
Empir Software Eng (2010) 15:323–345
DOI 10.1007/s10664-009-9126-8

An adaptive QoS-aware fault tolerance
strategy for web services

Zibin Zheng · Michael R. Lyu

Published online: 10 December 2009
© Springer Science+Business Media, LLC 2009
Editor: Laurie Williams

Abstract Service-Oriented Architecture (SOA) is widely adopted for building
mission-critical systems, ranging from on-line stores to complex airline management
systems. How to build reliable SOA systems becomes a big challenge due to the
compositional nature of Web services. This paper proposes an adaptive QoS-aware
fault tolerance strategy for Web services. Based on a user-collaborated QoS-aware
middleware, SOA systems can dynamically adjust their optimal fault tolerance con-
figurations to achieve optimal service reliability as well as good overall performance.
Both the subjective user requirements and the objective system performance of the
Web services are considered in our adaptive fault tolerance strategy. Experiments
are conducted to illustrate the advantages of the proposed adaptive fault tolerance
strategy. Performance and effectiveness comparisons of the proposed adaptive fault
tolerance strategy and various traditional fault tolerance strategies are also provided.

Keywords Web service · Fault tolerance · QoS · Middleware

1 Introduction

Web services are self-contained, self-describing, and loosely-coupled computational
components designed to support machine to machine interaction via networks. Web
services are usually distributed across the Internet and invoked by the service-
oriented applications (SOA) via communication links. By providing a standardized

Z. Zheng (B) · M. R. Lyu
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, China
e-mail: zbzheng@cse.cuhk.edu.hk

M. R. Lyu
e-mail: lyu@cse.cuhk.edu.hk

324 Empir Software Eng (2010) 15:323–345

XML-based interface (WSDL) and communication message descriptions (SOAP),
Web services provide unprecedented opportunities for building agile and versa-
tile applications by integrating existing Web services offered by various service
providers.

The compositional nature of Web services and the unpredictable nature of
Internet pose a new challenge for building reliable SOA systems, which are widely
employed in critical domains such as e-commerce and e-government. In contrast
to traditional stand-alone systems, an SOA system may break down due to: 1) the
errors of the SOA system itself, 2) Internet errors (e.g., connect break off, packet
loss, etc.), and 3) remote Web service problems (e.g., too many users, crashes of the
Web services, etc.).

There are four technical areas to build reliable software systems, which are fault
prevention (Lyu 1996), fault removal (Zheng et al. 2009a), fault tolerance (Lyu
1995), and fault forecasting (Lyu 1996). Since it is difficult to completely remove
software faults, software fault tolerance (Lyu 1995) is an essential approach to
building highly reliable systems. Critics of software fault tolerance state that de-
veloping redundant software components for tolerating faults is too expensive and
the reliability improvement is questionable when comparing to a single system,
considering all the overheads in developing multiple redundant components. In the
modern era of service-oriented computing, however, the cost of developing multiple
component versions is greatly reduced. This is because the functionally equivalent
Web services designed/developed independently by different organizations can be
readily employed as redundant alternative components for building diversity-based
fault tolerant systems.

A number of fault tolerance strategies for Web services have been proposed in
the recent literature (Chan et al. 2007; Foster et al. 2003; Tsai et al. 2003; Zheng and
Lyu 2008a). However, most of these strategies are not feasible enough to be applied
to various systems with different performance requirements, especially the service-
oriented Internet systems in the highly dynamic environment. There is an urgent
need for more general and “smarter” fault tolerance strategies, which are context-
aware and can be dynamically and automatically reconfigured for meeting different
user requirements and changing environments. Gaining inspiration from the user-
participation and user-collaboration concepts of Web 2.0, we design an adaptive
fault tolerance strategy and propose a user-collaborated QoS-aware middleware in
making fault tolerance for SOA systems efficient, effective and optimal.

This paper is a comprehensive version of our previous work (Zheng and Lyu
2008b). Our work aims at advancing the current state-of-the-art of fault tolerance
in the field of service reliability engineering. The contributions of this paper are
two-fold: (1) A QoS-aware middleware for achieving fault tolerance by employ-
ing user-participation and collaboration. By encouraging users to contribute their
individually-obtained QoS information of the target Web services, more accurate
evaluation on the Web services can be achieved; (2) an adaptive fault tolerance
strategy. We propose an adaptive fault tolerance strategy for automatic system
reconfiguration at runtime based on the subject user requirements and objective QoS
information of the target Web services.

The rest of this paper is organized as follows: Section 2 introduces the QoS-
aware middleware design and some basic concepts. Section 3 designs models for
user requirements and QoS. Section 4 presents various fault tolerance strategies.

Empir Software Eng (2010) 15:323–345 325

Section 5 proposes the adaptive fault tolerance strategy. Section 6 presents a number
of experiments. Section 7 reviews related work and Section 8 concludes the paper.

2 Design of the QoS-aware Middleware

In this section, some basic concepts are explained and the architecture of our QoS-
aware middleware for fault tolerant Web services is presented.

2.1 Basic Concept Introduction

We divide faults into two types based on the cause of the faults:

– Network faults. Network faults are generic to all Web services. For example,
Communication Timeout, Service Unavailable (http 503), Bad Gateway (http
502), Server Error (http 500), and so on, are network faults. Network faults can
be easily identified by the middleware.

– Logic faults. Logic faults are specific to different Web services. For example,
calculation faults, data faults, and so on, are logic faults. Also, various exceptions
thrown by the Web service to the service users are classified into the logic-related
faults. It is difficult for the middleware to identify such type of faults.

In this paper, atomic services present Web services which provide particular
services to users independently. Atomic services are self-contained and do not rely
on any other Web services. On the other hand, composite services presents Web
services which provide services to users by integrating and calling other Web services
(Benatallah et al. 2002; Zeng et al. 2004).

With the popularization of service-oriented computing, various Web services are
continuously emerging. The functionalities and interfaces defined by the Web Service
Description Language (WSDL) are becoming more and more complex. Machine
learning techniques (Salatge and Fabre 2007; Wu and Wu 2005) are proposed to
identify Web services with similar or identical functionalities automatically. How-
ever, the effect and accuracy of these approaches are still far from practical usage.
Since functionally equivalent Web services, which are developed independently by
different organizations, may appear with completely different function names, input
parameters and return types, it is really difficult for machines to know that these
services are actually providing the same functionalities.

To solve the problem of identical/similar Web services identification, a service
community defines a common terminology that is followed by all participants, so that
the Web services, which are developed by different organizations, can be described
in the same interface (Benatallah et al. 2002; Zeng et al. 2004). Following a common
terminology, automatical Web service composition by programs can be achieved,
which will attract more users and make the development of the community better.

Companies can enhance their business benefit by joining into communities, since
a lot of service users will go to the communities to search for suitable services.
The coordinator of the community maintains a list of the registered Web services
of the community. Before joining the community, a Web service has to follow the
interface definition requirements of the community and registers with the community

326 Empir Software Eng (2010) 15:323–345

coordinator. By this way, the service community makes sure that various Web
services from different organizations in the community come with the same interface.

In this paper, we focus on engaging the Web services in the service communities
for fault tolerance and performance enhancement purposes. The design and devel-
opment of the service communities, which have been discussed in Zeng et al. (2004),
are out of our scope. We use the word replica to represent the functionally equivalent
Web services within the same service community.

2.2 Architecture of the Middleware

The architecture of the proposed QoS-aware middleware for fault tolerant Web
services is presented in Fig. 1. The work procedure of this middleware is described as
follows:

(1). From the Universal Description, Discovery and Integration (UDDI), the
middleware obtains the addresses of the service community coordinators.

(2). By contacting the community coordinator, the middleware obtains an address
list of the replicas in the community and the overall QoS information of these
replicas. The overall QoS information will be used as the initial values in the
middleware for optimal fault tolerance strategy configuration. Detailed design
of the QoS-model of Web services will be introduced in Section 4.2.

(3). The proposed QoS-aware middleware determines the optimal fault tolerance
strategy dynamically based on the user QoS requirements and the QoS infor-
mation of the target replicas.

Application 1

Application 2

Middleware

Application n

Middleware

Communicator

Dynamic
Selector

Auto-
updater

QoS-Aware Middleware

Internet

UDDI Registry

Service Community Broker

Service Community A

Service Community B

Web Service A1

Web Service B1

Web Service B2

Web Service Bm

Web Service A2

Web Service An

Coordinator A

Coordinator B

Fig. 1 Architecture of the middleware

Empir Software Eng (2010) 15:323–345 327

Application

Middleware

Coordinator A

Coordinator B

Individual QoS Information (A1-An)

Individual QoS Information (B1-Bm)
Replica list, Overall QoS Information of Replicas

Replica list, Overall QoS Information of Replicas

Fig. 2 Interaction between the middleware and the coordinators

(4). The middleware invokes certain replicas with the optimal fault tolerance
strategy and records down the QoS performance of the invoked replicas.

(5). The middleware dynamically adjusts the optimal fault tolerance strategy based
on the overall QoS information and the individually recorded QoS information
of the replicas.

(6). As shown in Fig. 2, in order to obtain the most up-to-date QoS information
of the target replicas for better optimal fault tolerance strategy determination,
the middleware will send its individually obtained replica QoS information to
the community coordinators in exchange for the newest overall replica QoS
information from time to time. By the design of this QoS information exchange
mechanism, the community coordinator can obtain replica QoS information
from various service users in different geographical locations, and use it for
providing the overall replica QoS information to the service users.

As shown in Fig. 1, the middleware includes the following three parts:

– Dynamic selector: in charge of determining the optimal fault tolerance strategy,
based on user requirements and the QoS information of replicas dynamically.

– Auto updater: updating the newest overall replica QoS information from the
community coordinator and providing the obtained QoS information to the coor-
dinator. This mechanism promotes user collaboration to achieve more accurate
optimal fault tolerance strategy selection.

– Communicator: in charge of invoking certain replicas with the optimal fault
tolerance strategy.

3 Basic Fault Tolerance Strategies

When applying Web services to critical domains, reliability becomes a major issue.
With the popularization of Web services, more and more functionally equivalent
Web services are diversely designed and developed by different organizations, mak-
ing software fault tolerance an attractive choice for service reliability improvement.

There are two major types of fault tolerance strategies: sequential and parallel.
Retry (Chan et al. 2007) and Recovery Block (RB) (Randell and Xu 1995) are
two major sequential approaches that employ time redundancy to obtain higher

328 Empir Software Eng (2010) 15:323–345

reliability. On the other hand, N-Version Programming (NVP) (Avizienis 1995) and
Active (Salatge and Fabre 2007) strategies are two major parallel strategies that
engage space/resource redundancy for reliability improvement.

In the following, we provide detailed introductions and formula of response time
and failure-rate for these basic fault tolerance strategies. As discussed in the work
(Leu et al. 1990), we assume that each request is independent, and the Web service
fails at a fix rate. Here, we use RTT (Round-Trip-Time) to represent the time
duration between sending out a request and receiving a response of a service user.

– Retry: As shown in Fig. 3(1), the original Web service will be retried for a certain
number of times when it fails. Equation (1) is the formula for calculating failure-
rate f and RTT t, where m is the number of retries, f1 is the failure-rate of the
target Web service, and ti is the RTT of the ith request.

f = f m
1 ; t =

m∑

i=1

ti(f1)
i−1 (1)

– RB: As shown in Fig. 3(2), another standby Web service (A2) will be tried
sequentially if the primary Web service fails.

f =
m∏

i=1

fi; t =
m∑

i=1

ti
i−1∏

k=1

fk (2)

– NVP: As shown in Fig. 3(3), NV P invokes different replicas at the same time
and determines the final result by majority voting. It is usually employed to
mask logical faults. In (3), n, which is an odd number, represents the total replica
number. F(i) represents the failure-rate that i (i ≤ n) replicas fail. For example,
assuming n = 3, then f = ∑3

i=2 F(i) = F(2) + F(3) = f1 × f2 × (1 − f3) + f2 ×
f3 × (1 − f1) + f1 × f3 × (1 − f2) + f1 × f2 × f3.

f =
n∑

i=n/2+1

F(i); t = max({ti}n
i=1) (3)

– Active: As shown in Fig. 3(4), Active strategy invokes different replicas in
parallel and takes the first properly-returned response as the final result. It is
usually employed to mask network faults and to obtain better response time

Fig. 3 Basic fault tolerance
strategies

If fail

If fail

(1). Retry

(3). NVP (4). Active

Voting

n 1

(2). Recovery Block

SuccessA1

A1

A2

An

A1

A2

An

A1 A2

Empir Software Eng (2010) 15:323–345 329

performance. In (4), Tc is a set of RTTs of the properly-returned responses. u
is the parallel replica number.

f =
u∏

i=1

fi; t =
{

min(Tc) : |Tc| > 0
max(T) : |Tc| = 0

(4)

The highly dynamic nature of Internet and the compositional nature of Web
services make the above static fault tolerance strategies unpractical in real-world
environment. For example, some replicas may become unavailable permanently,
while some new replicas may join in. Moreover, Web service software/hardware may
be updated without any notification, and the Internet traffic load and server workload
are also changing from time to time. These unpredictable characteristics of Web
services provide a challenge for optimal fault tolerance strategy determination. To
attack this critical challenge, we propose the following two dynamic fault tolerance
strategies, which are more adaptable and can be automatically configured by a QoS-
aware middleware in runtime. These two dynamic strategies will be employed in our
dynamic fault tolerance strategy selection algorithm in Section 5.3.

– Dynamic Sequential Strategy: As shown in Fig. 4(1), the dynamic sequential
strategy is the combination of Retry and RB strategies. When the primary replica
fails, our algorithm will dynamically determine whether to employ Retry or RB
at runtime based on the QoS of the target replicas and the requirements of
service users. The determination algorithm will be introduced in Section 5.3. In
(5), mi is the number of retries of the ith replica, and n is the total replica quantity.
This strategy equals RB when mi = 1, and equals Retry when m1 = ∞.

f =
n∏

i=1

f mi
i ; t =

n∑

i=1

⎛

⎝

⎛

⎝
mi∑

j=1

ti f j−1
i

⎞

⎠
i−1∏

k=1

f mi
k

⎞

⎠ (5)

– Dynamic Parallel Strategy: As shown in Fig. 4(2), the dynamic parallel strategy is
the combination of NV P and Active. It will invoke u replica at the same time and
employ the first v (v is an odd number, and v ≤ u) properly-returned responses
for majority voting. This strategy equals Active when v = 1, and equals NV P
when v = u. Note middle(v, Tc) is employed to calculate the RTT of invoking u
replica in parallel and includes the first v for voting, which is equal to the RTT of
the vth properly-returned response.

f =
v∑

i=v/2+1

F(i); t =
{

middle(v, Tc) : |Tc| ≥ v

max(T) : |Tc| < v
(6)

Fig. 4 Dynamic fault
tolerance strategies

Yes

A1

A1

A2 v

An
The first v responses

for Voting

(1). Dynamic Sequential Strategy (2). Dynamic Parallel Strategy

A2fail NoisRetry

330 Empir Software Eng (2010) 15:323–345

4 Models of User Requirements and QoS

4.1 User Requirement Model

Optimal fault tolerance strategies for SOA systems vary from case to case, which are
influenced not only by the QoS of the target replicas, but also by the characteristics
of the SOA systems. For example, realtime systems may prefer parallel strategies for
better response time performance, while resource-constrained systems (e.g., mobile
applications) may prefer sequential strategies for better resource conservation.

It is usually difficult for a middleware to automatically detect the characteristics of
an SOA system, such as whether it is latency-sensitive or resource-constrained. The
strategy selection accuracy will be greatly enhanced if the service users can provide
some concrete requirements/constraints. However, it is impractical and not user-
friendly to require the service users, who are often not familiar with fault tolerance
strategies, to provide detailed technical information. To address this problem, we
design a simple user requirement model for obtaining necessary requirement infor-
mation from the users. In this model, the users are required to provide the following
four values:

1. tmax: the largest RTT that the application can afford. tmax with a smaller value
means higher requirement on response time, indicating that the application is
more latency-sensitive. If the response-time of a Web service invocation is larger
than tmax, the invocation is regarded as TimeOut failure to the service user.

2. fmax: the largest failure-rate that the application can afford. If the failure-rate of
a Web service is larger than fmax, it is not suitable to be employed without fault
tolerance strategies.

3. rmax: the largest resource consumption constraint. The amount of parallel con-
nection is used to approximately quantify the resource consumption, since
connecting more Web services in parallel will consume more computing and
networking resources. rmax with a smaller value indicates that the application
is resource-constraint.

4. mode: the mode can be set by the service users to be sequential, parallel, or
auto. Sequential means invoking the replicas sequentially (e.g., for the payment-
oriented Web services). Parallel means that the user prefers invoking the target
replicas in parallel. Auto means that the users let the middleware determine the
optimal mode automatically. We need the service users to provide this mode
information, because the middleware may not be smart enough to detect whether
the target replicas are payment-oriented services or not.

The user requirements obtained by this model will be used in our dynamic fault
tolerance strategy selection algorithm in Section 5.3.

4.2 QoS Model of Web Service

In addition to the subjective user requirements, the objective QoS information of the
target Web service replicas are also needed for the optimal fault tolerance strategy
determination. A lot of previous tasks are focused on building the QoS model

Empir Software Eng (2010) 15:323–345 331

for Web services (Deora et al. 2003; Maximilien and Singh 2002; Wu et al. 2007).
However, there are still several challenges to be solved:

– It is difficult to obtain performance information of the target Web services.
Service users do not always record the QoS information of the target replicas,
such as RTT, failure-rate and so on. Also, most of the service users are unwilling
to share the QoS information they obtain.

– Distributed geographical locations of users make evaluation on target Web
services difficult. Web service performance is influenced by the communication
links, which may cause performance evaluation results provided by one user to
be inapplicable to others. For example, a user located in the same local area
network (LAN) with the target Web service is more likely to yield good per-
formance. The optimistic evaluation result provided by this user may misguide
other users who are not in the same LAN as the target Web service.

– Lack of a convenient mechanism for service users to obtain QoS information of
Web services. QoS information can help service users be aware of the quality
of a certain Web service and determine whether to use it or not. However, in
reality, it is very difficult for the service users to obtain accurate and objective
QoS information of the Web services.

To address the above challenges, we design a QoS model for Web services
employing the concept of user-participation and user-collaboration, which is the key
innovation of Web2.0. The basic idea is: by encouraging users to contribute their
individually obtained QoS information of the target replicas, we can collect a lot of
QoS data from the users located in different geographical locations under various
network conditions, and engage these data to make the objective overall evaluation
on the target Web services.

Based on the concept of service community and the architecture shown in
Fig. 1, we use the community coordinator to store the overall QoS information of
the replicas. Users will periodically send their individually-obtained replica QoS
information to the service community in exchange for the the newest overall replica
QoS information, which can be engaged for better optimal strategy determination.
Since the middleware will record QoS data of the replicas and exchange it with
the coordinator automatically, updated replica QoS information is conveniently
available for service users.

For a single replica, the community coordinator will store the following informa-
tion:

– tavg : the average RTT of the target replica.
– tstd : the standard deviation of RTT of the target replica.
– f l : the logic failure-rate of the target replica.
– f n : the network failure-rate of the target replica.

Currently, we only consider the most important QoS properties in our QoS
model, which includes RTT, logic faults, network faults and resource consumption.
Other QoS properties, however, can be easily included in the future. For those
users who are not willing to exchange QoS data with the community coordinator,
they can simply close the exchange functionality of the middleware, although this
will reduce the dynamic optimal strategy selection performance. This is similar to

332 Empir Software Eng (2010) 15:323–345

BitTorrent (Bram 2003) download, where stopping uploading files to others will hurt
the download speed of the user.

5 Adaptive Fault Tolerance Strategy Configuration

5.1 Notations

The notations used in this paper are listed as follows:

– {wsi}n
i=1: a set of functionally equivalent replicas.

– {cij}k+2
j=1 : a set of (k+2) counters for the wsi.

– {pij}k+2
j=1 : the probability of an RTT belonging to different categories for wsi.

– {ti}k
i=1: a set of time values, where ti is the presentative time of the ith time-slot.

ti = tmax×(i−0.5)

k

– RTTv = {rtt j}vj=1: a set of RTT values of the v replicas.

5.2 Scalable RTT Prediction

Accurate RTT prediction is important for the optimal fault tolerance strategy
selection. Assuming, for example, that there are totally n replicas {ws}n

i=1 in the
service community. We would like to invoke v (v ≤ n) replicas in parallel and use
the first properly-returned response as the final result. The question is, then, how to
find out the optimal set of replicas that will achieve the best RTT performance?

To solve this problem, we need the RTT distributions of all the replicas. In our
previous work (Zheng and Lyu 2008a), all the historical RTT results are stored and
employed for RTT performance prediction. However, sometimes it is impractical
to require the users to store all the past RTT results, which are ever growing
and will consume a lot of storage memory. On the other hand, without historical
RTT performance information of the replicas, it is extremely difficult to make an
accurate prediction. To address this challenge, we propose a scalable RTT prediction
algorithm, which scatters the RTT distributions of a replica to reduce the required
data storage.

We divide the user required maximum response-time tmax, which is provided by
the service user, into k time slots. Instead of storing all the detailed historical RTT
results, the service user only needs to store k + 2 distribution counters {ci}k+2

i=1 for each
replica, where c1–ck are used to record the numbers of the Web service invocations
which fit into the corresponding time slots, ck+1 is used to record network-related
faults f n, and ck+2 is for recording logic-related faults f l. By describing the RTT
distribution information by these counters, (7) can be employed to predict the
probability that a future Web service invocation belonging to a category, where p1 to
pk are the probabilities that the invocation will fit into the corresponding time-slots,
pk+1 is the probabilities that a Web service invocation will fail due to network-related

Empir Software Eng (2010) 15:323–345 333

faults, and pk+2 is the probability that an invocation will fail due to logic-related
faults.

pi = ci∑k+2
i=1 ci

(7)

By the above design, we can obtain approximate RTT distribution information of
a replica by storing only k + 2 counters. The values of time-slot number k can be set
to be a larger value for obtaining more detailed distribution information, making this
algorithm scalable.

The approximate RTT distributions of the replicas, which are obtained by the
above approach, can be engaged to predict RTT performance of a particular set
of replicas {wsi}vi=1. We use rtti == t j to present that an RTT value belongs to the
jth time-slot. Assuming that the RTT values of future invocations of the selected v

replicas are RTTv = {rtti}vi=1. The probability that rtti fits into a certain time-slot t j

(rtti == t j) is provided by pij. For Active strategy, the problem of predicting RTT
performance of invoking a set of replicas at the same time can be formulated as (8),
where rttx = min{RTTv} and RTTv = {rtti}vi=1.

r̃tt =
k∑

i=1

(p(rttx == ti) × ti); (8)

Equation (9) is employed for calculating the value of p(rttx == ti), which is needed
in (8).

p(rttx == ti) = p(rttx ≤ ti) − p(rttx ≤ ti−1); (9)

Therefore, the RTT prediction problem becomes calculating the values of p(rttx ≤
ti). Equation (10) is employed for calculating the value of p(rttx ≤ ti), where p(rttv ≤
ti) is the probability that the RTT value rttv of the last Web service wsv is smaller

than ti, which can be calculated by p(rttv ≤ ti) =
i∑

k=1
pvk. If rttv is smaller than ti, then

rttx = min(RTTv) will be smaller than ti; otherwise, the remaining Web services wsi–
wsv−1 will be calculated by the same procedure recursively.

p(rttx ≤ ti) = p(rttv ≤ ti) + p(rttv > ti) × p(min(RTTv−1) ≤ ti); (10)

By the above calculation, the RTT performance of the Active strategy, which
invokes the given replicas in parallel and employs the first returned response as final
result, can be predicted. By changing the rttx = min(RTTv) to rttx = max(RTTv),
the above calculation procedure can be used to predict the RTT performance of the
NV P strategy, which needs to wait for all responses of replicas before the majority
voting. By changing the min(RTTv) to middle(RTTv, y), which means the RTT value
of the yth returned response, the above algorithm can be used to predict the RTT
performance of the Dynamic parallel strategy. For example, in the Dynamic parallel
strategy, if we invoke 6 replicas in parallel and employ the first 3 returned responses
for voting, then the RTT performance of the whole strategy is equal to the RTT of
the 3rd returned response.

Therefore, to solve the problem proposed in the beginning of this section, we can
predict the RTT performance of different replica sets with v replicas from all the n
replicas {ws}n

i=1 and select the set with the best RTT performance.

334 Empir Software Eng (2010) 15:323–345

5.3 A Dynamic Fault Tolerance Strategy Selection Algorithm

By employing and integrating the user requirement model designed in Section 4.1,
the QoS model of Web services designed in Section 4.2, and the RTT prediction algo-
rithm designed in Section 5.2, we propose a dynamic fault tolerance strategy selection
algorithm in this section. As shown in Algorithm 1, the whole selection procedure is
composed of three parts: sequential or parallel strategies determination, dynamic
sequential strategy determination, and dynamic parallel strategy determination. The
detailed descriptions of these three sub-components are presented in the following
sections.

Algorithm 1 The Optimal Fault Tolerance Strategy Determination Algorithm

5.3.1 Sequential or Parallel Strategy Determination

If the value of the attribute mode in the user requirement model equals to auto,
we need to conduct sequential or parallel strategy determination based on the QoS
performance of the target replicas and the subjective requirements of the users.
Equation (11) is used to calculate the performance of different strategies, where w1–
w3 are the user defined weights for different QoS properties.

si = w1
ti

tmax
+ w2

fi

fmax
+ w3

ri

rmax
; (11)

The underlying consideration is that the performance of a particular response
time is related to the user requirement. For example, 100 ms is a large latency for
the latency-sensitive applications, while it may be negligible for non-latency-sensitive
applications. By using ti

tmax
, where tmax represents the user requirement on response

time, we can have a better representation of the response time performance for
service users with different requirements. Failure-rate fi and resource consumption
ri are similarly considered.

By employing (11), the performance of sequential strategies and parallel strategies
can be computed and compared. For sequential strategies, the value of ti can be
calculated by (5), where the value of fi can be obtained from the middleware and the

Empir Software Eng (2010) 15:323–345 335

value of ri is 1 (only one replica is invoked at the same time). For parallel strategies,
the value of ti can be estimated by using the RTT prediction algorithm presented in
Section 5.2, where the value of fi can be obtained from the middleware, and the value
of ri is the number of parallel invocation replicas. From the sequential and parallel
strategies, the one with smaller si value will be selected.

5.3.2 Dynamic Sequential Strategy Determination

If the value of the attribute mode provided by the service user is equal to sequential,
or the sequential strategy is selected by the above selection procedure conducted by
the middleware, we need to determine the detailed sequential strategy dynamically
based on the user requirements and the QoS values of replicas.

d = 1
m × (

ti+1−ti
tmax

+ fi+1− fi

fmax
) is used to calculate the performance difference between

two replicas, where 1
m is a degradation factor for the Retry strategy and m is the

retried times. When d > e, where e is the performance degradation threshold, the
performance difference between the two selected replicas is large, therefore, retrying
the original replica is more likely to obtain better performance. By increasing the
number of retries m, d will become smaller and smaller, reducing the priority of Retry
strategy and raising the probability that RB will be selected.

If the primary replica fails, the above procedure will be repeated until either a
success or the time expires (RTT ≥ tmax).

5.3.3 Dynamic Parallel Strategy Determination

If the value of the attribute mode provided by the service user is equal to parallel, or
the parallel strategy is selected by the middleware, we need to determine the optimal
parallel replica number n and the NVP number v (v ≤ n) for the dynamic parallel
strategy.

By employing the RTT prediction algorithm presented in Section 5.2, we can
predict the RTT performance of various combinations of the value v and n. The
number of all combinations can be calculated by Cv

n = n!
v!×(n−v)! , and the failure-rate

can be calculated with (6). By employing (11), the performance of different n and v

combination can be calculated and compared. The combination with the minimal p
value will be selected and employed as the optimal strategy.

6 Experiments

A series of experiments is designed and performed for illustrating the QoS-aware
middleware and the dynamic fault tolerance selection algorithm. In the experiments,
we compare the performance of our dynamic fault tolerance strategy (denoted as
Dynamic) with other four traditional fault tolerance strategies Retry, RB, NV P,
and Active.

6.1 Experimental Setup

Our experimental system is implemented and deployed with JDK6.0, Eclipse3.3,
Axis2.0 (Apache 2008), and Tomcat6.0. We develop six Web services following
an identical interface to simulate replicas in a service community. These replicas

336 Empir Software Eng (2010) 15:323–345

Table 1 Requirements of
service users

Users tmax fmax rmax Focus

User 1 1000 0.1 50 RTT
User 2 2000 0.01 20 RTT, Fail
User 3 4000 0.03 2 RTT, Fail, Res
User 4 10000 0.02 1 Res
User 5 15000 0.005 3 Fail, Res
User 6 20000 0.0001 80 Fail

are employed for evaluating the performance of various fault tolerance strategies
under different situations. The service community coordinator is implemented by
Java Servlet. The six Web services and the community coordinator are deployed
on seven PCs. All PCs have the same configuration: Pentium(R) 4 CPU 2.8 GHz,
1G RAM, 100Mbits/sec Ethernet card and a Windows XP operating system. In
the experiments, we simulate network-related faults and logic-related faults. All the
faults are further divided into permanent faults (service is down permanently) and
temporary faults (faults occur randomly). The fault injection techniques are similar
to the ones proposed in Looker and Xu (2003), Vieira et al. (2007).

In our experimental system, service users, who will invoke the six Web service
replicas, are implemented as Java applications. We first provide six service users
with representative requirement settings as typical examples for investigating per-
formance of different fault tolerance strategies in different situations. The detailed
user requirements are shown in Table 1. We then study the influence of parameters
of the user requirements and report the experimental results.

In the experiments, failures are counted when service users cannot get a proper
response. For each service request, if the response time is larger than tmax, a timeout
failure is counted.

Our experimental environment is defined by a set of parameters, which are shown
in Table 2. The permanent fault probability means the probability of permanent
faults among all the faults, which includes network-related faults and logic-related
faults. The performance degradation threshold is employed by the dynamic strategy
selection algorithm, which has been introduced in Section 5.3. Dynamic degree is used
to control the QoS changing of replicas in our experimental system, where a larger
number means more serious changing of QoS properties.

Table 2 Parameters of
experiments

Parameters Setting

1 Number of replicas 6
2 Network fault probability 0.01
3 Logic fault probability 0.0025
4 Permanent fault probability 0.05
5 Number of time slots 20
6 Performance degradation threshold (e) 2
7 Dynamic degree 20
8 w1 1/3
9 w2 1/3
10 w3 1/3

Empir Software Eng (2010) 15:323–345 337

6.2 Studies of the Typical Examples

The experimental results of the six service users employing different types of fault
tolerance strategies are shown in Tables 3, 4, 5, 6, 7 and 8. The results include
the employed fault tolerance strategy (Strategies), the number of all requests (All),
the average RTT of all requests (RTT), the number of failure (Fail), the average
consumed resource (Res), and the overall performance (Perf, calculated by (11)).
The time units of RTT is in milliseconds (ms).

In the following, we provide detailed explanation on the experimental results of
Service User 1. As shown in Table 1, the requirements provided by User 1 are:
tmax = 1000, fmax = 0.1 and rmax = 50. These requirement settings indicate that User
1 cares more on the response time than the failure-rate and resources, because 1000
ms maximal response time setting is tight in the high dynamic Internet environment,
and the settings of failure-rate and the resource consumption are loose. As shown
in Table 3, among all the strategies, the RTT performance of the NV P strategy is
the worst since it needs to wait for all parallel responses before voting; the RTT
performance of the Active strategy is the best, since it employs the first properly-
returned response as the final result. The Dynamic strategy can provide good RTT
performance, which is near the performance of the Active strategy.

The Fail column in Table 3 shows the fault tolerance performance of different
strategies. The failure-rates of the Retry and RB strategies are not good, because
these strategies are sequential and the setting of tmax = 1000ms leads to a lot of
timeout failures. Among all the strategies, NV P obtains the best fault tolerance per-
formance. This is not only because NV P can tolerate logic-related faults by majority
voting, but also because NV P invokes 5 replicas in parallel in our experiments, which
greatly reduces the number of timeout failures. For example, if one replica does not
respond within the required time period tmax, NV P can still get the correct result
by conducting majority voting using the remaining responses. The fault tolerance
performance of the Dynamic strategy is not good comparing with NV P. However,
this fault tolerance performance is already good enough for User 1, who does not
care so much about the failure-rate by setting fmax = 0.1.

The Res column in Table 3 shows the resource consumption information of
different fault tolerance strategies. We can see that the resource consumption of
Retry and RB strategies are equal to 1, because these two strategies invoke only one
replica at the same time. In our experiments, the version number of NV P strategy
is set to be 5 and the parallel invocation number of Active strategy is set to be 6.
Therefore, the Res of these two strategies are 5 and 6, respectively. The Dynamic
strategy invokes 2.34 replicas in parallel on average. The Per f column shows the
overall performance of different strategies calculated by (11). We can see that the
Dynamic strategy achieves the best overall performance among all the strategies
(smaller value for better performance). Although the Active strategy also achieves
good performance for User 1, in the following experiments, we can see that it cannot
always provide good overall performance under different environments.

As shown in Tables 4–8, for other service users, the Dynamic strategy can also
provide a suitable strategy dynamically to achieve good performance. As shown in
Fig. 5, the Dynamic strategy provides the best overall performance among all the
fault tolerance strategies for all the six service users. This is because the Dynamic
strategy considers user requirements and can adjust itself for optimal strategy

338 Empir Software Eng (2010) 15:323–345

Table 3 Experimental results
of user 1

U Strategies All RTT Fail Res Perf

1 Retry 50000 420 2853 1 1.011
RB 50000 420 2808 1 1.002
NVP 50000 839 2 5 0.939
Active 50000 251 110 6 0.393
Dynamic 50000 266 298 2.34 0.372

Table 4 Experimental results
of user 2

U Strategies All RTT Fail Res Perf

2 Retry 50000 471 285 1 5.985
RB 50000 469 283 1 5.944
NVP 50000 855 0 5 0.677
Active 50000 253 126 6 2.946
Dynamic 50000 395 3 4.03 0.459

Table 5 Experimental results
of user 3

U Strategies All RTT Fail Res Perf

3 Retry 50000 458 155 1 0.717
RB 50000 457 149 1 0.713
NVP 50000 845 1 5 2.712
Active 50000 248 138 6 3.154
Dynamic 50000 456 141 1 0.708

Table 6 Experimental results
of user 4

U Strategies All RTT Fail Res Perf

4 Retry 50000 498 145 1 1.194
RB 50000 493 131 1 1.180
NVP 50000 868 1 5 5.087
Active 50000 251 119 6 6.144
Dynamic 50000 494 109 1 1.158

Table 7 Experimental results
of user 5

U Strategies All RTT Fail Res Perf

5 Retry 50000 454 115 1 0.823
RB 50000 450 121 1 0.847
NVP 50000 779 0 5 1.718
Active 50000 249 125 6 2.516
Dynamic 50000 489 60 1.46 0.759

Table 8 Experimental results
of user 6

U Strategies All RTT Fail Res Perf

6 Retry 50000 470 146 1 29.236
RB 50000 468 119 1 23.835
NVP 50000 839 1 5 0.304
Active 50000 249 132 6 26.487
Dynamic 50000 473 1 3.56 0.268

Empir Software Eng (2010) 15:323–345 339

Fig. 5 Overall performance of
different fault tolerance
strategies

1 2 3 4 5 6
0

5

10

15

20

25

30

Users

O
ve

ra
ll

P
er

fo
rm

an
ce

(w1=1/3, w2=1/3, w3=1/3)

Retry
RB
NVP
Active
Dynamic

dynamically according to the change of QoS values of the replicas. The other four
traditional fault tolerance strategies perform well in some situations; however, they
perform badly in other situations, because they are too static. Our experimental
results indicate that the traditional fault tolerance strategies may not be good choices
in the field of service-oriented computing, which is highly dynamic. The experimental
results also indicate that our proposed Dynamic fault tolerance strategy is more
adaptable and can achieve better overall performance compared with traditional
fault tolerance strategies.

6.3 Studies of Different User Requirements

In this section, we conduct experiments with different user requirement settings to
study the influence of different requirement parameters (tmax, fmax and rmax). Each
experiment is run for 5000 times and the experimental results are shown in Fig. 6.

Figure 6a shows the influence of the user requirement tmax, where the x-axis shows
the different tmax settings (1000–10000 ms) and y-axis is the performance of different
fault tolerance strategies calculated by (11). The settings of fmax and rmax are: fmax =
0.1, rmax = 6. Figure 6a shows that: 1) the performance of the sequential strategies
Retry and RB are worse than the parallel strategies (NV P and Active) when the
tmax is small (e.g., tmax = 1000), since the response-time performance of the sequential
strategies are not good; 2) when tmax > 2000 ms, sequential fault tolerance strategies
achieve better performance than the parallel strategies, since the user requirement on
response-time is not tight; and 3) the Dynamic strategy, which is more adaptable, can
provide the best performance under all the different tmax settings in our experiments.

Figure 6b shows the influence of the user requirement fmax, where the x-axis shows
the different fmax settings (0.05–0.5). The settings of tmax and rmax are: tmax = 1000
and rmax = 6. Figure 6(b) shows that: 1) the performance of the sequential strategies
Retry and RB are not good when fmax is small, since the sequential strategies have
a lot of time out failures caused by the setting of tmax = 1000; 2) the performance of
the sequential strategies increases with the increasing of fmax, since large fmax value

340 Empir Software Eng (2010) 15:323–345

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

(a) tMax (c) rMax(b)fMax

P
er

fo
rm

an
ce

(fMax=0.1, rMax=6)

Retry
RB
NVP
Active
Dynamic

x1000
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

P
er

fo
rm

an
ce

(tMax=1000, rMax=6)

Retry
RB
NVP
Active
Dynamic

1 6 11 16 21 26 31 36 41 46
0

2

4

6

8

P
er

fo
rm

an
ce

(tMax=1000, fMax=0.1)

Retry
RB
NVP
Active
Dynamic

Fig. 6 Strategy performance with different tMax

indicates that the user requirement on the failure-rate is loose; 3) parallel strategies
can provide steady performance in our experiments; and 4) the Dynamic strategy
can provide the best performance under all the different fmax settings.

Figure 6c shows the influence of the user requirement rmax, where the x-axis shows
different rmax settings (1–46). The settings of tmax and fmax are: tmax = 1000 and rmax =
0.1. Figure 6c shows that: 1) the performance of the parallel strategies enhance with
the increasing of rmax, since the user can afford more resource consuming; and 2) the
Dynamic strategy provides the best performance under all the different fmax settings.

The above experimental results show that the traditional fault tolerance strategies
can provide good performance in some environments. However, with the changing of
user requirements, the performance of traditional fault tolerance strategies cannot be
guaranteed since these strategies cannot be auto-adapted to different environments.
The Dynamic fault tolerance strategy, on the other hand, provides the best overall
performance with different tmax, fmax and rmax settings in our experiments.

6.4 Studies of Different Faults

In this section, we study the performance of different fault tolerance strategies under
various faults. The user requirements in these experiments are: tmax = 2000, fmax =
0.1, rmax = 6. The experimental results are shown in Fig. 7.

Figure 7a shows the performance of different fault tolerance strategies under
different level of network faults (the x-axis), which is from 1%–10%. Figure 7a
shows that: 1) the performance of the NV P strategy is not good, since the user
requirement on the resource is tight (rmax = 6); 2) the performance of the sequential

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

1

1.5

2

2.5

3

(a) Network Faults (fn)

P
er

fo
rm

an
ce

(fl=0.0025, fp=0.05)

Retry
RB
NVP
Active
Dynamic

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

1

1.5

2

2.5

3

(b) Logic Faults (fl)

P
er

fo
rm

an
ce

(fn=0.01, fp=0.05)

Retry
RB
NVP
Active
Dynamic

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

(c) Permenant Faults (fp)

P
er

fo
rm

an
ce

(fn=0.01, fl=0.0025)

Retry
RB
NVP
Active
Dynamic

Fig. 7 Strategy performance under different level of faults

Empir Software Eng (2010) 15:323–345 341

strategies degrades with the increasing of network faults, since more timeout errors
occur (response time larger than tmax); and 3) the Dynamic strategy can provide the
best performance under different levels of network faults.

Figure 7b shows the performance of different fault tolerance strategies under
different level of logic faults (1%–10%). Figure 7b shows that: 1) with the increasing
of the logic faults, the performance of the Active strategy degrades, since Active
cannot tolerate logic faults; 2) NV P can tolerate logic faults; however, it invokes 5
replicas in parallel in our experiments, which consumes a lot of resource; and 3)the
Dynamic strategy can provide the best performance under different levels of logic
faults.

Figure 7c shows the performance of different fault tolerance strategies under
different levels of permanent faults (5%–50%). Figure 7c shows that the Dynamic
strategy can steadily provide the best performance under different levels of perma-
nent faults.

The above experimental results show that the Dynamic fault tolerance strategy
can provide the best overall performance under different levels of network faults,
logic faults and permanent faults.

7 Related Work and Discussion

A number of fault tolerance strategies for Web services have been proposed in the
recent literature (Chan et al. 2007; Foster et al. 2003; Salatge and Fabre 2007; Zheng
and Lyu 2009). The major approaches can be divided into two types: 1) sequential
strategies, where a primary service is invoked to process the request and some backup
services are invoked only when the primary service fails. Sequential strategies have
been employed in FT-SOAP (Fang et al. 2007), FT-CORBA (Sheu et al. 1997),
and work (Chen and Lyu 2003). 2) parallel strategies, where all the candidates are
invoked at the same time. Parallel strategies have been employed in FTWeb (Santos
et al. 2005), Thema (Merideth et al. 2005) and WS-Replication (Salas et al. 2006).
However, these fault tolerance strategies are too static and cannot auto-adapt to
different environments. In this paper, we propose a context-aware dynamic fault
tolerance strategy for achieving optimal fault tolerance for Web services.

QoS models for Web services have been discussed in a number of recent literature
(Ardagna and Pernici 2007; Jaeger et al. 2004; Menasce 2002; O’Sullivan et al. 2002;
Ouzzani and Bouguettaya 2004; Thio and Karunasekera 2005; Zheng et al. 2009b).
The QoS data of Web services can be measured from either the service user’s per-
spective (e.g., response-time, success-rate, ect.) or the service provider’s perspective
(e.g., price, availability, etc.). In this paper, we discuss the most representative QoS
properties (RTT, failure-rate, and resources) and introduce the key concept of Web
2.0, user-collaboration, into our QoS model. QoS measurement of Web services has
been used in the Service Level Agreement (SLA) (Ludwig et al. 2003), such as IBMs
WSLA framework (Keller and Ludwig 2002) and the work from HP (Sahai et al.
2002). In SLA, the QoS data are mainly for the service providers to maintain a
certain level of service to their clients and the QoS data are not available to others.
On the other hand, we mainly focus on encouraging the service users to share their
individually-obtained QoS data of the Web services, making efficient and effective
Web service evaluation and selection.

342 Empir Software Eng (2010) 15:323–345

The WS-ReliableMessaging (OASIS 2005b) can be employed in our middleware
framework for enabling reliable message communication. WSRF (OASIS 2005a),
which describes the state as XML data-sheets, can be employed for transferring states
between different replicas. The proposed middleware can be integrated into the
SOA runtime governance framework (Kavianpour 2007) and applied to industrial
projects.

8 Conclusion

This paper proposes a dynamic adaptive fault tolerance strategy for Web services,
which employs both objective replica QoS information as well as subjective user
requirements for optimal strategy configuration determination. Based on a QoS-
aware middleware, service users share their individually-obtained Web service QoS
information with each other via a service community coordinator. Experiments are
conducted and the performances of various fault tolerance strategies under different
environments are compared. The experimental results indicate that the proposed
Dynamic strategy can obtain better overall performance for various service users
compared with traditional fault tolerance strategies.

More QoS properties will be involved in our QoS model for Web services in
the future. More investigations are needed for the fault tolerance of stateful Web
services, which need to maintain states across multiple tasks.

Acknowledgements The work described in this paper was fully supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.
CUHK4154/09E).

References

Apache (2008) Axis2. http://ws.apache.org/axis2
Ardagna D, Pernici B (2007) Adaptive service composition in flexible processes. IEEE Trans Softw

Eng 33(6):369–384
Avizienis A (1995) The methodology of n-version programming. Software fault tolerance. Wiley,

Chichester, pp 23–46
Benatallah B, Dumas M, Sheng QZ, Ngu AHH (2002) Declarative composition and peer-to-peer

provisioning of dynamic web services. In: Proc 18th int’l conf data eng (ICDE’02)
Bram C (2003) Incentives build robustness in bittorrent. In: Proc first workshop economics of peer-

to-peer systems, pp 1–5
Chan PP, Lyu MR, Malek M (2007) Reliable web services: methodology, experiment and modeling.

In: Proc 5th int’l conf web services (ICWS’07), pp 679–686
Chen X, Lyu MR (2003) Message logging and recovery in wireless corba using access bridge. In: The

6th int’l symp autonomous decentralized systems, pp 107–114
Deora V, Shao J, Gray W, Fiddian N (2003) A quality of service management framework based on

user expectations. In: Proc 1st int’l conf service-oriented computing (ICSOC’03), pp 104–114
Fang CL, Liang D, Lin F, Lin CC (2007) Fault tolerant web services. J Syst Archit 53(1):21–38
Foster H, Uchitel S, Magee J, Kramer J (2003) Model-based verification of web service compositions.

In: ASE
Jaeger MC, Rojec-Goldmann G, Muhl G (2004) Qos aggregation for web service composition using

workflow patterns. In: Proc 8th IEEE int’l enterprise computing conf, pp 149–159

http://ws.apache.org/axis2

Empir Software Eng (2010) 15:323–345 343

Kavianpour M (2007) Soa and large scale and complex enterprise transformation. In: Proc 5th int’l
conf service-oriented computing (ICSOC’07), pp 530–545

Keller A, Ludwig H (2002) The wsla framework: specifying and monitoring service level agreements
for web services. In: IBM research division

Leu D, Bastani F, Leiss E (1990) The effect of statically and dynamically replicated components on
system reliability. IEEE Trans Reliab 39(2):209–216

Looker N, Xu J (2003) Assessing the dependability of soaprpc-based web services by fault injection.
In: Proc of the 9th int’l workshop on object-oriented real-time dependable systems

Ludwig H, Keller A, Dan A, King R, Franck R (2003) A service level agreement language for
dynamic electronic services. Electron Commer Res 3(1–2):43–59

Lyu MR (1995) Software fault tolerance. Trends in software. Wiley, New York
Lyu MR (1996) Handbook of software reliability eng. McGraw-Hill, New York
Maximilien E, Singh M (2002) Conceptual model of web service reputation. ACM SIGMOD Record

31(4):36–41
Menasce DA (2002) Qos issues in web services. IEEE Internet Computing 6(6):72–75
Merideth MG, Iyengar A, Mikalsen T, Tai S, Rouvellou I, Narasimhan P (2005) Thema: Byzantine-

fault-tolerant middleware forweb-service applications. In: Proc 24th IEEE symp reliable distrib-
uted systems (SRDS’05), pp 131–142

OASIS (2005a) Web service resource framework. http://www.oasis-open.org/committees/wsrf/
OASIS (2005b) Web services reliable messaging protocol. http://specs.xmlsoap.org/ws/2005/02/rm
O’Sullivan J, Edmond D, ter Hofstede AHM (2002) What’s in a service? Distributed and Parallel

Databases 12(2/3):117–133
Ouzzani M, Bouguettaya A (2004) Efficient access to web services. IEEE Internet Computing

8(2):34–44
Randell B, Xu J (1995) The evolution of the recovery block concept. In: Lyu MR (ed) Software fault

tolerance. Wiley, Chichester, pp 1–21
Sahai A, Durante A, Machiraju V (2002) Towards automated sla management for web services. In:

HP laboratory
Salas J, Perez-Sorrosal F, Marta Pati nM, Jiménez-Peris R (2006) Ws-replication: a framework for

highly available web services. In: Proc 15th int’l conf world wide web (WWW’06), pp 357–366
Salatge N, Fabre JC (2007) Fault tolerance connectors for unreliable web services. In: Proc 37th Int’l

conf dependable systems and networks (DSN’07), pp 51–60
Santos GT, Lung LC, Montez C (2005) Ftweb: a fault tolerant infrastructure for web services. In:

Proc 9th IEEE int’l enterprise computing conf, pp 95–105
Sheu GW, Chang YS, Liang D, Yuan SM, Lo W (1997) A fault-tolerant object service on corba. In:

Proc 17th int’l conf distributed computing systems (ICDCS’97), p 393
Thio N, Karunasekera S (2005) Automatic measurement of a qos metric for web service recommen-

dation. In: Proc. Australian software engineering conference, pp 202–211
Tsai W, Paul R, Yu L, Saimi A, Cao Z (2003) Scenario-based web service testing with distributed

agents. IEICE Trans Inf Syst E86-D(10):2130–2144
Vieira M, Laranjeiro N, Madeira H (2007) Assessing robustness of web-services infrastructures. In:

Proc 37th int’l conf dependable systems and networks (DSN’07), pp 131–136
Wu G, Wei J, Qiao X, Li L (2007) A bayesian network based qos assessment model for web services.

In: Proc int’l conf services computing (SCC’07), pp 498–505
Wu J, Wu Z (2005) Similarity-based web service matchmaking. In: Proc int’l conf services computing

(SCC’05), pp 287–294
Zeng L, Benatallah B, Ngu AH, Dumas M, Kalagnanam J, Chang H (2004) Qos-aware middleware

for web services composition. IEEE Trans Softw Eng 30(5):311–327
Zheng Z, Lyu MR (2008a) A distributed replication strategy evaluation and selection framework for

fault tolerant web services. In: Proc 6th int’l conf web services (ICWS’08), pp 145–152
Zheng Z, Lyu MR (2008b) A qos-aware middleware for fault tolerant web services. In: Proc int’l

symp software reliability engineering (ISSRE’08), pp 97–106
Zheng Z, Lyu MR (2009) A qos-aware fault tolerant middleware for dependable service composi-

tion. In: Proc 39th int’l conf dependable systems and networks (DSN’09), pp 239–248
Zheng W, Lyu MR, Xie T (2009a) Test selection for result inspection via mining predicate rules. In:

Companion Proc 31th int’l conf software eng, new ideas and emerging results, pp 219–222
Zheng Z, Ma H, Lyu MR, King I (2009b) Wsrec: a collaborative filtering based web service recom-

mender system. In: Proc 7th int’l conf web services (ICWS’09), pp 437–444

http://www.oasis-open.org/committees/wsrf/
http://specs.xmlsoap.org/ws/2005/02/rm

344 Empir Software Eng (2010) 15:323–345

Zibin Zheng received his B.Eng. degree and M.Phil. degree in Computer Science from the Sun
Yat-sen University, Guangzhou, China, in 2005 and 2007, respectively. He is currently a Ph.D.
candidate in the department of Computer Science and Engineering, The Chinese University of
Hong Kong. He served as program committee member of the IEEE CLOUD 2009. He also served
as reviewer for international journals as well as conferences including TSE, TPDS, TSC, IJCCBS,
IJBPIM, WWW, WSDM, DSN, ISSRE, PRDC, ISAS, HASE, SEKE, P2P, SCC, etc. His research
interests include service computing, software reliability engineering, and Web technology.

Michael R. Lyu received the B.S. degree in electrical engineering from National Taiwan University,
Taipei, Taiwan, R.O.C., in 1981; the M.S. degree in computer engineering from University of
California, Santa Barbara, in 1985; and the Ph.D. degree in computer science from the University of
California, Los Angeles, in 1988. He is currently a Professor in the Department of Computer Science
and Engineering, Chinese University of Hong Kong, Hong Kong, China. He is also Director of the
Video over Internet and Wireless (VIEW) Technologies Laboratory. He was with the Jet Propulsion
Laboratory as a Technical Staff Member from 1988 to 1990. From 1990 to 1992, he was with the
Department of Electrical and Computer Engineering, University of Iowa, Iowa City, as an Assistant
Professor. From 1992 to 1995, he was a Member of Technical Staff in the applied research area of
Bell Communications Research (Bellcore), Morristown, NJ. From 1995 to 1997, he was a Research
Member of Technical Staff at Bell Laboratories, Murray Hill, NJ. His research interests include
software reliability engineering, distributed systems, fault-tolerant computing, mobile networks, Web
technologies, multimedia information processing, and E-commerce systems. He has published over
270 refereed journal and conference papers in these areas. He has participated in more than 30
industrial projects and helped to develop many commercial systems and software tools. He was
the editor of two book volumes: Software Fault Tolerance (New York: Wiley, 1995) and The

Empir Software Eng (2010) 15:323–345 345

Handbook of Software Reliability Engineering (New York: IEEE and New McGraw-Hill, 1996).
Dr. Lyu received Best Paper Awards at ISSRE’98 and ISSRE’2003. Dr. Lyu initiated the First
International Symposium on Software Reliability Engineering (ISSRE) in 1990. He was the Program
Chair for ISSRE’96 and General Chair for ISSRE’2001. He was also PRDC’99 Program Co-Chair,
WWW10 Program Co-Chair, SRDS’2005 Program Co-Chair, PRDC’2005 General Co-Chair, and
ICEBE’2007 Program Co-Chair, and served in program committees for many other conferences
including HASE, ICECCS, ISIT, FTCS, DSN, ICDSN, EUROMICRO, APSEC, PRDC, PSAM,
ICCCN, ISESE, and WI. He has been frequently invited as a keynote or tutorial speaker to
conferences and workshops in the U.S., Europe, and Asia. He has been on the Editorial Board
of the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the IEEE
TRANSACTIONS ON RELIABILITY, the Journal of Information Science and Engineering, and
Software Testing, Verification & Reliability Journal.

Dr. Lyu is an IEEE Fellow and an AAAS Fellow, for his contributions to software reliability
engineering and software fault tolerance. He is also a Croucher Senior Research Fellow.

	An adaptive QoS-aware fault tolerance strategy for web services
	Abstract
	Introduction
	Design of the QoS-aware Middleware
	Basic Concept Introduction
	Architecture of the Middleware

	Basic Fault Tolerance Strategies
	Models of User Requirements and QoS
	User Requirement Model
	QoS Model of Web Service

	Adaptive Fault Tolerance Strategy Configuration
	Notations
	Scalable RTT Prediction
	A Dynamic Fault Tolerance Strategy Selection Algorithm
	Sequential or Parallel Strategy Determination
	Dynamic Sequential Strategy Determination
	Dynamic Parallel Strategy Determination

	Experiments
	Experimental Setup
	Studies of the Typical Examples
	Studies of Different User Requirements
	Studies of Different Faults

	Related Work and Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

