCC) or similar Web services (IPCC) will potentially
ignore valuable information that can make the prediction more accurate. To address
this problem, we combine the prediction results by the user-based approach in Eq. (8)
and the item-based approach in Eq. (11) to fully utilize the information of both similar
users and similar Web services. When S(u) �= ∅ ∧ S(i) �= ∅, we employ both similar
users and similar Web services to predict the missing value by employing the following
equation:

pu,i = λ(pu +
∑

a∈S(u)

wa(pa,i − pa)) + (1 − λ)(pi +
∑

k∈S(i)

wk(pu,k − pk)), (13)

where λ (0 ≤ λ ≤ 1) is a user-defined parameter for determining how much the miss-
ing value prediction relies on the similar users or the similar Web services. The value
of λ should be set based on experiences and experiments. Different applications and
datasets may have their own characteristics, and consequently inherit different opti-
mal λ values. The detailed experimental studies on the impact of the parameter λ are
presented in Section 5.4.3.

In practice, a missing pu,i value may not have similar users or similar items. To
predict the missing value as accurate as possible, when S(u) �= ∅∧S(i) = ∅, we only in-
clude the information of similar users for making prediction. In this case, our approach
degrades to the UPCC approach as shown in Eq. (8). When S(u) = ∅ ∧ S(i) �= ∅, we
only engage the information of similar items for making prediction. In this case, our
approach reduces to the IPCC approach as shown in Eq. (11). When S(u) = ∅∧S(i) = ∅,
there are neither similar users nor similar Web services. Consequently, we predict pu,i
by employing the following equation:

pu,i =

⎧⎪⎪⎨⎪⎪⎩
λpu + (1 − λ)pi,
pu,
pi,
NoPrediction,

pu �= null & pi �= null
pu �= null & pi = null
pu = null & pi �= null
pu = null & pi = null

, (14)

where pu is the average failure probability of different Web services observed by the
service user u (named as UMEAN), and pi is the average failure probability of Web
service i observed by different service users (named as IMEAN). Equation (14) includes
four situations: (1) When pu �= null & pi �= null, we combine pu and pi for the missing
value prediction; (2) when the target Web service is never invoked by any service users,
and the service user has invoked other Web services previously (pu �= null & pi = null),
we use UMEAN pu for making prediction; (3) in case a new service user who did not
invoke any Web services previously, but the target Web service has been invoked by
other users (pu = null & pi �= null), we apply IMEAN pi for making the prediction;
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and (4) when pu = null & pi = null, we will not provide any prediction since there is
no information available.

3.4. Phase 4: Reliability Prediction

By these phases, we obtain the failure probability of the target Web service. To pre-
dict the Web service reliability, we adopt the commonly used exponential reliability
function [Lyu 1996]:

R(t) = e−βt, (15)

where β (failure-rate) is the number of failures of the Web service during a certain
time duration, and t is the time period for which the reliability is to be calculated. The
value of β can be calculated by pf , where p is the failure probability of the Web service
and f is the invocation frequency of the Web service (e.g., the number of invocations
per hour). Therefore, we obtain the following equation for the reliability prediction of
a Web service:

R(t) = e−pft. (16)

By these four-phase procedure, the designers of service-oriented systems are able
to predict reliability of Web services early at the architectural design phase and select
the optimal configuration. Moreover, the prediction of Web service reliability can be dy-
namically updated at runtime after the release of the system, which provides valuable
information for dynamical system reconfiguration, load balancing, and fault tolerance
needs [Lyu 1995].

3.5. Computational Complexity Analysis

This section discusses the upper bound on the worst-case computational complexity
of the neighborhood-based reliability prediction algorithm. We assume there are m
service users and n Web services.

3.5.1. Complexity of Similarity Computation. The computational complexity of the similar-
ity computation between two users is O(n), since there are at most n intersecting Web
services between service user a and service user u. The computational complexity of
the similarity computation between two Web services is O(m), since there are at most
m intersecting service users between Web service i and Web service j.

3.5.2. Complexity of UPCC. When predicting the missing values in the user-item ma-
trix employing user-based PCC algorithm (Eq. (8)), for each user, we need to compute
similarities of the current user with all the m − 1 existing users (totally m − 1 times of
similarity computations). As discussed in Section 3.5.1, the computational complexity
of each similarity computation is O(n). Therefore, the computational complexity of the
similarity computation of each user is O(mn).

After the similarity computation, missing value prediction is conducted. For a user,
there are at most n missing values. The computational complexity of each missing
value prediction is O(m) (at most m − 1 similar users will be employed for the predic-
tion). Therefore, the computational complexity of missing value prediction for a user is
O(mn).

Based on this analysis, the total computational complexity of UPCC (including simi-
larity computation and missing value prediction) for a user is O(mn)+O(mn) = O(mn).
When predicting all the missing values in the user-item matrix, since there are totally
m users, the computational complexity is O(m2n).

3.5.3. Complexity of IPCC. When predicting the missing values for a Web service em-
ploying item-based PCC algorithm (Eq. (11)), we need to compute similarities of the
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Table II. Notations of Model-Based Reliability Prediction

Notations Descriptions
P the user-item matrix
pij an entry in P, i.e., failure probability of Web service j observed by user i
W and H two matrices which are used to approximate the user-item matrix P
Wi the ith row of matrix W, representing the user-specific coefficients for user i
Hj the jth column of matrix H, representing the factor vector for Web service j
n the number of Web services
m the number of users
l the number of factors
IP
ij indicator function, equal to 1 if pij is available and equal to 0 otherwise

γ a parameter for penalizing large values in the matrices W and H

‖X‖2
F The Frobenius norm of matrix X: ‖X‖2

F =
√

m∑
i=1

n∑
j=1

∣∣∣xij

∣∣∣2
α learning rate, which controls the speed of gradient descent iteration
ρ the number of available entries in the user-item matrix P

current Web service with all the other n − 1 Web services (totally n − 1 similarity
computations). As discussed in Section 3.5.1, the computational complexity of each
similarity computation is O(m). Therefore, the computational complexity of similarity
computation is O(mn) for a Web service.

After the similarity computation, for each missing value of the Web service, the value
prediction computational complexity is O(n), since at most n − 1 similar Web services
will be employed for the value prediction. There are at most m missing values for a Web
service, so the computational complexity of value prediction for a Web service is O(mn).
Therefore, the computational complexity of IPCC for a Web service is O(mn)+O(mn) =
O(mn). When predicting all the missing values in the user-item matrix, since there are
totally n Web services, the computational complexity is O(mn2).

3.5.4. Complexity of UIPCC. Since our UIPCC prediction approach is a linear combina-
tion of UPCC and IPCC, the computational complexity of our approach for predicting
the missing values in the user-item matrix is O(m2n + mn2).

4. MODEL-BASED RELIABILITY PREDICTION

The neighborhood-based approach proposed in Section 3 employs information of sim-
ilar users (or items) to make reliability prediction. When the user-item matrix is
very sparse, similar users or items can hardly be identified. Moreover, as discussed
in Section 3.5, the computational complexity of the neighborhood-based approach is
high. To address these drawbacks, in this section, we present a model-based approach
for predicting the missing failure probability values in the user-item matrix. Our
model-based approach is designed as a two-phase process. In Phase 1, the missing
value problem is modeled as an optimization problem; and in Phase 2, an algorithm
is proposed for solving the problem. These two phases will be presented in Section 4.1
and Section 4.2, respectively. Section 4.3 will analyze computational complexity of the
model-based approach. Table II summarizes the notations of the model-based reliabil-
ity prediction approach.

4.1. Matrix Factorization

As introduced in Section 2, the process of failure probability prediction usually includes
a user-item matrix, where users are corresponding to rows and items (Web services)
to columns. The matrix entries specify the failure probability values of each user on
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each Web service. The problem we investigate is how to accurately predict the missing
failure probability values in the user-item matrix by employing the available values.

Matrix factorization refers to a group of algorithms, where a matrix is factorized
into a product of two matrices [Salakhutdinov and Mnih 2007]. When applying matrix
factorization to address our research problem, the premise behind is that there is a
small number of factors influencing the user-observed Web service failure probability,
and that a user’s observed failure probability on a Web service is determined by how
each factor applies to the user. More specifically, a user’s failure probability value on
a Web service corresponds to a linear combination of these factors with user-specific
coefficients.

Considering an m × n user-item matrix P, an l-factor model is attempted to find two
matrices W (m rows and l columns) and H (l rows and n columns), such that:

P ≈ WH, (17)

where l is the number of factors. The number of columns of W and the number of
rows of H are selected so the product of W and H will become an approximation to P.
This matrix factorization procedure (i.e., decompose the user-item matrix P into two
matrices W and H) has clear physical meanings: Each column of H is a factor vector
including the values of the l factors for a Web service, while each row of W is the user-
specific coefficients for a user. A user’s Web service usage experience corresponds to the
linear combination of the user-specific coefficients and the Web service factor vector.

For example, employing matrix factorization technique with four factors (l = 4), the
user-item matrix in Figure 1 can be decomposed into two matrices W and H:

W =

⎡⎢⎢⎢⎢⎢⎣
0.135 −0.747 −0.430 0.245
0.281 −1.049 −0.527 0.489

−0.029 −0.622 −0.224 −1.135
−0.434 −0.404 0.637 0.921
0.209 −0.423 −0.995 −0.303

⎤⎥⎥⎥⎥⎥⎦ ,

H =

⎡⎢⎢⎣
−0.028 −0.457 −0.234 0.265 0.087 −0.041
0.142 1.020 0.407 0.935 0.481 0.248

−0.117 0.894 0.813 −0.280 0.156 0.574
0.260 −0.028 0.346 −1.030 1.116 0.155

⎤⎥⎥⎦ ,

where each row of W includes four user-specific coefficients for a user and each column
of H has values of the four factors for a Web service. The product of W and H is an
approximation to the original user-item matrix P:

P =

⎡⎢⎢⎢⎢⎢⎣
0.5 0.2 0.3 0.4

0.1 0.2 0.5
0.4 0.3 0.1

0.6 0.1
0.5 0.2 0.3

⎤⎥⎥⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎢⎢⎣
0.501 0.229 0.354 0.311 0.465 0.401
0.508 0.157 0.320 0.221 0.496 0.378
0.412 0.312 0.306 0.655 0.168 0.388
0.530 0.582 0.684 0.165 0.710 0.605
0.493 0.197 0.243 0.562 0.337 0.325

⎤⎥⎥⎥⎥⎥⎦ = WH.

From this introduction, we can see that the matrices W and H are unknown,
and need to be estimated using the available values in the user-item matrix P. The
matrices W and H are generally nonunique and we need to identify the optimal ones
by minimizing the distance between WH and P. Since the user-item matrix P is only
partially observed (e.g., not all users have the failure probability values of all Web
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12:12 Z. Zheng and M. R. Lyu

services), if we can find out the matrices W and H, the product of these two matrices
can be employed to predict the unobserved entries in the user-item matrix P.

The most common measure of the discrepancy between P and WH is the sum-
squared error, which can be calculated by:

m∑
i=1

n∑
j=1

IP
ij(pij − WiHj)

2, (18)

where IP
ij is the indicator function that is equal to 1 if the value pij is available in the

user-item matrix (indicating that Web service j has been invoked by user i previously)
and equal to 0 otherwise, Wi is the ith row of matrix W (representing the user-specific
coefficients of user i), and Hj is the jth column of matrix H (representing the factor
vector of Web service j).

The factorization problem can be stated as: Given a partially observed user-item
matrix P, find two matrices W and H that minimize the sum-squared errors, which
can be calculated by Eq. (18). Since the goal of finding W and H is to predict the
unknown missing values in the matrix, these two matrices should avoid overfitting
the observed vales, so that the resulting model has a good generalization performance
for the unknown values. By adding the constraints of the norms of W and H to penalize
large values of W and H, we have the following optimization problem:

min
W,H

L(W, H) = 1
2

m∑
i=1

n∑
j=1

IP
ij(pij − WiHj)

2 + γ

2
‖W‖2

F + γ

2
‖H‖2

F, (19)

where γ controls the extent of regularization for penalizing large values in the ma-
trices W and H to avoid the overfitting problem, and ‖ · ‖2

F denotes the Frobenius
norm [Golub and Loan 1996], which is defined as the square root of the sum of the ab-
solute squares of values in a matrix. For example, ‖W‖2

F (m rows and l columns) can be

calculated by: ‖W‖2
F =

√
m∑

i=1

l∑
j=1

∣∣wij
∣∣2. The optimization problem in Eq. (19) minimizes

the sum-squared-errors objective function with quadratic regularization terms.

4.2. Gradient Descent

A local minimum of the objective function given by Eq. (19) can be found by perform-
ing gradient descent. Gradient descent is an optimization method for minimizing an
objective function that is written as a sum of differentiable functions. The gradient
descent algorithm loops through all available values in the user-item matrix and train
the l factors one by one. One gradient step intends to decrease the square of prediction
error of only one value.

The gradients can be computed by:

∂L
∂wil

= γ wil −
n∑

j=1

IP
ij(pij − WiHj)hlj, (20)

∂L
∂hlj

= γ hlj −
m∑

i=1

IP
ij(pij − WiHj)wil, (21)

where wil is the lth coefficient of user i in the matrix W, hlj is the lth factor of Web
service j in the matrix H, Wi is the ith row of the matrix W, Hj is the jth column of the
matrix H, and the prediction error is computed by pij − WiHj.
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Algorithm 1: Gradient Descent Algorithm
Input: User-item matrix: P; number of factors: l
Output: User-specified coefficient matrix: W; Factor matrix: H
Initialize W and H with small random numbers;1
repeat2

for each factor l do3
for each available pij in P do4

wt+1
il = wt

il − α ∂L
∂wt

il
;

5

ht+1
lj = ht

lj − α ∂L
∂ht

lj
;

6

end7

end8

until Converge ;9

Algorithm 1 shows the iterative process of the gradient descent algorithm for solv-
ing the optimization problem in Eq. (19). We first initialize the matrices W and H with
small random values. Then, the algorithm iteratively updates the matrices W and H
by a magnitude proportional to α in the opposite direction of the gradient. wt

il means
the value of wil in the tth iteration. The parameter α is named learning rate, which con-
trols the speed of iteration. The process stops when the local minimum of the objective
function given in Eq. (19) is reached.

4.3. Complexity Analysis

The main computation of the gradient methods is to evaluate the objective function
L and its gradients against the variables. Because of the sparsity of matrix P, the
computational complexity of evaluating the objective function L is O(ρl), where ρ is
the number of available entries in the matrix P and l is the number of factors. When
performing gradient descent, the computational complexity is O(ρl) for each iteration,
since there are totally ρ available entries and each entry requires O(l) computation
for updating the latent features. Therefore, the computational time of the model-based
method is linear with respect to the number of observations in the user-item matrix P.
This complexity analysis shows that the proposed model-based approach can scale to
very large datasets when making Web service reliability prediction.

5. EXPERIMENTS

5.1. Dataset Description

To evaluate the prediction accuracy of various prediction approaches, we employ our
real-world Web service QoS dataset1 for conducting experiments. This dataset is col-
lected in Feb. 2011, which includes 23 million Web service invocation results from 102
distributed service users on 3568 publicly available real-world Web services. We em-
ploy the distributed computers from Planet-Lab2 to observe, collect, and contribute
evaluation results of the target Web services to our centralized server, which is imple-
mented by JDK, Eclipse, Axis2,3 Apache Tomcat, Apache HTTP Server, and MySQL.
Planet-Lab is a global research network that consists 1095 nodes at 531 sites. In our
Web service evaluation, each user (i.e., a computer from Planet-Lab) conducts a num-
ber of invocations on each selected Web service and the invocation results are recorded.

1http://www.wsdream.net
2http://www.planet-lab.org
3http://ws.apache.org/axis2
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12:14 Z. Zheng and M. R. Lyu

The failure probability of a Web service obtained by a service user can thus be obtained.
By processing the evaluation results, failure probabilities of the 3568 Web services ob-
served by the 102 service users can be represented as a 102 × 3568 user-item matrix.
The range of failure probability is from 0 to 100%.

In the experiments, we randomly removed entries from the user-item matrix and
employed different prediction approaches to determine the missing values in the ma-
trix. The removed values are used as ground truth to evaluate the prediction accuracy.
Matrix density refers to the percentage of unremoved entries in the user-item matrix.
By predicting missing values for the users in the matrix, their personalized Web ser-
vice failure probability values are consequently obtained. In practice, a centralized
server can be built to provide personalized reliability prediction service to users. First,
a user requests personalized reliability prediction by sending observed Web service
failure probability values to the server. Second, the proposed prediction approaches
are employed by the server to make personalized reliability prediction on the unin-
voked Web services for the user. Finally, the prediction results are sent to the user to
help decision making.

5.2. Metrics

We use Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) met-
rics to measure the prediction accuracy of different prediction approaches. MAE is
defined as:

MAE =
∑

u,i |pu,i − p̂u,i|
N

, (22)

where pu,i denotes the observed failure probability of Web service i observed by user u,
p̂u,i is the predicted value, and N is the number of predicted values. MAE is the average
of the differences between a prediction result and the corresponding observed value.
MAE is a linear score, which means that all the individual differences are weighted
equally in the average.

RMSE is defined as:

RMSE =
√∑

u,i(pu,i − p̂u,i)
2

N
. (23)

In RMSE, the differences between prediction results and the corresponding observed
values are each squared and then averaged over the sample. Finally, the square root of
the average is taken. Since the errors are squared before they are averaged, the RMSE
gives a relatively high weight to large errors. This means RMSE is more applicable
when large errors are particularly undesirable.

5.3. Comparison of Prediction Accuracy

To study the prediction accuracy of failure probability, we implement and compare
seven prediction approaches.

— UMEAN (User Mean). This method employs a user’s average failure probability
value of the used Web services to predict the missing values of the unused Web
services.

— IMEAN (Item Mean). This method employs the average failure probability value of
the Web service observed by other service users to predict the failure probability
value for a service user who never invoked this Web service previously.

— UPCC (User-Based Collaborative Filtering Method using Pearson Correlation
Coefficient). This method is a classical method. It employs information of similar
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Table III. MAE Performance Comparison

Methods den=5% den=10% den=15% den=20% den=25% den=30%
UMEAN 0.1861 0.1864 0.1867 0.1867 0.1866 0.1865
IMEAN 0.0504 0.0472 0.0462 0.0459 0.0455 0.0453
UPCC 0.0450 0.0386 0.0371 0.0363 0.0358 0.0353
IPCC 0.0491 0.0406 0.0373 0.0362 0.0345 0.0328
ICSE2010 0.0448 0.0384 0.0366 0.0357 0.0344 0.0327
UIPCC 0.0440 0.0371 0.0352 0.0335 0.0315 0.0301
MF 0.0420 0.0326 0.0288 0.0257 0.0245 0.0235

Table IV. RMSE Performance Comparison

Methods den=5% den=10% den=15% den=20% den=25% den=30%
UMEAN 0.2670 0.2666 0.2663 0.2663 0.2662 0.2663
IMEAN 0.1372 0.1262 0.1234 0.1221 0.1215 0.1210
UPCC 0.1081 0.0962 0.0938 0.0927 0.0921 0.0915
IPCC 0.1342 0.1071 0.0990 0.0939 0.0889 0.0841
ICSE2010 0.1080 0.0962 0.0935 0.0916 0.0885 0.0840
UIPCC 0.1057 0.0926 0.0897 0.0881 0.0854 0.0812
MF 0.1049 0.0816 0.0741 0.0677 0.0654 0.0633

users for the failure probability value prediction [Breese et al. 1998; Shao et al.
2007].

— IPCC (Item-Based Collaborative Filtering Method using Pearson Correlation
Coefficient). This method is widely used in companies like Amazon.4 It employs in-
formation of similar Web services (items) for the failure probability value predic-
tion [Resnick et al. 1994; Sarwar et al. 2001].

— ICSE2010. This is our preliminary version presented in Zheng and Lyu [2010]. It
systematically combines the UPCC and IPCC approaches for making missing failure
probability value prediction.

— UIPCC (User-Based and Item-Based Collaborative Filtering Method using Pear-
son Correlation Coefficient). This is the neighborhood-based approach presented in
Section 3. This approach is an enhanced version of its preliminary version (i.e., the
ICSE2010 approach [Zheng and Lyu 2010]). The enhancements include: (1) employ-
ing a logistic function to overcome the PCC similarity overestimate problem (Eq. (4)
and Eq. (5)), and (2) new weight computations of similar users and items (Eq. (10)
and Eq. (12)).

— MF (Matrix Factorization). This is the model-based approach presented in Section 4.
It factorizes the user-item matrix into two matrices and employs these two matrices
for making missing value prediction.

Applying our new Web service QoS Dataset,5 Table III and Table IV show the MAE
and RMSE experimental results of different prediction approaches under different ma-
trix density settings, respectively. As shown in Table III and Table IV, we can see the
following.

— The MF prediction approach obtains the best prediction accuracy (smaller MAE or
RMSE values) in all experimental settings. This is because the MF approach em-
ploys all the available information in the user-item matrix for making prediction,

4http://www.amazon.com
5http://www.wsdream.net
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while the neighbor-based approaches only employ the information of similar neigh-
bors (users or items) for making prediction.

— Compared with UPCC and IPCC, ICSE2010, and UIPCC achieve better prediction
accuracy, indicating that prediction accuracy can be improved by systematically
combining the information from similar users and similar items. Since different
datasets have their own characteristics, the parameter λ can help our ICSE2010
and UIPCC approaches achieve optimal performance in different datasets.

— Compared with ICSE2010, UIPCC provides better prediction accuracy under dif-
ferent matrix density settings, indicating that our enhancements of the UIPCC ap-
proach is reasonable and effective.

— When the matrix density is increased from 5% to 30%, the prediction accuracies of
our UIPCC and MF approaches are enhanced, since a denser matrix provides more
information for the missing value prediction.

— When the matrix density is small (e.g., 5%, 10%, etc.), the prediction accuracy of
UPCC is better than that of IPCC. When the matrix density is large (e.g., 25%, 30%,
etc.), the prediction accuracy of IPCC is better than that of UPCC. This observation
result indicates that information of similar users and similar items have different ef-
fect in different situations. By fusing on the information of similar users and similar
items, our ICSE2010 and UIPCC approaches can achieve better prediction accuracy.

5.4. Neighborhood-Based Approach: Impact of Parameters

5.4.1. Impact of Enhanced PCC. PCC may overestimate the similarity between two
users who happen to observe similar failure probability values on a small number of
co-invoked Web services. Our enhanced PCC similarity computations (i.e., Eq. (4) and
Eq. (5)) make the similarity computation more reasonable in practice by devaluing
the similarities which look significant but are actually not. To study the performance
of our enhanced PCC similarity computation, we implement two versions of UPCC,
IPCC, ICSE2010, and UIPCC. One version employs traditional PCC for the similar-
ity computation, while the other version employs our enhanced PCC for the similarity
computation. In the experiment, we vary the density of the training matrix from 5% to
50% with a step value of 5%.

Figure 3(a) to Figure 3(d) show the experimental results of UPCC, IPCC, ICSE2010,
and UIPCC, respectively. As shown in Figure 3, we can see the following.

— Enhanced PCC obtains better prediction accuracy consistently than traditional PCC
in all the UPCC, IPCC, ICSE2010, and UIPCC prediction approaches.

— The cases of excluding dissimilar neighbors do not happen very often compared with
the normal cases. Therefore in Figure 3, the improvement of excluding dissimilar
neighbors is alleviated by the existence of many normal cases.

5.4.2. Impact of Enhanced Weight. When predicting failure probability values, weights
are calculated for different similar users (or items) based on their similarity values, so
that users (or items) with large similarity values will impose stronger influence on the
missing value prediction. In this article, we propose an enhanced weight computation
to enlarge the influence of users (or items) with higher similarity values by squaring
the similarity values. To study the performance of our enhanced weight computation
in Eq. (10), we implement two versions of UPCC, IPCC, ICSE2010, and UIPCC. One
version employs linear weight computation (Eq. (9), proposed in our preliminary ver-
sion [Zheng and Lyu 2010]), while the other version employs our enhanced weight
computation (Eq. (10) and Eq. (12)). In the experiment, we vary the density of the
training matrix from 5% to 50% with a step value of 5%.

Figure 4(a) to Figure 4(d) show the experimental results of UPCC, IPCC, ICSE2010,
and UIPCC, respectively. As shown in Figure 4, we can see the following.
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Fig. 3. Impact of enhanced PCC.

— Enhanced weight obtains better prediction accuracy consistently than linear weight
in all the UPCC, IPCC, ICSE2010, and UIPCC prediction approaches under differ-
ent matrix density settings.

— When the training matrix density increases from 5% to 50%, the prediction accuracy
of all the UPCC, IPCC, ICSE2010, and UIPCC becomes better, since more similar
users (or items) can be found in a denser user-item matrix for making missing value
prediction.

5.4.3. Parameter λ. The experimental results of Table III and Table IV show that
UPCC and IPCC have different effect in different situations, indicating that differ-
ent datasets may inherit different data distribution and correlation characteristics.
Our UIPCC approach is adaptable to different datasets by using a parameter λ. When
λ = 1, we only extract information from the similar users. When λ = 0, we only con-
sider the similar Web services. When 0 < λ < 1, we combine the information from
both similar users and similar Web services. To study the impact of λ on the predic-
tion result, we implement our UIPCC approach and its preliminary version (named
ICSE2010, which does not employ enhanced PCC and enhanced weight). We vary the
value of λ from 0 to 1 with a step value of 0.1.

Figure 5(a) and 5(b) show the MAE results of 10% and 20% matrix densities. Figure 5
shows the following.

— The value of λ impacts the recommendation results significantly. Suitable λ values
will provide better prediction accuracy, since it enables a proper combination of the
user-based method and the item-based method.
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Fig. 4. Impact of enhanced weight.

Fig. 5. Impact of parameter λ.

— The optimal λ values (the minimal MAE values of the curves in Figure 5) are differ-
ent under different matrix density settings. For example, in Figure 5(a), the optimal
λ value for UIPCC is 0.8, while the optimal λ value for UIPCC in Figure 5(b) is 0.7.
This observation indicates that the optimal λ value is influenced by the matrix den-
sity. Information of similar users and similar Web services impose different effect in
different matrix density settings.

— Our UIPCC approach outperforms ICSE2010 approach consistently under different
λ value settings, indicating that our enhanced PCC and enhanced weight computa-
tions can provide better prediction accuracy.
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Fig. 6. Impact of factor dimensionality.

Fig. 7. Impact of parameter γ .

5.5. Model-Based Approach: Impact of Parameters

5.5.1. Impact of Dimensionality. Dimensionality refers to the number of factors when
factorizing the user-item matrix. To study the impact of dimensionality, we vary the
values of dimensionality from 10 to 100 with a step value of 10. We set γ =0.005 and
matrix density=20% in this experiment.

Figure 6(a) and Figure 6(b) show the MAE and RMSE results of our model-based
approach (named MF) under different dimensionality settings. As shown in Figure 6,
the values of MAE and RMSE decrease when the dimensionality is increased from 20
to 200, indicating that a larger dimension value generates more accurate prediction
results. However, as discussed in Section 4.3, larger dimensionality values will lead to
longer computation time.

5.5.2. Impact of Parameter γ . The parameter γ is employed to avoid the overfitting prob-
lem by penalizing large values of the matrices W and H. To study the impact of param-
eter γ on the prediction results, we vary the values of γ from 0.00005 to 0.1. We set
dimensionality = 50 in this experiment.

Figure 7(a) and Figure 7(b) show the MAE results of our MF method with 10% and
20% matrix densities, respectively. As shown in Figure 7, the values of MAE increase
when the value of γ is increased, indicating that a smaller value of γ generates more
accurate prediction results. When the value of γ is smaller than 0.001, the MAE per-
formance results of different settings are similar. In our model-based approach, we can
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Fig. 8. Impact of matrix density.

simply set the parameter γ to be a small value (e.g., 0.0001) to obtain good prediction
accuracy.

5.5.3. Impact of Matrix Density. Matrix density refers to the percentage of available en-
tries in the user-item matrix. To study the impact of the matrix density on the predic-
tion results of our model-based approach, we vary the density from 5% to 50% with a
step value of 5%.

Figure 8 shows the experimental results of our model-based approach (named MF)
with different matrix density settings. As shown in Figure 8, the prediction accuracy
of MF is enhanced when the matrix density is increased from 5% to 50%, because a
denser matrix provides more information for making prediction. This observation is
the same as the experimental results of the neighborhood-based approach. By obtain-
ing more past failure data from different service users, both our neighborhood-based
and model-based approaches can achieve more accurate prediction results.

6. NEIGHBOR-BASED APPROACH VS. MODEL-BASED APPROACH

This article proposes a neighborhood-based approach and a model-based approach for
predicting the reliability of Web services. Advantages of the neighborhood-based ap-
proach include the following.

— Simplicity. Neighborhood-based approaches are widely employed in practice, be-
cause they are simple and intuitive on a conceptual level while avoiding the com-
plications of a model-building stage. The neighborhood-based approaches can be
learned and implemented quickly by developers without expert knowledge on per-
sonalized reliability prediction.

— Explanations. The research results in Herlocker et al. [2000] and Yu et al. [2004]
indicate that allowing users to know more about the result-generating process can
help them understand the prediction approaches. Such explanations can remove the
black box process from the prediction approaches and provide transparency. The
neighborhood-based approach presents a clear interpretation that can be easily con-
veyed to users, such as “You seem to be sharing similar past usage experience with
user A, who have invoked the following Web services. . . .” The neighborhood-based
approach demonstrates better explanations than the model-based approach, since
it is simple and intuitive on a conceptual level. The benefits of providing better
explanations include: (1) better understanding of the reasoning behind a predic-
tion, so that users may decide the level of confidence to place in the prediction;
(2) better understanding the strengths and limitations of the prediction approaches;
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and (3) greater acceptance of the prediction results, since its limits and strengths
are fully visible and the prediction results are justified.

— Incremental Accommodation to New Data. The prediction approaches must be able
to handle new data, for example, new users or new items. Neighborhood-based ap-
proaches can easily accommodate to new users (or new items) by simply storing
the new data. On the other hand, the model-based approaches need to train a fac-
tor model before making missing value prediction. Retraining the factor model with
new data is quite expensive, especially if retraining needs to be performed regularly.

— Prediction of Specific Missing Values. When prediction of a specific missing value is
needed, neighborhood-based approach can be easily employed since it calculates one
missing value at a time. On the other hand, model-based approach needs to compute
the whole matrix to train a factor model before making the missing value prediction.

On the other hand, advantages of the model-based approach include:

— Accuracy. As shown in Table III and Table IV, the prediction accuracy of the model-
based approach is better than that of the neighborhood-based approaches when
employing our dataset. The model-based approach takes advantages of using all
the available values in the user-items matrix for making prediction, while the
neighborhood-based approaches only employ information of similar users and simi-
lar items.

— Computational Complexity. As introduced in Section 4.3, the computational com-
plexity of the model-based method is linear with respect to the number of available
values in the user-item matrix, which is better than the neighborhood-based ap-
proach (e.g., as introduced in Section 3.5, the computational complexity of UIPCC is
O(m2n + mn2)).

In summary, the neighborhood-based approaches can be applied to situations such
as agile development, small-scale data, dynamic environment where incrementally ac-
commodating to new data and prediction of specific missing values are required. On
the other hand, the model-based approaches are suitable for situations where the re-
quirements for prediction accuracy and computational time are high.

7. RELATED WORK

7.1. Software Reliability Prediction

Software reliability prediction is an important research problem in software relia-
bility engineering [Lyu 1996; Lyu and Nikora 1992]. A great deal of software re-
liability prediction models have been proposed for stand-alone software systems,
such as Musa’s execution time model [Musa et al. 1990], Putnam’s model [Putnam
and Myers 1992], Rome laboratory models [Friedman et al. 1992], Jelinski’s model
[Jelinski and Moranda 1972], Littlewood’s models [Littlewood et al. 1986], structure-
based analysis [Gokhale and Lyu 2005], Poisson Process Models [Huang et al. 2003],
Support Vector Machine based model [Xing et al. 2005], and so on. With the pop-
ularization of service computing, a number of reliability prediction approaches are
proposed for component-based systems and service-oriented systems [Cardoso et al.
2002; Cheung 1980; Cortellessa and Grassi 2007b; Gokhale and Trivedi 2002;
Goseva-Popstojanova and Trivedi 2001; Grassi and Patella 2006; Yacoub et al. 1999].
Cortellessa and Grassi [2007a] analyzed impact of error propagation on the reliability
of component-based systems. Filieri et al. [2010] presented a novel approach to the reli-
ability modeling and analysis of component-based systems, which permits component-
level reliability specification. Koziolek et al. [2010] applied different reliability analysis
methods to a large-scale industrial control system. Most of these previous approaches
focus on system-level reliability compositional analysis.
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A few approaches [Cheung et al. 2008; Goseva-Popstojanova et al. 2003; Reussner
et al. 2003], which consider component-level reliability prediction, are mainly designed
for traditional component-based systems. Goseva-Popstojanova et al. [2003] calculated
reliability risk of a component by the component complexity and the levels of its fail-
ures. Reussner et al. [2003] computed component reliability by the reliabilities of its
services, which are assumed to be known. Both these approaches require internal infor-
mation of the components for making component reliability prediction. Hamlet [2009]
implemented tools to approximate the behavior of software components, then engaged
these approximations to estimate the properties of component-based systems. The sys-
tem is neither built, nor is any test execution performed, as the system designers do
not require the component sources or the executables as long as historical data of the
components are available. Similar to Hamlet’s work, in this article, service reliability
is not assessed directly but computed from the collected data. Cheung et al. [2008]
predicted the component reliability at architecture design phase by exploiting behav-
ioral models from sources of information available at design time. Different from the
work in Cheung et al. [2008], which tried to predict reliability of a component that
was not even implemented yet, our work targets at predicting reliabilities of remote
Web services that are implemented and provided by other organizations. Moreover,
the work in Cheung et al. [2008] did not investigate personalized reliability prediction
for users since the components were assumed to be invoked locally in the traditional
component-based systems. Our approach focuses on personalized reliability prediction
for different service users, which significantly enhances the reliability prediction accu-
racy of Web services and service-oriented systems.

Tsai [2005] proposed a data-driven reliability evaluation process (named DREP).
DREP computes reliability in a collaborative manner by employing current data just
collected and profiled from participants (e.g., service users, service developers, and ser-
vice brokers). Bertolino and Polini [2009] provided a first abstract definition of an SOA
testing governance notion, where remote stakeholders collaborated with each other
to achieve the common utility in validation. In this article, we focus on collaboration
among service users for sharing past failure data of Web services and propose two
approaches for making personalized service reliability prediction.

7.2. Collaborative Filtering

Collaborative filtering is the process of filtering for information with techniques involv-
ing collaboration among multiple agents. Various collaborative filtering techniques are
widely adopted in recommender systems [Burke 2002; Ma et al. 2007]. Two types of
collaborative filtering approaches are widely studied: neighborhood-based (memory-
based) and model-based.

The most investigated neighborhood-based approaches include user-based ap-
proaches [Breese et al. 1998], item-based approaches [Sarwar et al. 2001], and their
fusion [Wang et al. 2006a; Zheng and Lyu 2010]. User-based approaches employ sim-
ilar users in making prediction, while item-base approaches employ similar items for
making prediction. In the environment of service computing [Zhang et al. 2007], it is
possible to collect and make use of the past Web service failure data from different ser-
vice users for making missing value prediction. To take advantages of these collected
data, Section 3 of this article applies the neighborhood-based collaborative filtering
techniques [Breese et al. 1998; Ma et al. 2007; Sarwar et al. 2001; Zheng et al. 2009,
2011] to attack the challenging research problem of reliability prediction of service-
oriented systems.

In the model-based approaches, on the other hand, training datasets are used to
train a predefined model. Examples of model-based approaches include the clustering
model [Xue et al. 2005], aspect models [Hofmann 2004], etc. Recently, several matrix
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factorization methods [Ma et al. 2009; Rennie and Srebro 2005; Salakhutdinov and
Mnih 2007, 2008] have been proposed for collaborative filtering. The matrix factoriza-
tion methods decompose the user-item matrix into two low-dimensional matrices. The
premise behind a low-dimensional factor model is that there is only a small number
of factors that will influence the values in the user-item matrix. We have presented a
matrix factorization approach for predicting the failure probability of Web services in
Section 4.

8. CONCLUSION

In this article, we propose two personalized reliability prediction approaches for Web
services. The main idea is to exploit the past failure data of service users in predicting
Web service failure probabilities. The comprehensive experimental analysis shows the
effectiveness of our reliability prediction approaches.

In our current design, our reliability prediction approaches mainly focus on Web ser-
vices, since Web services are usually publicly accessible and invoked by a lot of service
users. Therefore, it is possible to employ the Web service failure data from different
service users in making personalized reliability prediction. Our approach, neverthe-
less, can be extended to other services or systems such as component-based systems,
distributed computing platforms, and cloud computing platforms, in case reusable com-
ponents are employed by other users previously and the past failure data can be ob-
tained from these users. In our future work, we plan to extend our proposed reliability
prediction approaches to cloud platforms, where software components and component
users (usually other software components that invoke the current component) are all
distributed in the same cloud infrastructure. The component failure data can be easily
collected by the cloud infrastructure providers for making reliability prediction.

This article focuses on reliability prediction of Web services. Despite the focus of reli-
ability, the proposed neighborhood-based and model-based approaches can be extended
to the prediction of other user-received QoS properties (e.g., response time, through-
put, etc.). Our further work also includes exploring failure correlation between dif-
ferent Web services, collecting past Web service failure data from more service users,
investigating the combination of the neighborhood-based and model-based prediction
approaches to achieve more accurate prediction results, and employing location infor-
mation of users and Web services to build more accurate reliability prediction models.
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